def _test(config): test_data = read_data(config, 'test', True) update_config(config, [test_data]) _config_debug(config) if config.use_glove_for_unk: word2vec_dict = test_data.shared[ 'lower_word2vec'] if config.lower_word else test_data.shared[ 'word2vec'] new_word2idx_dict = test_data.shared['new_word2idx'] idx2vec_dict = { idx: word2vec_dict[word] for word, idx in new_word2idx_dict.items() } new_emb_mat = np.array( [idx2vec_dict[idx] for idx in range(len(idx2vec_dict))], dtype='float32') config.new_emb_mat = new_emb_mat pprint(config.__flags, indent=2) models = get_multi_gpu_models(config) model = models[0] evaluator = MultiGPUEvaluator( config, models, tensor_dict=models[0].tensor_dict if config.vis else None) graph_handler = GraphHandler(config, model) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) graph_handler.initialize(sess) num_steps = math.ceil(test_data.num_examples / (config.batch_size * config.num_gpus)) if 0 < config.test_num_batches < num_steps: num_steps = config.test_num_batches e = None for multi_batch in tqdm(test_data.get_multi_batches( config.batch_size, config.num_gpus, num_steps=num_steps, cluster=config.cluster), total=num_steps): ei = evaluator.get_evaluation(sess, multi_batch) e = ei if e is None else e + ei if config.vis: eval_subdir = os.path.join( config.eval_dir, "{}-{}".format(ei.data_type, str(ei.global_step).zfill(6))) if not os.path.exists(eval_subdir): os.mkdir(eval_subdir) path = os.path.join(eval_subdir, str(ei.idxs[0]).zfill(8)) graph_handler.dump_eval(ei, path=path) print("test acc: %f, loss: %f" % (e.acc, e.loss)) if config.dump_answer: print("dumping answer ...") graph_handler.dump_answer(e) if config.dump_eval: print("dumping eval ...") graph_handler.dump_eval(e)
def _test(config): test_data = read_data(config, 'test', True) update_config(config, [test_data]) _config_debug(config) pprint(config.__flags, indent=2) models = get_multi_gpu_models(config) model = models[0] evaluator = AccuracyEvaluator(config.test_num_can, config, model, tensor_dict=models[0].tensor_dict if config.vis else None) graph_handler = GraphHandler(config, model) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) graph_handler.initialize(sess) num_steps = math.ceil(test_data.num_examples / (config.batch_size * config.num_gpus)) e = None tensor=[] for i, multi_batch in enumerate(tqdm( test_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps, cluster=config.cluster), total=num_steps)): ei = evaluator.get_evaluation(sess, multi_batch) # outfinal=ei.tensor # tensor.extend(outfinal) e = ei if e is None else e + ei # if config.vis: # eval_subdir = os.path.join(config.eval_dir, # "{}-{}".format(multi_batch[0][1].data_type, str(ei.global_step).zfill(6))) # if not os.path.exists(eval_subdir): # os.mkdir(eval_subdir) # path = os.path.join(eval_subdir, str(ei.idxs[0]).zfill(8)) # graph_handler.dump_eval(ei, path=path) print(e.acc) if config.dump_eval: print("dumping eval ...") graph_handler.dump_eval(e) if config.dump_answer: print("dumping answers ...") graph_handler.dump_answer(e)
def _train(config): np.set_printoptions(threshold=np.inf) train_data = read_data(config, 'train', config.load) dev_data = read_data(config, 'dev', True) update_config(config, [train_data, dev_data]) _config_debug(config) word2vec_dict = train_data.shared[ 'lower_word2vec'] if config.lower_word else train_data.shared[ 'word2vec'] word2idx_dict = train_data.shared['word2idx'] idx2vec_dict = { word2idx_dict[word]: vec for word, vec in word2vec_dict.items() if word in word2idx_dict } emb_mat = np.array([ idx2vec_dict[idx] if idx in idx2vec_dict else np.random.multivariate_normal( np.zeros(config.word_emb_size), np.eye(config.word_emb_size)) for idx in range(config.word_vocab_size) ]) config.emb_mat = emb_mat def make_idx2word(): """ return index of the word from the preprocessed dictionary. """ idx2word = {} d = train_data.shared['word2idx'] for word, idx in d.items(): print(word) idx2word[idx] = word if config.use_glove_for_unk: d2 = train_data.shared['new_word2idx'] for word, idx in d2.items(): print(word) idx2word[idx + len(d)] = word return idx2word idx2word = make_idx2word() # Save total number of words used in this dictionary: words in GloVe + etc tokens(including UNK, POS, ... etc) print("size of config.id2word len:", len(idx2word)) print("size of config.total_word_vocab_size:", config.total_word_vocab_size) # construct model graph and variables (using default graph) pprint(config.__flags, indent=2) models = get_multi_gpu_models(config) model = models[0] print("num params: {}".format(get_num_params())) trainer = MultiGPUTrainer(config, models) evaluator = MultiGPUEvaluator( config, models, tensor_dict=model.tensor_dict if config.vis else None) graph_handler = GraphHandler( config, model ) # controls all tensors and variables in the graph, including loading /saving # Variables sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) graph_handler.initialize(sess) num_steps = config.num_steps or int( math.ceil(train_data.num_examples / (config.batch_size * config.num_gpus))) * config.num_epochs min_val = {} min_val['loss'] = 100.0 min_val['acc'] = 0 min_val['step'] = 0 min_val['patience'] = 0 for batches in tqdm(train_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps, shuffle=True, cluster=config.cluster), total=num_steps): global_step = sess.run( model.global_step ) + 1 # +1 because all calculations are done after step get_summary = global_step % config.log_period == 0 loss, summary, train_op = trainer.step(sess, batches, get_summary=get_summary) if get_summary: graph_handler.add_summary(summary, global_step) # occasional saving if global_step % config.save_period == 0: graph_handler.save(sess, global_step=global_step) if not config.eval: continue # Occasional evaluation if global_step % config.eval_period == 0: num_steps = math.ceil(dev_data.num_examples / (config.batch_size * config.num_gpus)) # num_steps: total steps to finish this training session. # val_num_batches: 100 if 0 < config.val_num_batches < num_steps: # if config.val_num_batches is less the the actual steps required to run whole dev set. Run evaluation up to the step. num_steps = config.val_num_batches # This train loss is calulated from sampling the same number of data size of dev_data. e_train = evaluator.get_evaluation_from_batches( sess, tqdm(train_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps), total=num_steps)) graph_handler.add_summaries(e_train.summaries, global_step) # This e_dev may differ from the dev_set used in test time because some data is filtered out here. e_dev = evaluator.get_evaluation_from_batches( sess, tqdm(dev_data.get_multi_batches(config.batch_size, config.num_gpus, num_steps=num_steps), total=num_steps)) graph_handler.add_summaries(e_dev.summaries, global_step) print("%s e_train: loss=%.4f" % (header, e_train.loss)) print("%s e_dev: loss=%.4f" % (header, e_dev.loss)) print() if min_val['loss'] > e_dev.loss: min_val['loss'] = e_dev.loss min_val['step'] = global_step min_val['patience'] = 0 else: min_val['patience'] = min_val['patience'] + 1 if min_val['patience'] >= 1000: slack.notify( text="%s patience reached %d. early stopping." % (header, min_val['patience'])) break slack.notify(text="%s e_dev: loss=%.4f" % (header, e_dev.loss)) if config.dump_eval: graph_handler.dump_eval(e_dev) if config.dump_answer: graph_handler.dump_answer(e_dev) slack.notify( text= "%s <@U024BE7LH|insikk> Train is finished. e_dev: loss=%.4f at step=%d\nPlease assign another task to get more research result" % (header, min_val['loss'], min_val['step'])) if global_step % config.save_period != 0: graph_handler.save(sess, global_step=global_step)