def test_multiply_by_number(self):
        ec = EllipticCurve('A')
        a = ec.get_forming()
        for k in [-1233535, 1231, 0, -1, 1, 1231341]:
            self.assertTrue(ec.is_on_curve(ec.multiply_by_number(a, k)))
        mul = ec.multiply_by_number
        self.assertEqual(mul(mul(a, 10), 10), mul(a, 100))
        self.assertEqual(mul(mul(a, 2), -3), mul(a, -6))
        self.assertEqual(mul(mul(a, -4), 7), mul(a, -28))
        self.assertEqual(ec.summ(mul(a, 123), mul(a, -122)), mul(a, 1))

        ec = EllipticCurve('test')
        point = Point(3, 6)
        n_s = range(7)
        rights = [
            Point(0, 1, 0),
            Point(3, 6),
            Point(80, 10),
            Point(80, 87),
            Point(3, 91),
            Point(0, 1, 0),
            Point(3, 6)
        ]
        for n, right in zip(n_s, rights):
            print(right)
            print(ec.multiply_by_number(point, n))
            self.assertEqual(ec.multiply_by_number(point, n), right)
 def test_double(self):
     ec = EllipticCurve("test")
     point = Point(3, 6)
     ref = Point(80, 10)
     result = ec.double(point)
     print(result)
     print(ref)
     self.assertTrue(result == ref)
    def test_summ(self):
        ec = EllipticCurve("test")
        point_a = Point(17, 10)
        point_b = Point(95, 31)
        ref = Point(1, 54)
        result = ec.summ(point_a, point_b)
        self.assertTrue(result == ref)

        point_a = Point(80, 10)
        point_b = Point(80, 87)
        ref = Point(0, 1, 0)
        self.assertEqual(ec.summ(point_a, point_b), ref)

        ec = EllipticCurve('A')
        a = ec.get_forming()
        self.assertEqual(ec.summ(a, ec.get_zero()), a)
Exemplo n.º 4
0
 def create_curve(self):
     """
     :return: random Elliptic curve  and init Point
     """
     for i in range(10):
         try:
             self.X = self._generate_random_number()
             self.Y = self._generate_random_number()
             self.A = self._generate_random_number()
             self.B = f_mod((self.Y * self.Y - self.X * self.X * self.X -
                             self.A * self.X), self.N)
             curve = EllipticCurve(self.N, self.A, self.B)
             return curve
         except Exception as e:
             print("Error when curve is generated %s" % str(e))
             raise Exception
Exemplo n.º 5
0
                return Ideal(self.curve)

            m = ((y_2 - y_1) / mod_inverse((x_2 - x_1), self.mod)) % self.mod

        self.x = (m ** 2 - x_2 - x_1) % self.mod
        self.y = (m * (self.x - x_1) + y_1) % self.mod


class Ideal:
    def __init__(self, curve):
        self.curve = curve

    def __str__(self):
        return "Ideal"

    def __neg__(self):
        return self

    def __add__(self, other):
        return other


curve = EllipticCurve(-2, 4)

P = Point(curve, 3, 5, 6)
A = Point(curve, -2, 0, 6)
print(P)
P + A
print(P)

Exemplo n.º 6
0
def test_bsgs():
    curve = EllipticCurve(10177, 1, -1, 10331, (1, 1))
    priv_key = bsgs(curve)

    print('calculated key:', priv_key, 'actual key:', curve._d, 'is equal:',
          priv_key == curve._d)
Exemplo n.º 7
0
from elliptic_curve import EllipticCurve
from point import Point
from ideal import Ideal
from lenstra import Lenstra

c = EllipticCurve(P=17, A=200,B=-137)

# test addition

p = Point(curve=c, X=47,Y=125)
pp = Point(curve=c, X=1, Y=9)
l = Lenstra(221)

l.curve = c
l.point = p

print(l.partial_addition(p,pp))
Exemplo n.º 8
0
import copy

from elliptic_curve import EllipticCurve
from helpers import plot
from point import Point

C = EllipticCurve(a=-2, b=4)
print(C)

# case where P + Q + r = 0 ( tree points on curve)
P = Point(C, 3, 5)
P_copy = copy.copy(P)
Q = Point(C, -2, 0)
U = P+Q
print(U)
plot(C, P_copy, Q, U)

# case where P + P + 0 = 0 (only one point on curve)
P = Point(C, -2, 0)
P_copy = copy.copy(P)
Q = Point(C, -2, 0)
U = P+Q
print(U)
plot(C, P_copy, Q, U)

# case where P + Q + 0 = 0 (vertical line)
P = Point(C, 0, 2)
P_copy = copy.copy(P)
Q = Point(C, 0, -2)
U = P+Q
print(U)
Exemplo n.º 9
0
def atkin_morain(n):
    """
    Atkin-Morain ECPP Algorithm.
    Args:
        n: Probable Prime

    Returns:
        Certificate of primality, or False.
    """
    if n < arbitrary_bound:
        if prime.trialDivision(n):
            return [n]
        else:
            return False

    d = 0
    m_found = False
    while m_found is False:
        try:
            d, ms = choose_discriminant(n, d)
        except ValueError:
            return False
        for m in ms:
            factors = factor_orders(m, n)
            if factors is not None:
                k, q = factors

                params = curve_parameters(d, n)
                try:
                    # Test to see if the order of the curve is really m
                    a, b = params.pop()
                    ec = EllipticCurve(a, b, n)
                    while not test_order(ec, m):
                        a, b = params.pop()
                        ec = EllipticCurve(a, b, n)
                    #print n, a, b

                    m_found = True
                    break
                except IndexError:
                    pass

        # if no proper m can be found. Go back to choose_discriminant()
    '''
    If this step fails need to return false.
    '''



    try:
    # operate on point
        while True:
            P = choose_point(ec)
            U = ec.mul(k, P) # U = [m/q]P
            if U != 0:
                break
        V = ec.mul(q, U)
    except (ZeroDivisionError, ValueError):
        return False

    if V != 0:
        return False
    else:
        if q > arbitrary_bound:
            cert = atkin_morain(q)
            if cert:
                cert.insert(0, (q, m, a, b))
            return cert
        else:
            if prime.trialDivision(q):
                return [q]
            else:
                return False
Exemplo n.º 10
0
        return self.point * private_key

    def encrypt(self, data_point, public_key, random_number):
        """ Encrypt the msg """

        return self.point * random_number, data_point + public_key * random_number

    def decrypt(self, data_point_pair, private_key):
        """ Decrypt the msg """

        return data_point_pair[1] + -(data_point_pair[0] * private_key)


# Example of encrypting and decrypting by D.H's algo
if __name__ == "__main__":

    # Elliptic curve initilization
    base_point = EllipticCurve(3, 345, 19).point_at(8)

    # Algo D.H. intitializing and private/public keys are created
    dh = AlgoDH(base_point)
    priv_key = random.randint(1, 100)
    pub_key = dh.get_public_key(priv_key)

    # Data is encrypted/decrypted by D.H. algorithm
    data = base_point * 2
    encrypted = dh.encrypt(data, pub_key, random.randint(1, 100))
    decrypted = dh.decrypt(encrypted, priv_key)
    print('Is Valid? ', decrypted == data)
Exemplo n.º 11
0
import rsa_keys
from elliptic_curve import EllipticCurve
from ec_dsa import ECDSA
from sha1 import SHA1
from diffie_hellman import DiffieHellman
from rsa_dsa import RSADSA

# RSA DSA
keys = rsa_keys.generate_rsa_keys(256)

rsa_dsa = RSADSA(keys['n'])

sign = rsa_dsa.sign(SHA1, 'ARTYOM', keys['d'])
print(rsa_dsa.verify(SHA1, sign, keys['e']))

curve = EllipticCurve(67)

# Diffie-Hellman
dh = DiffieHellman(curve, curve.points[3])

a_private = 7
a_public = dh.gen_public(a_private)

b_private = 13
b_public = dh.gen_public(b_private)

secret = dh.gen_secret(a_private, b_public)
print(dh.gen_secret(a_private, b_public) == dh.gen_secret(b_private, a_public))

# EC DSA
point = curve.prime_order_point()
Exemplo n.º 12
0
 def test_correctness_of_parameters(self):
     ec = EllipticCurve('A')
     self.assertTrue(ec.is_on_curve(ec.get_forming()))
     ec = EllipticCurve('B')
     self.assertTrue(ec.is_on_curve(ec.get_forming()))
Exemplo n.º 13
0
        if MultiplyCurvePoint(E, P, n) == identity(E)
    ]
    L.sort(key=lambda P: ec_point_coords(E, P))
    l = len(L)
    M = [[''] * (l + 1) for _ in xrange(l + 1)]
    for i, P in enumerate(L):
        if P != identity(E):
            M[0][i + 1] = M[i + 1][0] = '(%s, %s)' % (str(x(P)), str(y(P)))
        else:
            M[0][i + 1] = M[i + 1][0] = 'identity'
        for j, Q in enumerate(L):
            w = WeilPairing(E, n, P, Q)
            M[i + 1][j + 1] = str(w)
    W = [0] * (l + 1)
    for i in xrange(l + 1):
        for j in xrange(l + 1):
            W[j] = max(W[j], len(M[i][j]))
    for i in xrange(l + 1):
        for j in xrange(l + 1):
            p = W[j] - len(M[i][j])
            print ' ' * ((p + 1) // 2) + M[i][j] + ' ' * (p // 2),
        print
    print


example(EllipticCurve(FiniteField(13), 0, 5), 4)
example(EllipticCurve(FiniteField(13), 7, 0), 6)
example(EllipticCurve(FiniteField(17), 16, 0), 2)
example(EllipticCurve(FiniteField(19), 0, 16), 9)
example(EllipticCurve(FiniteField(19), 3, 12), 6)
Exemplo n.º 14
0
from utils import EllipticCurveException, logger

# Elliptic curve parameters
A = -0x3
B = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B
FP = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF

# Starting point (generator)
S = Point(
    x=0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296,
    y=0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5,
)

if __name__ == '__main__':
    # Get eliptic curve EC
    ec = EllipticCurve(a=A, b=B, fp=FP)
    logger.info('Elliptic curve: EC = {}'.format(ec))
    logger.info('Staring point: S = {}'.format(S))

    if len(argv) != 2:
        raise EllipticCurveException('Invalid input')

    # Get public key PK
    PK = Point.from_string(argv[1])
    logger.info('Public key: PK = {}'.format(PK))

    # Check whether starting point S is on the elliptic curve EC
    if ec.is_on_curve(S):
        logger.info('S is on the Elliptic curve')
    else:
        raise EllipticCurveException('S is not on the Elliptic curve')
Exemplo n.º 15
0
def secp256k1_demo():
    # secp256k1 domain parameters
    # The proven prime
    Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 - 1

    # These two defines the elliptic curve. y^2 = x^3 + Acurve * x + Bcurve
    Acurve = 0
    Bcurve = 7

    # Generator point
    Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
    Gy = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
    point_generator = (int(Gx), int(Gy))

    # Number of points in the field (order of the field)
    N = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141

    ec_curve = EllipticCurve(Pcurve, Acurve, Bcurve, Gx, Gy, N)
    # int("hex_string" ,16)

    # Replace with any private key (randomly generated)
    priv_key = 0x5712f72ca98165625fe652f1911e7e5795a86d56e724f7cd4bf3375c5fcc26b8
    print("The private key: 0x{:064x}".format(priv_key))
    print("The private key: {}".format(hex(priv_key)))
    print(f"The private key: 0x{priv_key:064x}")

    print("\r\n\r\n******* ECDLP Public Key Generation *********")
    point_public_key = ec_curve.EC_multiply(point_generator, priv_key)
    print(
        f"The public key: (x = 0x{point_public_key[0]:064x}, y = {point_public_key[1]:064x})"
    )

    print("\r\n\r\n*****ECDSA Vulnerability Demo*****")
    raw_int_1_to_sign = string_to_int(
        "\xC8\xDB\x87>t\xC4\xC8\r\x1E\xF7c\xDC@]\xDB\xCF\xE8%\x89\xB1\xDE?\x87:C1\x02F?Xl|"
    )
    raw_int_2_to_sign = string_to_int(
        "\x9B$j^KA\xF2\xB32\xE0\xD3\n43|\xF4\xEFL\xDB\tV\xAF\xCB\xD6dB\x90}\xD9\x05\xC6\x0F"
    )
    ecdsa_sign_1_r = 21505829891763648114329055987619236494102133314575206970830385799158076338148
    ecdsa_sign_2_r = 21505829891763648114329055987619236494102133314575206970830385799158076338148
    ecdsa_sign_1_s = 29982806498908468698285880421449377990633260409100070838917643476964059158422
    ecdsa_sign_2_s = 2688866553165465396487518855200337458372728620912733016156314344402296269120

    if ecdsa_sign_1_r == ecdsa_sign_2_r:
        print("Signature with same r -> VULNERABLE")

    # Use same r vulnerability to get private key
    k = ((raw_int_1_to_sign - raw_int_2_to_sign) % ec_curve.n_curve) * \
        modulo_inv(ecdsa_sign_1_s - ecdsa_sign_2_s, ec_curve.n_curve)
    k = k % ec_curve.n_curve

    cracked_priv_key = (
        ((((ecdsa_sign_1_s * k) % ec_curve.n_curve) - raw_int_1_to_sign) %
         ec_curve.n_curve) *
        modulo_inv(ecdsa_sign_1_r, ec_curve.n_curve)) % ec_curve.n_curve

    print(f"The cracked private key: 0x{cracked_priv_key:064x}")
    # should be 0x5712f72ca98165625fe652f1911e7e5795a86d56e724f7cd4bf3375c5fcc26b8

    print(f"\r\n\r\nUsing the cracked private key to sign")
    raw_int_3_to_sign = string_to_int(hashlib.sha256(b"admin").digest())
    r, s = ec_curve.ecdsa_sign(cracked_priv_key, raw_int_3_to_sign, k)
    print(f"ECDSA signature for 0x{raw_int_3_to_sign:064x}: ")
    print(f"(r = 0x{r:064x}, s=0x{s:064x})")
    # r should be: 0x2f8bde4d1a07209355b4a7250a5c5128e88b84bddc619ab7cba8d569b240efe4
    # s should be: 0x9c99411b74e3bc2d6ffc3b86530dc3e135402567104c146aeb4581772e518a9c

    print("\r\n\r\nVerifying ECDSA signature")
    public_key_point = ec_curve.EC_multiply(ec_curve.point_generator,
                                            cracked_priv_key)
    signature_verify_result = ec_curve.ecdsa_verify(public_key_point,
                                                    raw_int_3_to_sign, (r, s))
    print(f"Signature: (r = 0x{r:064x}, s=0x{s:064x})")
    print(f"Raw int to sign: 0x{raw_int_3_to_sign:064x}")
    print(f"Verifying result: {signature_verify_result}")