Exemplo n.º 1
0
def aks_test(n):
    """
    Implement the AKS primality test.
    """
    get_context().precision = bit_length(n)
    # Check if n is a perfect power. If so, return composite.
    if is_power(n):
        return "composite"

    # Find the smallest r such that the multiplicative order of n modulo r
    # is greater than log(n, 2)^2
    r = get_r(n)

    # If 1 < gcd(a, n) < n for some a <= r, return composite
    for a in range(1, r):
        if gcd(a, n) > 1 and gcd(a, n) < n:
            return "composite"

    # If n <= r, return prime
    if n <= r:
        return "prime"

    # Check if (x + a)^n mod (x^r - 1, n) != (x^n + a) mod (x^r - 1, n)
    if False in ray.get([
            is_congruent.remote(a, n, r)
            for a in range(1, mpz(floor(sqrt(phi(r)) * log2(n))))
    ]):
        return "composite"

    return "prime"
    def check(self, i):
        #区间大小
        diff = self.right - self.left

        #新的左右区间
        curleft = self.left + diff * self.lp1[i]
        curright = self.left + diff * self.rp1[i]

        #读取的数转化为小数
        decimal = gmpy2.mpfr(self.cur / self.log10)
        decimal = decimal - gmpy2.floor(decimal)

        #判断是否满足要求
        if curleft > decimal:
            return False
        if curright < decimal:
            return False

        #更新区间
        self.left = curleft
        self.right = curright

        #通过decimal计算新的cur,抛弃掉cur前导多余数字,cur维持为整数防止精度缺失
        self.cur = decimal*self.log10
        self.cur = gmpy2.rint_round(self.cur)
        return True
Exemplo n.º 3
0
def bits_in_number(number):
    """
    Returns number of bits in the given number
    :param number: long number
    """
    if number == 0:
        return 0
    return gmpy2.mpz(gmpy2.floor(gmpy2.log2(number)) + 1)
Exemplo n.º 4
0
def find_limits():
    # create an empty dictionary
    limits = {}
    for planet in xrange(1, 10):
        # read date files, one per planet
        file_in = open('VSOP2013p' + str(planet) + '.dat')
        # create a list with the header position and values for variables planet, var, power
        elenco = [(s[0], s[1].split()) for s in enumerate(file_in)
                  if "VSOP" in s[1]]
        file_in.close()
        # extend the dictionary with a subdictionary for each planet
        limits[planet] = {}
        for var in xrange(1, 7):
            # extend the dictionary with a subdictionary for each variable
            limits[planet][var] = {}
            for power in xrange(0, 21):
                # extend the dictionary with a subdictionary for each power
                limits[planet][var][power] = {}
                for threshold in xrange(0, 21):
                    # extend the dictionary with a two values tuple (min and max)
                    # for each sensibility threshold
                    # and for each item in list assign (0,0) to the tuple
                    limits[planet][var][power][threshold] = (0, 0)
        # create a tuple with range limits for each planet, variable, power
        for i in xrange(len(elenco)):
            start = int(elenco[i][0]) + 1
            planet = int(elenco[i][1][1])
            var = int(elenco[i][1][2])
            power = int(elenco[i][1][3])
            end = int(elenco[i][1][4]) + start
            # load a file chunk for each voice in list and find extreme value for each threshold
            file_in = open('VSOP2013p' + str(planet) + '.dat')
            segmento = islice(file_in, start, end)
            for j, k in enumerate(segmento):
                cursor = j
                line = k.split()
                Sb = float(line[-4])
                Se = int(line[-3])
                S = Sb * 10**Se
                Cb = float(line[-2])
                Ce = int(line[-1])
                C = Cb * 10**Ce
                ro = gmp.sqrt(S * S + C * C)
                threshold = -int(gmp.floor(gmp.log10(ro)))
                limits[planet][var][power][threshold] = (start, start + cursor)
            file_in.close()
    for planet in xrange(1, 10):
        for var in xrange(1, 7):
            for power in xrange(0, 21):
                for threshold in xrange(1, 21):
                    prec_ = limits[planet][var][power][threshold - 1]
                    subs_ = limits[planet][var][power][threshold]
                    if subs_ == (0, 0) and prec_ != 0:
                        limits[planet][var][power][threshold] = limits[planet][
                            var][power][threshold - 1]
    return limits
Exemplo n.º 5
0
def find_sqrt(N):
    n =gmpy2.floor(
                  gmpy2.sqrt(
                             gmpy2.mpfr(N,precision = len(str(N))+50  )
                             )
                  )
    n = gmpy2.mpz(n)
    for i in xrange(-2**10,2**20,1):
        #print (n+i)**2>N
        if (n+i)**2>N:
            print 'found'
            return n+i
    assert False,'bla'
Exemplo n.º 6
0
Arquivo: gslib.py Projeto: PKizin/gsa
    def format(num):
        s = ''
        si = ''
        if num < GSConst.c[0]:
            num = -num
            si = '-'

        num1 = mpz(floor(num))
        while 1:
            s = str(num1 % 10) + s
            num1 -= num1 % 10
            num1 /= 10
            if num1 <= 0:
                break
        s += '.'
        num1 = num - floor(num)
        for i in range(100):
            num1 *= 10
            s += str(mpz(floor(num1)))
            num1 -= floor(num1)

        s = si + s
        return s
Exemplo n.º 7
0
    def format(num):
        s = ''
        si = ''
        if num < GSConst.c[0]:
            num = -num
            si = '-'

        num1 = mpz(floor(num))
        while 1:
            s = str(num1 % 10) + s
            num1 -= num1 % 10
            num1 /= 10
            if num1 <= 0:
                break
        s += '.'
        num1 = num - floor(num)
        for i in range(100):
            num1 *= 10
            s += str(mpz(floor(num1)))
            num1 -= floor(num1)

        s = si + s
        return s
def ex3():
    N = mpz(
        720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929
    )
    sqrt_6N = sqrt(6 * N)
    sqrt_6N_decimal = sqrt_6N % 1
    if sqrt_6N_decimal < 0.5:
        A = floor(sqrt_6N) + 0.5
    else:
        A = ceil(sqrt_6N)
    x = sqrt(A**2 - 6 * N)
    # P = 3 * p
    # Q = 2 * q
    P = A - x
    p = mpz(P / 3)
    print(p)
Exemplo n.º 9
0
def naive(number):
    if number == 2:
        return True
    if number % 2 == 0 or number < 2:
        return False

    i = 3

    rooted = gmpy2.floor(gmpy2.sqrt(number))
    print rooted
    while i <= rooted:
        if number % i == 0:
            return False
        i += 2
        if i % 10000000 == 1:
            print i

    return True
Exemplo n.º 10
0
def lsb_oracle(public_key, ciphertext, oracle):
    # type: (RSAKey, RSACiphertext, Callable[[RSACiphertext], bool]) -> RSAPlaintext
    r"""
    The Least Significant Bit Oracle attack is a simpler variation on
    Bleichenbacher.
    
    It assumes a decryption oracle :math:`LSB(\dot)` that accepts ciphertexts and returns the
    least significant or parity bit of the decrypted plaintext.
    """
    mult = powmod(2, public_key.e, public_key.n)

    t = (ciphertext * mult) % public_key.n
    lower = mpfr(0)
    upper = mpfr(public_key.n)
    for i in range(public_key.n.bit_length()):
        possible_plaintext = (lower + upper) / 2
        if not oracle(int(t)):
            upper = possible_plaintext  # plaintext is in the lower half
        else:
            lower = possible_plaintext  # plaintext is in the upper half
        t = (t * mult) % public_key.n
    return mpz(floor(upper))
Exemplo n.º 11
0
	err=0
	try:
		p=remote('programming.pwn2win.party','9004',ssl=1)
	except:
		err=err+1
		if err>10 : break
		continue
	s=''
	t=0
	while 1:
		s=''
		s=p.recv()
		if s.startswith('CTF-BR{') or s == 'WRONG ANSWER': break
		if 'WRONG' in s: break
		n1= gmpy2.mpz(s)
		n=gmpy2.floor((gmpy2.sqrt(n1)-1)/2)
		print 'n='+str(n)
		n2=(2*n+1)*(2*n+1)
		d=n1-n2
		print 'd='+str(d)
		v1=2*n+1
		v2=2*n+1+2*(n+1)
		v3=2*n+1+4*(n+1)
		v4=2*n+1+4*(n+1)+2*(n+1)+1
		x=0
		y=0
		if d<v1:
			x=n+1
			y=d-n
		elif d<v2:
			x=n+1-(d-v1)
Exemplo n.º 12
0
from gmpy2 import mpz, isqrt, floor

data = open('a.txt', 'r').read().split('\n')

T = int(data.pop(0))

for t in range(T):
    (r, ml) = map(mpz, data.pop(0).split(' '))

    a = mpz('2')
    b = mpz(2 * r - 1)
    c = mpz(-1 * ml)

    ans = int(floor((isqrt(mpz(b * b - 4.0 * a * c)) - b) / (2.0 * a)))

    print 'Case #' + str(t + 1) + ": " + str(ans)
 def getexponent(self):
     return int(gmpy2.floor(self.log().val))
Exemplo n.º 14
0
 err = 0
 try:
     p = remote('programming.pwn2win.party', '9004', ssl=1)
 except:
     err = err + 1
     if err > 10: break
     continue
 s = ''
 t = 0
 while 1:
     s = ''
     s = p.recv()
     if s.startswith('CTF-BR{') or s == 'WRONG ANSWER': break
     if 'WRONG' in s: break
     n1 = gmpy2.mpz(s)
     n = gmpy2.floor((gmpy2.sqrt(n1) - 1) / 2)
     print 'n=' + str(n)
     n2 = (2 * n + 1) * (2 * n + 1)
     d = n1 - n2
     print 'd=' + str(d)
     v1 = 2 * n + 1
     v2 = 2 * n + 1 + 2 * (n + 1)
     v3 = 2 * n + 1 + 4 * (n + 1)
     v4 = 2 * n + 1 + 4 * (n + 1) + 2 * (n + 1) + 1
     x = 0
     y = 0
     if d < v1:
         x = n + 1
         y = d - n
     elif d < v2:
         x = n + 1 - (d - v1)
Exemplo n.º 15
0
Arquivo: aks.py Projeto: gA4ss/MyAKS
def is_prime_by_AKS(n):
    """
    使用AKS算法确定n是否是一个素数
    True:n是素数
    False:n是合数
    """
    def __is_integer__(n):
        """
        判断一个数是否是整数
        """
        i = gmpy2.mpz(n)
        f = n - i
        return not f

    def __phi__(n):
        """
        欧拉函数,测试小于n并与n互素的个数
        """
        res = gmpy2.mpz(n)
        a = gmpy2.mpz(n)
        for i in range(2, a + 1):
            if a % i == 0:
                res = res // i * (i - 1)
                while a % i == 0:
                    a //= i
        if a > 1:
            res = res // a * (a - 1)
        return res

    def __gcd__(a, b):
        """
        计算a b的最大公约数
        """
        if b == 0:
            return a
        return __gcd__(gmpy2.mpz(b), gmpy2.mpz(a) % gmpy2.mpz(b))

    print("步骤1, 确定%d是否是纯次幂" % n)
    for b in range(2, gmpy2.mpz(gmpy2.floor(gmpy2.log2(n))) + 1):
        a = n**(1 / b)
        if __is_integer__(a):
            return False

    print("步骤2,找到一个最小的r,符合o_r(%d) > (log%d)^2" % (n, n))
    maxk = gmpy2.mpz(gmpy2.floor(gmpy2.log2(n)**2))
    maxr = max(3, gmpy2.mpz(gmpy2.ceil(gmpy2.log2(n)**5)))
    nextR = True
    r = 0
    for r in range(2, maxr):
        if nextR == False:
            break
        nextR = False
        for k in range(1, maxk + 1):
            if nextR == True:
                break
            nextR = (gmpy2.mpz(n**k % r) == 0) or (gmpy2.mpz(n**k % r) == 1)
    r = r - 1  # 循环多增加了一层
    print("r = %d" % r)

    print("步骤3,如果 1 < gcd(a, %d) < %d,对于一些 a <= %d, 输出合数" % (n, n, r))
    for a in range(r, 1, -1):
        g = __gcd__(a, n)
        if g > 1 and g < n:
            return False

    print("步骤4,如果n=%d <= r=%d,输出素数" % (n, r))
    if n <= r:
        return True

    print("步骤5")
    print("遍历a从1到\sqrt{\phi(r=%d)}logn=%d" % (r, n))
    print("如果(X+a)^%d != X^%d+a mod {X^%d-1, %d}$输出合数" % (n, n, r, n))
    # 构造P = (X+a)^n mod (X^r-1)

    print("构造多项式(X+a)^%d,并且进行二项式展开" % n)
    X = multi_ysymbols('X')
    a = multi_ysymbols('a')
    X_a_n_expand = binomial_expand(ypolynomial1(X, a), n)
    print(X_a_n_expand)
    X.pow(r)
    reduce_poly = ypolynomial1(X, ysymbol(value=-1.0))
    print("构造消减多项式 %s" % reduce_poly)
    print("进行运算 (X+a)^%d mod (X^%d-1)" % (n, r))
    r_equ = ypolynomial_mod(X_a_n_expand, reduce_poly)
    print("得到余式: %s" % r_equ)
    print("进行运算'余式' mod %d 得到式(A)" % n)
    A = ypolynomial_reduce(r_equ, n)
    print("A = %s" % A)
    print("B = x^%d+a mod x^%d-1" % (n, r))
    B = ypolynomial1(multi_ysymbols('X', power=31), a)
    B = ypolynomial_mod(B, reduce_poly)
    print("B = %s" % B)
    C = ypolynomial_sub(A, B)
    print("C = A - B = %s" % C)
    maxa = math.floor(math.sqrt(__phi__(r)) * math.log2(n))
    print("遍历a = 1 to %d" % maxa)
    print("检查每个'%s = 0 (mod %d)'" % (C, n))
    for a in range(1, maxa + 1):
        print("检查a = %d" % a)
        C.set_variables_value(a=a)
        v = C.eval()
        if v % n != 0:
            return False

    print("步骤6 输出素数")
    return True
 def getexponent(self):
     return int(gmpy2.floor(self.log().val))
Exemplo n.º 17
0
#!/usr/bin/env python3

# Calculates floor(2**256/pi), and encodes the result as base64.
# Intended to be used as a SHA256 hash where I don't have a preimage up my sleeve.
# Originally by Ryan Castellucci.  Python3 port, pi sourcing, and base64 output added by Jeremy Rand.

import codecs, gmpy2

# precision in bits
gmpy2.get_context().precision = 1024

# 1000 digits of pi from https://www.angio.net/pi/digits/1000.txt (first HTTPS result in Startpage results for "digits of pi")
# (retrieved 2017 May 13.)
pi_str = '3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198'
pi_mpfr = gmpy2.mpfr(pi_str)
fraction = gmpy2.floor(2**256 / pi_mpfr)

hx = hex(int(fraction))[2:66]
#print(hx)

b64 = codecs.encode(codecs.decode(hx, "hex"), "base64").decode()
print(b64)
Exemplo n.º 18
0
#!/usr/bin/env python2
import sys, os
import math
import gmpy2
# Cases
t = int(sys.stdin.readline())

gmpy2.get_context().precision=150

for case in xrange(t):
	r, t = map(int, sys.stdin.readline().rstrip('\n').split())
	delta = (2*r-1)**2 + 8*t
	result = 0
	if delta < 0:
		result = 0
	else:
		result = int(gmpy2.floor((-(2*r-1)+gmpy2.sqrt(delta))/4))

	print "Case #%d: %d" % (case+1, result)