示例#1
0
def boot_sim(results, preds, nboot, acc):
    loss = []
    for nb in range(nboot):
        n_shuffle = np.round(len(results) * (1 - acc)).astype("int")
        np.random.shuffle(results)
        results = results.astype("bool")
        #        results[:n_shuffle] = ~results[:n_shuffle]
        results[
            (len(results) - np.ceil(n_shuffle / 2).astype("int")) : (
                len(results) + np.ceil(n_shuffle / 2).astype("int")
            )
        ] = ~results[
            (len(results) - np.ceil(n_shuffle / 2).astype("int")) : (
                len(results) + np.ceil(n_shuffle / 2).astype("int")
            )
        ]
        results = results.astype("int")
        loss.append(loss_score(results, preds))
    return np.array(loss)
示例#2
0
from tkFileDialog import askopenfilename as uiopen
import sklearn.preprocessing as pp
import cPickle as p
from scipy.stats import logistic
import scikits.bootstrap as boot

load_filename = "C:\Users\pnlawlor\Dropbox\Data\comb_pracPredsResults.csv"
temp = pandas.io.parsers.read_csv(load_filename, header=None, index_col=0)

completed_games = ~temp[3].isnull()

results = temp.ix[completed_games, 3]
conservative_preds = temp.ix[completed_games, 1]
aggressive_preds = temp.ix[completed_games, 2]

conservative_score = loss_score(results, conservative_preds)
# conservative_score_CI = boot.ci([results, conservative_preds],loss_score)
aggressive_score = loss_score(results, aggressive_preds)


print "Conservative score: %s" % conservative_score
print "Aggressive score: %s" % aggressive_score

simulate = False


def boot_sim(results, preds, nboot, acc):
    loss = []
    for nb in range(nboot):
        n_shuffle = np.round(len(results) * (1 - acc)).astype("int")
        np.random.shuffle(results)