def boot_sim(results, preds, nboot, acc): loss = [] for nb in range(nboot): n_shuffle = np.round(len(results) * (1 - acc)).astype("int") np.random.shuffle(results) results = results.astype("bool") # results[:n_shuffle] = ~results[:n_shuffle] results[ (len(results) - np.ceil(n_shuffle / 2).astype("int")) : ( len(results) + np.ceil(n_shuffle / 2).astype("int") ) ] = ~results[ (len(results) - np.ceil(n_shuffle / 2).astype("int")) : ( len(results) + np.ceil(n_shuffle / 2).astype("int") ) ] results = results.astype("int") loss.append(loss_score(results, preds)) return np.array(loss)
from tkFileDialog import askopenfilename as uiopen import sklearn.preprocessing as pp import cPickle as p from scipy.stats import logistic import scikits.bootstrap as boot load_filename = "C:\Users\pnlawlor\Dropbox\Data\comb_pracPredsResults.csv" temp = pandas.io.parsers.read_csv(load_filename, header=None, index_col=0) completed_games = ~temp[3].isnull() results = temp.ix[completed_games, 3] conservative_preds = temp.ix[completed_games, 1] aggressive_preds = temp.ix[completed_games, 2] conservative_score = loss_score(results, conservative_preds) # conservative_score_CI = boot.ci([results, conservative_preds],loss_score) aggressive_score = loss_score(results, aggressive_preds) print "Conservative score: %s" % conservative_score print "Aggressive score: %s" % aggressive_score simulate = False def boot_sim(results, preds, nboot, acc): loss = [] for nb in range(nboot): n_shuffle = np.round(len(results) * (1 - acc)).astype("int") np.random.shuffle(results)