def test_multiply_by_number(self):
        ec = EllipticCurve('A')
        a = ec.get_forming()
        for k in [-1233535, 1231, 0, -1, 1, 1231341]:
            self.assertTrue(ec.is_on_curve(ec.multiply_by_number(a, k)))
        mul = ec.multiply_by_number
        self.assertEqual(mul(mul(a, 10), 10), mul(a, 100))
        self.assertEqual(mul(mul(a, 2), -3), mul(a, -6))
        self.assertEqual(mul(mul(a, -4), 7), mul(a, -28))
        self.assertEqual(ec.summ(mul(a, 123), mul(a, -122)), mul(a, 1))

        ec = EllipticCurve('test')
        point = Point(3, 6)
        n_s = range(7)
        rights = [
            Point(0, 1, 0),
            Point(3, 6),
            Point(80, 10),
            Point(80, 87),
            Point(3, 91),
            Point(0, 1, 0),
            Point(3, 6)
        ]
        for n, right in zip(n_s, rights):
            print(right)
            print(ec.multiply_by_number(point, n))
            self.assertEqual(ec.multiply_by_number(point, n), right)
 def test_correctness_of_parameters(self):
     ec = EllipticCurve('A')
     self.assertTrue(ec.is_on_curve(ec.get_forming()))
     ec = EllipticCurve('B')
     self.assertTrue(ec.is_on_curve(ec.get_forming()))
Exemplo n.º 3
0
if __name__ == '__main__':
    # Get eliptic curve EC
    ec = EllipticCurve(a=A, b=B, fp=FP)
    logger.info('Elliptic curve: EC = {}'.format(ec))
    logger.info('Staring point: S = {}'.format(S))

    if len(argv) != 2:
        raise EllipticCurveException('Invalid input')

    # Get public key PK
    PK = Point.from_string(argv[1])
    logger.info('Public key: PK = {}'.format(PK))

    # Check whether starting point S is on the elliptic curve EC
    if ec.is_on_curve(S):
        logger.info('S is on the Elliptic curve')
    else:
        raise EllipticCurveException('S is not on the Elliptic curve')

    # Check whether public key PK is on the elliptic curve EC
    if ec.is_on_curve(PK):
        logger.info('PK is on the Elliptic curve')
    else:
        raise EllipticCurveException('PK is not on the Elliptic curve')

    # Let's look for the private key
    point = S
    SK = 1

    while point != PK: