Exemplo n.º 1
0
def process_visual_genome():
    setup_django()
    import os, shutil, gzip, json
    from django.core.files.uploadedfile import SimpleUploadedFile
    from dvaapp.view_shared import handle_uploaded_file
    from dvaapp import models
    from dvaapp.models import TEvent
    from dvaapp.tasks import perform_dataset_extraction, export_video
    from collections import defaultdict
    os.system('aws s3api get-object --request-payer "requester" --bucket visualdatanetwork --key visual_genome_objects.txt.gz  /root/DVA/visual_genome_objects.txt.gz')
    data = defaultdict(list)
    with gzip.open('/root/DVA/visual_genome_objects.txt.gz') as metadata:
        for line in metadata:
            entries = line.strip().split('\t')
            data[entries[1]].append({
                'x': int(entries[2]),
                'y': int(entries[3]),
                'w': int(entries[4]),
                'h': int(entries[5]),
                'object_id': entries[0],
                'object_name': entries[6],
                'text': ' '.join(entries[6:]), })
    name = "visual_genome"
    fname = "visual_genome.zip"
    f = SimpleUploadedFile(fname, "", content_type="application/zip")
    v = handle_uploaded_file(f, name)
    outpath = "/root/DVA/dva/media/{}/video/{}.zip".format(v.pk, v.pk)
    os.system('rm  {}'.format(outpath))
    os.system(
        'aws s3api get-object --request-payer "requester" --bucket visualdatanetwork --key visual_genome.zip  {}'.format(
            outpath))
    perform_dataset_extraction(TEvent.objects.create(video=v).pk)
    video = v
    models.Region.objects.all().filter(video=video).delete()
    buffer = []
    batch_count = 0
    for frame in models.Frame.objects.all().filter(video=video):
        frame_id = str(int(frame.name.split('/')[-1].split('.')[0]))
        for o in data[frame_id]:
            annotation = models.Region()
            annotation.region_type = models.Region.ANNOTATION
            annotation.video = v
            annotation.frame = frame
            annotation.x = o['x']
            annotation.y = o['y']
            annotation.h = o['h']
            annotation.w = o['w']
            annotation.object_name = o['object_name']
            annotation.metadata = o
            annotation.text = o['text']
            buffer.append(annotation)
            if len(buffer) == 1000:
                try:
                    models.Region.objects.bulk_create(buffer)
                    batch_count += 1
                    print "saved {}".format(batch_count)
                except:
                    print "encountered an error doing one by one"
                    for k in buffer:
                        try:
                            k.save()
                        except:
                            print "skipping"
                            print k.object_name
                buffer = []
    try:
        models.Region.objects.bulk_create(buffer)
        print "saved {}".format(batch_count)
    except:
        print "encountered an error doing one by one"
        for k in buffer:
            try:
                k.save()
            except:
                print "skipping"
                print k.object_name
    print "exporting"
    export_video(TEvent.objects.create(video=v).pk)
Exemplo n.º 2
0
def ci():
    """
    Used in conjunction with travis for Continuous Integration testing
    :return:
    """
    import django
    sys.path.append(os.path.dirname(__file__))
    os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dva.settings")
    django.setup()
    import base64
    from django.core.files.uploadedfile import SimpleUploadedFile
    from dvaapp.views import handle_uploaded_file, handle_youtube_video, pull_vdn_list\
        ,import_vdn_dataset_url
    from dvaapp.models import Video, Clusters,IndexEntries,TEvent,VDNServer, DVAPQL
    from django.conf import settings
    from dvaapp.operations.processing import DVAPQLProcess
    from dvaapp.tasks import extract_frames, perform_indexing, export_video, import_video_by_id,\
        perform_clustering, perform_analysis, perform_detection,\
        segment_video, crop_regions_by_id
    for fname in glob.glob('tests/ci/*.mp4'):
        name = fname.split('/')[-1].split('.')[0]
        f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4")
        handle_uploaded_file(f, name, False)
    if sys.platform != 'darwin':
        for fname in glob.glob('tests/*.mp4'):
            name = fname.split('/')[-1].split('.')[0]
            f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4")
            handle_uploaded_file(f, name, False)
        for fname in glob.glob('tests/*.zip'):
            name = fname.split('/')[-1].split('.')[0]
            f = SimpleUploadedFile(fname, file(fname).read(), content_type="application/zip")
            handle_uploaded_file(f, name)
    # handle_youtube_video('world is not enough', 'https://www.youtube.com/watch?v=P-oNz3Nf50Q') # Temporarily disabled due error in travis
    for i,v in enumerate(Video.objects.all()):
        if v.dataset:
            arguments = {'sync':True}
            extract_frames(TEvent.objects.create(video=v,arguments=arguments).pk)
        else:
            arguments = {'sync':True}
            segment_video(TEvent.objects.create(video=v,arguments=arguments).pk)
            arguments = {'index': 'inception'}
            perform_indexing(TEvent.objects.create(video=v,arguments=arguments).pk)
        if i ==0: # save travis time by just running detection on first video
            # face_mtcnn
            arguments = {'detector': 'face'}
            dt = TEvent.objects.create(video=v,arguments=arguments)
            perform_detection(dt.pk)
            arguments = {'filters':{'event_id':dt.pk},}
            crop_regions_by_id(TEvent.objects.create(video=v,arguments=arguments).pk)
            # coco_mobilenet
            arguments = {'detector': 'coco'}
            dt = TEvent.objects.create(video=v, arguments=arguments)
            perform_detection(dt.pk)
            arguments = {'filters':{'event_id':dt.pk},}
            crop_regions_by_id(TEvent.objects.create(video=v,arguments=arguments).pk)
            # inception on crops from detector
            arguments = {'index':'inception','target': 'regions','filters': {'event_id': dt.pk, 'w__gte': 50, 'h__gte': 50}}
            perform_indexing(TEvent.objects.create(video=v,arguments=arguments).pk)
            # assign_open_images_text_tags_by_id(TEvent.objects.create(video=v).pk)
        fname = export_video(TEvent.objects.create(video=v).pk)
        f = SimpleUploadedFile(fname, file("{}/exports/{}".format(settings.MEDIA_ROOT,fname)).read(), content_type="application/zip")
        vimported = handle_uploaded_file(f, fname)
        import_video_by_id(TEvent.objects.create(video=vimported).pk)
    dc = Clusters()
    dc.indexer_algorithm = 'inception'
    dc.included_index_entries_pk = [k.pk for k in IndexEntries.objects.all().filter(algorithm=dc.indexer_algorithm)]
    dc.components = 32
    dc.save()
    clustering_task = TEvent()
    clustering_task.arguments = {'clusters_id':dc.pk}
    clustering_task.operation = 'perform_clustering'
    clustering_task.save()
    perform_clustering(clustering_task.pk)
    query_dict = {
        'process_type': DVAPQL.QUERY,
        'image_data_b64':base64.encodestring(file('tests/query.png').read()),
        'indexer_queries':[
            {
                'algorithm':'inception',
                'count':10,
                'approximate':False
            }
        ]
    }
    qp = DVAPQLProcess()
    qp.create_from_json(query_dict)
    # execute_index_subquery(qp.indexer_queries[0].pk)
    query_dict = {
        'process_type': DVAPQL.QUERY,
        'image_data_b64':base64.encodestring(file('tests/query.png').read()),
        'indexer_queries':[
            {
                'algorithm':'inception',
                'count':10,
                'approximate':True
            }
        ]
    }
    qp = DVAPQLProcess()
    qp.create_from_json(query_dict)
    # execute_index_subquery(qp.indexer_queries[0].pk)
    server, datasets, detectors = pull_vdn_list(1)
    for k in datasets:
        if k['name'] == 'MSCOCO_Sample_500':
            print 'FOUND MSCOCO SAMPLE'
            import_vdn_dataset_url(VDNServer.objects.get(pk=1),k['url'],None)
    test_backup()
Exemplo n.º 3
0
        annotation.object_name = 'caption'
        buf.append(annotation)
    if len(buf) > 1000:
        try:
            models.Region.objects.bulk_create(buf)
            batch_count += 1
            print "saved {}".format(batch_count)
        except:
            print "encountered an error doing one by one"
            for k in buf:
                try:
                    k.save()
                except:
                    print "skipping"
                    print k.object_name
        buf = []
try:
    models.Region.objects.bulk_create(buf)
    batch_count += 1
    print "saved {}".format(batch_count)
except:
    print "encountered an error doing one by one"
    for k in buf:
        try:
            k.save()
        except:
            print "skipping"
            print k.object_name
buf = []
export_video(TEvent.objects.create(video=v).pk)
Exemplo n.º 4
0
def create_yolo_test_data():
    import shutil
    import numpy as np
    import os
    from PIL import Image
    setup_django()
    from dvaapp.shared import handle_uploaded_file
    from django.core.files.uploadedfile import SimpleUploadedFile
    from dvaapp.models import Region,TEvent,Frame,Label,RegionLabel
    from dvaapp.tasks import extract_frames,export_video
    try:
        shutil.rmtree('/Users/aub3/tests/yolo_test')
    except:
        pass
    try:
        os.mkdir('/Users/aub3/tests/yolo_test')
    except:
        pass
    data = np.load('shared/underwater_data.npz')
    json_test = {}
    json_test['anchors'] = [(0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434), (7.88282, 3.52778), (9.77052, 9.16828)]
    id_2_boxes = {}
    class_names = {
        0:"red_buoy",
        1:"green_buoy",
        2:"yellow_buoy",
        3:"path_marker",
        4:"start_gate",
        5:"channel"
    }
    labels = {k: Label.objects.create(name=v, set="test") for k, v in class_names}
    for i,image in enumerate(data['images'][:500]):
        path = "/Users/aub3/tests/yolo_test/{}.jpg".format(i)
        Image.fromarray(image).save(path)
        id_2_boxes[path.split('/')[-1]] = data['boxes'][i].tolist()
    local('zip /Users/aub3/tests/yolo_test.zip -r /Users/aub3/tests/yolo_test/* ')
    fname = "/Users/aub3/tests/yolo_test.zip"
    name = "yolo_test"
    f = SimpleUploadedFile(fname, file(fname).read(), content_type="application/zip")
    dv = handle_uploaded_file(f, name)
    extract_frames(TEvent.objects.create(video=dv).pk)
    for df in Frame.objects.filter(video=dv):
        for box in id_2_boxes[df.name]:
            r = Region()
            r.video = dv
            r.frame = df
            c , top_x, top_y, bottom_x, bottom_y = box
            r.object_name = class_names[c]
            r.region_type = Region.ANNOTATION
            r.x = top_x
            r.y = top_y
            r.w = bottom_x - top_x
            r.h = bottom_y - top_y
            r.save()
            l = RegionLabel()
            l.frame = df
            l.video = dv
            l.label = labels[c]
            l.region = r
            l.save()
    export_video(TEvent.objects.create(video=dv).pk)
    try:
        shutil.rmtree('/Users/aub3/tests/yolo_test')
    except:
        pass
Exemplo n.º 5
0
def generate_vdn(fast=False):
    kill()
    setup_django()
    from django.core.files.uploadedfile import SimpleUploadedFile
    from dvaapp.views import handle_uploaded_file, handle_youtube_video
    from dvaapp import models
    from dvaapp.models import TEvent
    from dvaapp.tasks import extract_frames, perform_face_detection_indexing_by_id, inception_index_by_id, \
        perform_ssd_detection_by_id, perform_yolo_detection_by_id, inception_index_regions_by_id, \
        export_video
    dirname = get_coco_dirname()
    local(
        'wget https://www.dropbox.com/s/2dq085iu34y0hdv/coco_input.zip?dl=1 -O coco.zip'
    )
    local('unzip coco.zip')
    with lcd(dirname):
        local("zip coco_input.zip -r *.jpg")
    fname = '{}/coco_input.zip'.format(dirname)
    with open('{}/coco_sample_metadata.json'.format(dirname)) as datafile:
        data = json.load(datafile)
    f = SimpleUploadedFile("coco_input.zip",
                           file(fname).read(),
                           content_type="application/zip")
    v = handle_uploaded_file(f, 'mscoco_sample_500')
    extract_frames(TEvent.objects.create(video=v).pk)
    video = v
    models.Region.objects.all().filter(video=video).delete()
    for frame in models.Frame.objects.all().filter(video=video):
        frame_id = str(int(frame.name.split('_')[-1].split('.')[0]))
        annotation = models.Region()
        annotation.region_type = models.Region.ANNOTATION
        annotation.video = v
        annotation.frame = frame
        annotation.full_frame = True
        annotation.metadata = data[frame_id]['image']
        annotation.object_name = 'metadata'
        annotation.save()
    for frame in models.Frame.objects.all().filter(video=video):
        frame_id = str(int(frame.name.split('_')[-1].split('.')[0]))
        for a in data[frame_id][u'annotations']:
            annotation = models.Region()
            annotation.region_type = models.Region.ANNOTATION
            annotation.video = v
            annotation.frame = frame
            annotation.metadata = a
            annotation.full_frame = False
            annotation.x = a['bbox'][0]
            annotation.y = a['bbox'][1]
            annotation.w = a['bbox'][2]
            annotation.h = a['bbox'][3]
            annotation.object_name = 'coco_instance/{}/{}'.format(
                a[u'category'][u'supercategory'], a[u'category'][u'name'])
            annotation.save()
        for a in data[frame_id][u'keypoints']:
            annotation = models.Region()
            annotation.region_type = models.Region.ANNOTATION
            annotation.video = v
            annotation.frame = frame
            annotation.metadata = a
            annotation.x = a['bbox'][0]
            annotation.y = a['bbox'][1]
            annotation.w = a['bbox'][2]
            annotation.h = a['bbox'][3]
            annotation.object_name = 'coco_keypoints/{}/{}'.format(
                a[u'category'][u'supercategory'], a[u'category'][u'name'])
            annotation.save()
        for caption in data[frame_id][u'captions']:
            annotation = models.Region()
            annotation.region_type = models.Region.ANNOTATION
            annotation.video = v
            annotation.frame = frame
            annotation.text = caption['caption']
            annotation.full_frame = True
            annotation.object_name = 'caption'
            annotation.save()
    if not fast:
        inception_index_by_id(TEvent.objects.create(video=v).pk)
        perform_ssd_detection_by_id(TEvent.objects.create(video=v).pk)
        perform_face_detection_indexing_by_id(
            TEvent.objects.create(video=v).pk)
        inception_index_regions_by_id(TEvent.objects.create(video=v).pk)
    export_video(TEvent.objects.create(video=v).pk)