Exemplo n.º 1
0
def _test(config):
    test_data = read_data(config, 'test', True)
    update_config(config, [test_data])

    _config_debug(config)

    if config.use_glove_for_unk:
        word2vec_dict = test_data.shared[
            'lower_word2vec'] if config.lower_word else test_data.shared[
                'word2vec']
        new_word2idx_dict = test_data.shared['new_word2idx']
        idx2vec_dict = {
            idx: word2vec_dict[word]
            for word, idx in new_word2idx_dict.items()
        }
        new_emb_mat = np.array(
            [idx2vec_dict[idx] for idx in range(len(idx2vec_dict))],
            dtype='float32')
        config.new_emb_mat = new_emb_mat

    pprint(config.__flags, indent=2)
    models = get_multi_gpu_models(config)
    model = models[0]
    evaluator = MultiGPUEvaluator(
        config,
        models,
        tensor_dict=models[0].tensor_dict if config.vis else None)
    graph_handler = GraphHandler(config, model)

    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    graph_handler.initialize(sess)
    num_steps = math.ceil(test_data.num_examples /
                          (config.batch_size * config.num_gpus))
    if 0 < config.test_num_batches < num_steps:
        num_steps = config.test_num_batches
    e = None
    for multi_batch in tqdm(test_data.get_multi_batches(
            config.batch_size,
            config.num_gpus,
            num_steps=num_steps,
            cluster=config.cluster),
                            total=num_steps):
        ei = evaluator.get_evaluation(sess, multi_batch)
        e = ei if e is None else e + ei
        if config.vis:
            eval_subdir = os.path.join(
                config.eval_dir, "{}-{}".format(ei.data_type,
                                                str(ei.global_step).zfill(6)))
            if not os.path.exists(eval_subdir):
                os.mkdir(eval_subdir)
            path = os.path.join(eval_subdir, str(ei.idxs[0]).zfill(8))
            graph_handler.dump_eval(ei, path=path)

    print("test acc: %f, loss: %f" % (e.acc, e.loss))
    if config.dump_answer:
        print("dumping answer ...")
        graph_handler.dump_answer(e)
    if config.dump_eval:
        print("dumping eval ...")
        graph_handler.dump_eval(e)
Exemplo n.º 2
0
def _test(config):
    test_data = read_data(config, 'test', True)
    update_config(config, [test_data])

    _config_debug(config)

    pprint(config.__flags, indent=2)
    models = get_multi_gpu_models(config)
    model = models[0]
    evaluator = AccuracyEvaluator(config.test_num_can, config, model,
                                  tensor_dict=models[0].tensor_dict if config.vis else None)
    graph_handler = GraphHandler(config, model)

    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    graph_handler.initialize(sess)
    num_steps = math.ceil(test_data.num_examples / (config.batch_size * config.num_gpus))

    e = None
    tensor=[]
    for i, multi_batch in enumerate(tqdm(
            test_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps,
                                        cluster=config.cluster), total=num_steps)):

        ei = evaluator.get_evaluation(sess, multi_batch)
        # outfinal=ei.tensor
        # tensor.extend(outfinal)

        e = ei if e is None else e + ei
        # if config.vis:
        #     eval_subdir = os.path.join(config.eval_dir,
        #                                "{}-{}".format(multi_batch[0][1].data_type, str(ei.global_step).zfill(6)))
        #     if not os.path.exists(eval_subdir):
        #         os.mkdir(eval_subdir)
        #     path = os.path.join(eval_subdir, str(ei.idxs[0]).zfill(8))
        #     graph_handler.dump_eval(ei, path=path)

    print(e.acc)

    if config.dump_eval:
        print("dumping eval ...")
        graph_handler.dump_eval(e)
    if config.dump_answer:
        print("dumping answers ...")
        graph_handler.dump_answer(e)
Exemplo n.º 3
0
def _train(config):
    np.set_printoptions(threshold=np.inf)
    train_data = read_data(config, 'train', config.load)
    dev_data = read_data(config, 'dev', True)
    update_config(config, [train_data, dev_data])

    _config_debug(config)

    word2vec_dict = train_data.shared[
        'lower_word2vec'] if config.lower_word else train_data.shared[
            'word2vec']
    word2idx_dict = train_data.shared['word2idx']
    idx2vec_dict = {
        word2idx_dict[word]: vec
        for word, vec in word2vec_dict.items() if word in word2idx_dict
    }
    emb_mat = np.array([
        idx2vec_dict[idx]
        if idx in idx2vec_dict else np.random.multivariate_normal(
            np.zeros(config.word_emb_size), np.eye(config.word_emb_size))
        for idx in range(config.word_vocab_size)
    ])
    config.emb_mat = emb_mat

    def make_idx2word():
        """
        return index of the word from the preprocessed dictionary. 
        """
        idx2word = {}
        d = train_data.shared['word2idx']
        for word, idx in d.items():
            print(word)
            idx2word[idx] = word
        if config.use_glove_for_unk:
            d2 = train_data.shared['new_word2idx']
            for word, idx in d2.items():
                print(word)
                idx2word[idx + len(d)] = word
        return idx2word

    idx2word = make_idx2word()
    # Save total number of words used in this dictionary: words in GloVe + etc tokens(including UNK, POS, ... etc)
    print("size of config.id2word len:", len(idx2word))
    print("size of config.total_word_vocab_size:",
          config.total_word_vocab_size)

    # construct model graph and variables (using default graph)
    pprint(config.__flags, indent=2)
    models = get_multi_gpu_models(config)
    model = models[0]
    print("num params: {}".format(get_num_params()))
    trainer = MultiGPUTrainer(config, models)
    evaluator = MultiGPUEvaluator(
        config, models, tensor_dict=model.tensor_dict if config.vis else None)
    graph_handler = GraphHandler(
        config, model
    )  # controls all tensors and variables in the graph, including loading /saving

    # Variables
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    graph_handler.initialize(sess)

    num_steps = config.num_steps or int(
        math.ceil(train_data.num_examples /
                  (config.batch_size * config.num_gpus))) * config.num_epochs
    min_val = {}
    min_val['loss'] = 100.0
    min_val['acc'] = 0
    min_val['step'] = 0
    min_val['patience'] = 0

    for batches in tqdm(train_data.get_multi_batches(config.batch_size,
                                                     config.num_gpus,
                                                     num_steps=num_steps,
                                                     shuffle=True,
                                                     cluster=config.cluster),
                        total=num_steps):
        global_step = sess.run(
            model.global_step
        ) + 1  # +1 because all calculations are done after step
        get_summary = global_step % config.log_period == 0
        loss, summary, train_op = trainer.step(sess,
                                               batches,
                                               get_summary=get_summary)
        if get_summary:
            graph_handler.add_summary(summary, global_step)

        # occasional saving
        if global_step % config.save_period == 0:
            graph_handler.save(sess, global_step=global_step)

        if not config.eval:
            continue
        # Occasional evaluation
        if global_step % config.eval_period == 0:
            num_steps = math.ceil(dev_data.num_examples /
                                  (config.batch_size * config.num_gpus))

            # num_steps: total steps to finish this training session.
            # val_num_batches: 100
            if 0 < config.val_num_batches < num_steps:
                # if config.val_num_batches is less the the actual steps required to run whole dev set. Run evaluation up to the step.
                num_steps = config.val_num_batches

            # This train loss is calulated from sampling the same number of data size of dev_data.

            e_train = evaluator.get_evaluation_from_batches(
                sess,
                tqdm(train_data.get_multi_batches(config.batch_size,
                                                  config.num_gpus,
                                                  num_steps=num_steps),
                     total=num_steps))
            graph_handler.add_summaries(e_train.summaries, global_step)

            # This e_dev may differ from the dev_set used in test time because some data is filtered out here.
            e_dev = evaluator.get_evaluation_from_batches(
                sess,
                tqdm(dev_data.get_multi_batches(config.batch_size,
                                                config.num_gpus,
                                                num_steps=num_steps),
                     total=num_steps))
            graph_handler.add_summaries(e_dev.summaries, global_step)
            print("%s e_train: loss=%.4f" % (header, e_train.loss))
            print("%s e_dev: loss=%.4f" % (header, e_dev.loss))
            print()
            if min_val['loss'] > e_dev.loss:
                min_val['loss'] = e_dev.loss
                min_val['step'] = global_step
                min_val['patience'] = 0
            else:
                min_val['patience'] = min_val['patience'] + 1
                if min_val['patience'] >= 1000:
                    slack.notify(
                        text="%s patience reached %d. early stopping." %
                        (header, min_val['patience']))
                    break

            slack.notify(text="%s e_dev: loss=%.4f" % (header, e_dev.loss))

            if config.dump_eval:
                graph_handler.dump_eval(e_dev)
            if config.dump_answer:
                graph_handler.dump_answer(e_dev)

    slack.notify(
        text=
        "%s <@U024BE7LH|insikk> Train is finished. e_dev: loss=%.4f at step=%d\nPlease assign another task to get more research result"
        % (header, min_val['loss'], min_val['step']))

    if global_step % config.save_period != 0:
        graph_handler.save(sess, global_step=global_step)