def process_visual_genome(): setup_django() import os, shutil, gzip, json from django.core.files.uploadedfile import SimpleUploadedFile from dvaapp.view_shared import handle_uploaded_file from dvaapp import models from dvaapp.models import TEvent from dvaapp.tasks import perform_dataset_extraction, export_video from collections import defaultdict os.system('aws s3api get-object --request-payer "requester" --bucket visualdatanetwork --key visual_genome_objects.txt.gz /root/DVA/visual_genome_objects.txt.gz') data = defaultdict(list) with gzip.open('/root/DVA/visual_genome_objects.txt.gz') as metadata: for line in metadata: entries = line.strip().split('\t') data[entries[1]].append({ 'x': int(entries[2]), 'y': int(entries[3]), 'w': int(entries[4]), 'h': int(entries[5]), 'object_id': entries[0], 'object_name': entries[6], 'text': ' '.join(entries[6:]), }) name = "visual_genome" fname = "visual_genome.zip" f = SimpleUploadedFile(fname, "", content_type="application/zip") v = handle_uploaded_file(f, name) outpath = "/root/DVA/dva/media/{}/video/{}.zip".format(v.pk, v.pk) os.system('rm {}'.format(outpath)) os.system( 'aws s3api get-object --request-payer "requester" --bucket visualdatanetwork --key visual_genome.zip {}'.format( outpath)) perform_dataset_extraction(TEvent.objects.create(video=v).pk) video = v models.Region.objects.all().filter(video=video).delete() buffer = [] batch_count = 0 for frame in models.Frame.objects.all().filter(video=video): frame_id = str(int(frame.name.split('/')[-1].split('.')[0])) for o in data[frame_id]: annotation = models.Region() annotation.region_type = models.Region.ANNOTATION annotation.video = v annotation.frame = frame annotation.x = o['x'] annotation.y = o['y'] annotation.h = o['h'] annotation.w = o['w'] annotation.object_name = o['object_name'] annotation.metadata = o annotation.text = o['text'] buffer.append(annotation) if len(buffer) == 1000: try: models.Region.objects.bulk_create(buffer) batch_count += 1 print "saved {}".format(batch_count) except: print "encountered an error doing one by one" for k in buffer: try: k.save() except: print "skipping" print k.object_name buffer = [] try: models.Region.objects.bulk_create(buffer) print "saved {}".format(batch_count) except: print "encountered an error doing one by one" for k in buffer: try: k.save() except: print "skipping" print k.object_name print "exporting" export_video(TEvent.objects.create(video=v).pk)
def ci(): """ Used in conjunction with travis for Continuous Integration testing :return: """ import django sys.path.append(os.path.dirname(__file__)) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dva.settings") django.setup() import base64 from django.core.files.uploadedfile import SimpleUploadedFile from dvaapp.views import handle_uploaded_file, handle_youtube_video, pull_vdn_list\ ,import_vdn_dataset_url from dvaapp.models import Video, Clusters,IndexEntries,TEvent,VDNServer, DVAPQL from django.conf import settings from dvaapp.operations.processing import DVAPQLProcess from dvaapp.tasks import extract_frames, perform_indexing, export_video, import_video_by_id,\ perform_clustering, perform_analysis, perform_detection,\ segment_video, crop_regions_by_id for fname in glob.glob('tests/ci/*.mp4'): name = fname.split('/')[-1].split('.')[0] f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4") handle_uploaded_file(f, name, False) if sys.platform != 'darwin': for fname in glob.glob('tests/*.mp4'): name = fname.split('/')[-1].split('.')[0] f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4") handle_uploaded_file(f, name, False) for fname in glob.glob('tests/*.zip'): name = fname.split('/')[-1].split('.')[0] f = SimpleUploadedFile(fname, file(fname).read(), content_type="application/zip") handle_uploaded_file(f, name) # handle_youtube_video('world is not enough', 'https://www.youtube.com/watch?v=P-oNz3Nf50Q') # Temporarily disabled due error in travis for i,v in enumerate(Video.objects.all()): if v.dataset: arguments = {'sync':True} extract_frames(TEvent.objects.create(video=v,arguments=arguments).pk) else: arguments = {'sync':True} segment_video(TEvent.objects.create(video=v,arguments=arguments).pk) arguments = {'index': 'inception'} perform_indexing(TEvent.objects.create(video=v,arguments=arguments).pk) if i ==0: # save travis time by just running detection on first video # face_mtcnn arguments = {'detector': 'face'} dt = TEvent.objects.create(video=v,arguments=arguments) perform_detection(dt.pk) arguments = {'filters':{'event_id':dt.pk},} crop_regions_by_id(TEvent.objects.create(video=v,arguments=arguments).pk) # coco_mobilenet arguments = {'detector': 'coco'} dt = TEvent.objects.create(video=v, arguments=arguments) perform_detection(dt.pk) arguments = {'filters':{'event_id':dt.pk},} crop_regions_by_id(TEvent.objects.create(video=v,arguments=arguments).pk) # inception on crops from detector arguments = {'index':'inception','target': 'regions','filters': {'event_id': dt.pk, 'w__gte': 50, 'h__gte': 50}} perform_indexing(TEvent.objects.create(video=v,arguments=arguments).pk) # assign_open_images_text_tags_by_id(TEvent.objects.create(video=v).pk) fname = export_video(TEvent.objects.create(video=v).pk) f = SimpleUploadedFile(fname, file("{}/exports/{}".format(settings.MEDIA_ROOT,fname)).read(), content_type="application/zip") vimported = handle_uploaded_file(f, fname) import_video_by_id(TEvent.objects.create(video=vimported).pk) dc = Clusters() dc.indexer_algorithm = 'inception' dc.included_index_entries_pk = [k.pk for k in IndexEntries.objects.all().filter(algorithm=dc.indexer_algorithm)] dc.components = 32 dc.save() clustering_task = TEvent() clustering_task.arguments = {'clusters_id':dc.pk} clustering_task.operation = 'perform_clustering' clustering_task.save() perform_clustering(clustering_task.pk) query_dict = { 'process_type': DVAPQL.QUERY, 'image_data_b64':base64.encodestring(file('tests/query.png').read()), 'indexer_queries':[ { 'algorithm':'inception', 'count':10, 'approximate':False } ] } qp = DVAPQLProcess() qp.create_from_json(query_dict) # execute_index_subquery(qp.indexer_queries[0].pk) query_dict = { 'process_type': DVAPQL.QUERY, 'image_data_b64':base64.encodestring(file('tests/query.png').read()), 'indexer_queries':[ { 'algorithm':'inception', 'count':10, 'approximate':True } ] } qp = DVAPQLProcess() qp.create_from_json(query_dict) # execute_index_subquery(qp.indexer_queries[0].pk) server, datasets, detectors = pull_vdn_list(1) for k in datasets: if k['name'] == 'MSCOCO_Sample_500': print 'FOUND MSCOCO SAMPLE' import_vdn_dataset_url(VDNServer.objects.get(pk=1),k['url'],None) test_backup()
annotation.object_name = 'caption' buf.append(annotation) if len(buf) > 1000: try: models.Region.objects.bulk_create(buf) batch_count += 1 print "saved {}".format(batch_count) except: print "encountered an error doing one by one" for k in buf: try: k.save() except: print "skipping" print k.object_name buf = [] try: models.Region.objects.bulk_create(buf) batch_count += 1 print "saved {}".format(batch_count) except: print "encountered an error doing one by one" for k in buf: try: k.save() except: print "skipping" print k.object_name buf = [] export_video(TEvent.objects.create(video=v).pk)
def create_yolo_test_data(): import shutil import numpy as np import os from PIL import Image setup_django() from dvaapp.shared import handle_uploaded_file from django.core.files.uploadedfile import SimpleUploadedFile from dvaapp.models import Region,TEvent,Frame,Label,RegionLabel from dvaapp.tasks import extract_frames,export_video try: shutil.rmtree('/Users/aub3/tests/yolo_test') except: pass try: os.mkdir('/Users/aub3/tests/yolo_test') except: pass data = np.load('shared/underwater_data.npz') json_test = {} json_test['anchors'] = [(0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434), (7.88282, 3.52778), (9.77052, 9.16828)] id_2_boxes = {} class_names = { 0:"red_buoy", 1:"green_buoy", 2:"yellow_buoy", 3:"path_marker", 4:"start_gate", 5:"channel" } labels = {k: Label.objects.create(name=v, set="test") for k, v in class_names} for i,image in enumerate(data['images'][:500]): path = "/Users/aub3/tests/yolo_test/{}.jpg".format(i) Image.fromarray(image).save(path) id_2_boxes[path.split('/')[-1]] = data['boxes'][i].tolist() local('zip /Users/aub3/tests/yolo_test.zip -r /Users/aub3/tests/yolo_test/* ') fname = "/Users/aub3/tests/yolo_test.zip" name = "yolo_test" f = SimpleUploadedFile(fname, file(fname).read(), content_type="application/zip") dv = handle_uploaded_file(f, name) extract_frames(TEvent.objects.create(video=dv).pk) for df in Frame.objects.filter(video=dv): for box in id_2_boxes[df.name]: r = Region() r.video = dv r.frame = df c , top_x, top_y, bottom_x, bottom_y = box r.object_name = class_names[c] r.region_type = Region.ANNOTATION r.x = top_x r.y = top_y r.w = bottom_x - top_x r.h = bottom_y - top_y r.save() l = RegionLabel() l.frame = df l.video = dv l.label = labels[c] l.region = r l.save() export_video(TEvent.objects.create(video=dv).pk) try: shutil.rmtree('/Users/aub3/tests/yolo_test') except: pass
def generate_vdn(fast=False): kill() setup_django() from django.core.files.uploadedfile import SimpleUploadedFile from dvaapp.views import handle_uploaded_file, handle_youtube_video from dvaapp import models from dvaapp.models import TEvent from dvaapp.tasks import extract_frames, perform_face_detection_indexing_by_id, inception_index_by_id, \ perform_ssd_detection_by_id, perform_yolo_detection_by_id, inception_index_regions_by_id, \ export_video dirname = get_coco_dirname() local( 'wget https://www.dropbox.com/s/2dq085iu34y0hdv/coco_input.zip?dl=1 -O coco.zip' ) local('unzip coco.zip') with lcd(dirname): local("zip coco_input.zip -r *.jpg") fname = '{}/coco_input.zip'.format(dirname) with open('{}/coco_sample_metadata.json'.format(dirname)) as datafile: data = json.load(datafile) f = SimpleUploadedFile("coco_input.zip", file(fname).read(), content_type="application/zip") v = handle_uploaded_file(f, 'mscoco_sample_500') extract_frames(TEvent.objects.create(video=v).pk) video = v models.Region.objects.all().filter(video=video).delete() for frame in models.Frame.objects.all().filter(video=video): frame_id = str(int(frame.name.split('_')[-1].split('.')[0])) annotation = models.Region() annotation.region_type = models.Region.ANNOTATION annotation.video = v annotation.frame = frame annotation.full_frame = True annotation.metadata = data[frame_id]['image'] annotation.object_name = 'metadata' annotation.save() for frame in models.Frame.objects.all().filter(video=video): frame_id = str(int(frame.name.split('_')[-1].split('.')[0])) for a in data[frame_id][u'annotations']: annotation = models.Region() annotation.region_type = models.Region.ANNOTATION annotation.video = v annotation.frame = frame annotation.metadata = a annotation.full_frame = False annotation.x = a['bbox'][0] annotation.y = a['bbox'][1] annotation.w = a['bbox'][2] annotation.h = a['bbox'][3] annotation.object_name = 'coco_instance/{}/{}'.format( a[u'category'][u'supercategory'], a[u'category'][u'name']) annotation.save() for a in data[frame_id][u'keypoints']: annotation = models.Region() annotation.region_type = models.Region.ANNOTATION annotation.video = v annotation.frame = frame annotation.metadata = a annotation.x = a['bbox'][0] annotation.y = a['bbox'][1] annotation.w = a['bbox'][2] annotation.h = a['bbox'][3] annotation.object_name = 'coco_keypoints/{}/{}'.format( a[u'category'][u'supercategory'], a[u'category'][u'name']) annotation.save() for caption in data[frame_id][u'captions']: annotation = models.Region() annotation.region_type = models.Region.ANNOTATION annotation.video = v annotation.frame = frame annotation.text = caption['caption'] annotation.full_frame = True annotation.object_name = 'caption' annotation.save() if not fast: inception_index_by_id(TEvent.objects.create(video=v).pk) perform_ssd_detection_by_id(TEvent.objects.create(video=v).pk) perform_face_detection_indexing_by_id( TEvent.objects.create(video=v).pk) inception_index_regions_by_id(TEvent.objects.create(video=v).pk) export_video(TEvent.objects.create(video=v).pk)