Exemplo n.º 1
0
 def testRingZM(self):
     r = PolyRing( GF(17), "(t,x)", Order.INVLEX );
     self.assertEqual(str(r),'PolyRing(GFI(17),"t,x",Order.INVLEX)');
     [one,x,t] = r.gens();
     self.assertTrue(one.isONE());
     self.assertTrue(len(x)==1);
     self.assertTrue(len(t)==1);
     #
     f = 11 * x**4 - 13 * t * x**2 - 11 * x**2 + 2 * t**2 + 11 * t;
     f = f**2 + f + 3;
     #print "f = " + str(f);
     self.assertEqual(str(f),'( 4 * x**4 + 16 * t**2 * x**3 + 10 * x**3 + 9 * t**4 * x**2 + 10 * t**2 * x**2 + 4 * x**2 + 3 * t**6 * x + t**4 * x + 11 * x + 2 * t**8 + 13 * t**6 + 13 * t**4 + 6 * t**2 + 3 )');
Exemplo n.º 2
0
 def testRingQQ(self):
     r = PolyRing( QQ(), "(t,x)", Order.INVLEX );
     self.assertEqual(str(r),'PolyRing(QQ(),"t,x",Order.INVLEX)');
     [one,x,t] = r.gens();
     self.assertTrue(one.isONE());
     self.assertTrue(len(x)==1);
     self.assertTrue(len(t)==1);
     #
     f = 11 * x**4 - 13 * t * x**2 - 11 * x**2 + 2 * t**2 + 11 * t;
     f = f**2 + f + 3;
     #print "f = " + str(f);
     self.assertEqual(str(f),'( 4 * x**4 - 52 * t**2 * x**3 + 44 * x**3 + 213 * t**4 * x**2 - 330 * t**2 * x**2 + 123 * x**2 - 286 * t**6 * x + 528 * t**4 * x - 255 * t**2 * x + 11 * x + 121 * t**8 - 242 * t**6 + 132 * t**4 - 11 * t**2 + 3 )');
Exemplo n.º 3
0
    def __constructJasObject(self):
        #from types import StringType
        from jas import PolyRing, ZZ
        # set up the polynomial ring (Jas syntax)
        if 'hasParameters' in self.__dict__ and self.hasParameters != '':
            #K = 'K.<%s> = PolynomialRing(ZZ)' % self.hasParameters
            #R = K + '; R.<%s> = PolynomialRing(K)' % self.hasVariables
            K = PolyRing(ZZ(), str(self.hasParameters))
            R = PolyRing(K, str(self.hasVariables))
            gens = '%s,%s' % (self.hasParameters, self.hasVariables)
        else:
            #R = 'R.<%s> = PolynomialRing(ZZ)' % (self.hasVariables)
            R = PolyRing(ZZ(), str(self.hasVariables))
            gens = str(self.hasVariables)
        # translate Jas syntax to pure Python and execute
        #exec(preparse(R))
        Rg = "(one," + gens + ") = R.gens();"
        #print str(R)
        exec(str(Rg))  # safe here since R did evaluate
        #print "R = " + str(R)
        self.jasRing = R

        # avoid XSS: check if polynomials are clean
        from edu.jas.poly import GenPolynomialTokenizer
        vs = GenPolynomialTokenizer.expressionVariables(str(gens))
        vs = sorted(vs)
        #print "vs = " + str(vs)
        vsb = set()
        [
            vsb.update(GenPolynomialTokenizer.expressionVariables(str(s)))
            for s in self.basis
        ]
        vsb = sorted(list(vsb))
        #print "vsb = " + str(vsb)
        if vs != vsb:
            raise ValueError("invalid variables: expected " + str(vs) +
                             ", got " + str(vsb))
        # construct polynomials in the constructed ring from
        # the polynomial expressions
        self.jasBasis = []
        for ps in self.basis:
            #print "ps = " + str(ps)
            ps = str(ps)
            ps = ps.replace('^', '**')
            #exec(preparse("symbdata_ideal = %s" % ps))
            #exec("symbdata_poly = %s" % ps)
            pol = eval(ps)
            self.jasBasis.append(pol)
Exemplo n.º 4
0
#
# jython examples for jas.
# $Id$
#

import sys

from jas import QQ, PolyRing
from jas import startLog
from jas import terminate

# ideal elimination example

#r = Ring( "Rat(x,y,z) G" );
r = PolyRing(QQ(), "(x,y,z)", PolyRing.grad)
print "Ring: " + str(r)
print

ps1 = """
(
 ( x^2 - 2 ),
 ( y^2 - 3 ),
 ( z^3 - x * y )
)
"""

ff = [x**2 - 2, y**2 - 3, z**3 - x * y]

#F1 = r.ideal( ps1 );
F1 = r.ideal("", ff)
print "Ideal: " + str(F1)
Exemplo n.º 5
0
#
# jython examples for jas.
# $Id$
#

import sys;

from jas import QQ, PolyRing
from jas import startLog
from jas import terminate


# ideal elimination example

#r = Ring( "Rat(x,y,z) G" );
r = PolyRing( QQ(), "(x,y,z)", PolyRing.grad );
print "Ring: " + str(r);
print;

ps1 = """
(
 ( x^2 - 2 ),
 ( y^2 - 3 ),
 ( z^3 - x * y )
)
""";

ff = [ x**2 - 2,
       y**2 - 3,
       z**3 - x * y
     ]
Exemplo n.º 6
0
#
# jython examples for jas.
# $Id$
#

import sys

from jas import Ring, PolyRing, Ideal, PSIdeal, QQ, ZM
from jas import startLog, terminate

# example from CLO(UAG), 4.4

#R = PolyRing( GF(32003), "x,y,z" );
R = PolyRing(QQ(), "x,y,z")
print "Ring: " + str(R)
print

#automatic: [one,x,y,z] = R.gens();

f1 = x**5 - x * y**6 - z**7
f2 = x * y + y**3 + z**3
f3 = x**2 + y**2 - z**2

L = [f1, f2, f3]
#print "L = ", str(L);

F = R.ideal(list=L)
print "Ideal: " + str(F)
print

PR = R.powerseriesRing()
Exemplo n.º 7
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import PolyRing, ZM, GF
from jas import terminate, startLog

# system biology examples: GB in Z_2
# see: Informatik Spektrum, 2009, February,
# Laubenbacher, Sturmfels: Computer Algebra in der Systembiologie

r = PolyRing(GF(2),"M, B, A, L, P",PolyRing.lex);
print "PolyRing: " + str(r);
print;

#automatic: [one,M,B,A,L,P] = r.gens();

f1 = M - A;
f2 = B - M;
f3 = A - A - L * B - A * L * B;
f4 = P - M;
f5 = L - P - L - L * B - L * P - L * B * P;
## t1 = M - 1;
## t2 = B - 1;
## t3 = A - 1;
## t4 = L - 1;
## t5 = P - 1;
#
Exemplo n.º 8
0

import sys;

from jas import Ring, PolyRing, RF, ZZ, QQ
from jas import startLog, terminate

from edu.jas.arith import ModIntegerRing

#startLog();

# Hawes & Gibson example 2
# rational function coefficients

#r = Ring( "RatFunc(a, c, b) (y2, y1, z1, z2, x) G" );
r = PolyRing( RF(PolyRing(ZZ(),"a, c, b",PolyRing.lex)), "y2, y1, z1, z2, x", PolyRing.grad );
print "Ring: " + str(r);
print;

ps = """
(
 ( x + 2 y1 z1 + { 3 a } y1^2 + 5 y1^4 + { 2 c } y1 ),
 ( x + 2 y2 z2 + { 3 a } y2^2 + 5 y2^4 + { 2 c } y2 ), 
 ( 2 z2 + { 6 a } y2 + 20 y2^3 + { 2 c } ), 
 ( 3 z1^2 + y1^2 + { b } ), 
 ( 3 z2^2 + y2^2 + { b } ) 
) 
""";

f = r.paramideal( ps );
print "Ideal: " + str(f);
Exemplo n.º 9
0
import sys

from java.lang import System
from java.lang import Integer

from jas import Ring
from jas import PolyRing
from jas import Ideal
from jas import ZM, QQ, AN, RF
from jas import terminate
from jas import startLog

# polynomial examples: factorization over Z_p(x)(sqrt3(x))[y]

Q = PolyRing(ZM(5),"x",PolyRing.lex);
print "Q     = " + str(Q);
[e,a] = Q.gens();
#print "e     = " + str(e);
print "a     = " + str(a);

Qr = RF(Q);
print "Qr    = " + str(Qr.factory());
[er,ar] = Qr.gens();
#print "er    = " + str(er);
#print "ar    = " + str(ar);
print;

Qwx = PolyRing(Qr,"wx",PolyRing.lex);
print "Qwx   = " + str(Qwx);
[ewx,ax,wx] = Qwx.gens();
Exemplo n.º 10
0
#
# jython examples for jas.
# $Id$
#

import sys

from java.lang import System

from jas import Ring, PolyRing, QQ, DD
from jas import terminate, startLog

# polynomial examples: real roots over Q

r = PolyRing(QQ(), "I,x,y,z", PolyRing.lex)
print "Ring: " + str(r)
print

#automatic: [one,I,x,y,z] = r.gens();

f1 = z - x - y * I
f2 = I**2 + 1

#f3 = z**3 - 2;
f3 = z**3 - 2 * I

print "f1 = ", f1
print "f2 = ", f2
print "f3 = ", f3
print
Exemplo n.º 11
0
# $Id$
#

from java.lang import System
from java.lang import Integer

from jas import PolyRing, QQ
from jas import terminate
from jas import startLog

# polynomial examples: factorization

cr = PolyRing(QQ(),"x",PolyRing.lex );
print "Ring cr: " + str(cr);

r = PolyRing(cr,"y,z",PolyRing.lex );
print "Ring: " + str(r);
print;

[one,x,y,z] = r.gens();

#f = z * ( y + 1 )**2 * ( x**2 + x + 1 )**3;
#f = z * ( y + 1 ) * ( x**2 + x + 1 );
#f = ( y + 1 ) * ( x**2 + x + 1 );
#f = ( y + z**2 ) * ( x**2 + x + 1 );

#f = x**4 * y + x**3  + z + x   + z**2 + y * z**2;
## f = x**3 + ( ( y + 2 ) * z + 2 * y + 1 ) * x**2 \
##     + ( ( y + 2 ) * z**2 + ( y**2 + 2 * y + 1 ) * z + 2 * y**2 + y ) * x \
##     + ( y + 1 ) * z**3 + ( y + 1 ) * z**2 + ( y**3 + y**2 ) * z + y**3 + y**2;
Exemplo n.º 12
0
F = r.ideal(list=[r1, r2, r3, r4, r5, r6, r7, r8, f1, f2, f3])
#F = r.ideal( list=[r1,r2,f1,f2,f3] );
print "F = " + str(F)
print

startLog()

G = F.GB()
print "G = " + str(G)
print "isGB(G) = " + str(G.isGB())
print

# now as solvable polynomials

p = PolyRing(QQ(), "a,b,e1,e2,e3")
#is automatic: [one,a,b,e1,e2,e3] = p.gens();

relations = [e3, e1, e1 * e3 - e1, e3, e2, e2 * e3 - e2]

print "relations: =", [str(f) for f in relations]
print

#rp = SolvPolyRing(QQ(), "a,b,e1,e2,e3", rel=relations);
rp = SolvPolyRing(QQ(), "a,b,e1,e2,e3", PolyRing.lex, relations)
print "SolvPolyRing: " + str(rp)
print

print "gens =", [str(f) for f in rp.gens()]
#[one,a,b,e1,e2,e3] = rp.gens();
#[one,I,J,K,a,b,e1,e2,e3] = rp.gens();
## 2 z_2+6ay_2+20 y_2^3+2c \&
## 3 z_1^2+y_1^2+b \&
## 3z_2^2+y_2^2+b \&
## \end{Equations}
## \end{PossoExample}

import sys

from jas import Ring, PolyRing, RF, ZZ
from jas import startLog, terminate

# Hawes & Gibson example 2
# rational function coefficients

#r = Ring( "RatFunc(a, c, b) (y2, y1, z1, z2, x) G" );
r = PolyRing(RF(PolyRing(ZZ(), "a, c, b", PolyRing.lex)), "y2, y1, z1, z2, x",
             PolyRing.grad)
print "Ring: " + str(r)
print

[one, a, c, b, y2, y1, z1, z2, x] = r.gens()

p1 = x + 2 * y1 * z1 + 3 * a * y1**2 + 5 * y1**4 + 2 * c * y1
p2 = x + 2 * y2 * z2 + 3 * a * y2**2 + 5 * y2**4 + 2 * c * y2
p3 = 2 * z2 + 6 * a * y2 + 20 * y2**3 + 2 * c
p4 = 3 * z1**2 + y1**2 + b
p5 = 3 * z2**2 + y2**2 + b

p6 = ((p5 / a) / b) / c
print "p6 = ", p6

F = [p1, p2, p3, p4, p5]
Exemplo n.º 14
0
#
# jruby examples for jas.
# $Id$
#

from java.lang import System

from jas import SolvableRing, SolvPolyRing, PolyRing, RingElem
from jas import QQ, startLog, SRC, SRF

# Ore extension solvable polynomial example, Gomez-Torrecillas, 2003

pcz = PolyRing(QQ(),"x,y,z");
#is automatic: [one,x,y,z] = pcz.gens();

zrelations = [z, y,  y * z + x
             ];

print "zrelations: = " + str([ str(f) for f in zrelations ]);
print;

pz = SolvPolyRing(QQ(), "x,y,z", PolyRing.lex, zrelations);
print "SolvPolyRing: " + str(pz);
print;

#startLog();

fl = [ z**2 + y, y**2 + x];
ff = pz.ideal("",fl);
print "ideal ff: " + str(ff);
print;
Exemplo n.º 15
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import Ring, PolyRing, QQ, DD
from jas import terminate, startLog

# polynomial examples: ideal prime decomposition

#r = Ring( "Rat(x) L" );
#r = Ring( "Q(x) L" );
r = PolyRing(QQ(), "x,y,z", PolyRing.lex)

print "Ring: " + str(r)
print

#automatic: [one,x,y,z] = r.gens();

f1 = (x**2 - 5)**2
f2 = y**3 - x
f3 = z**2 - y * x

#print "f1 = ", f1;
print "f2 = ", f2
print "f3 = ", f3
print

F = r.ideal(list=[f2, f3])
Exemplo n.º 16
0
print "KOI   = " + str(KOI);
o1 = 2 * oneOR + 3 * IOR + 4 * JOR + 5 * KOR + 6 * oneOI + 7 * IOI + 8 * JOI + 9 * KOI;
print "o1 = " + str(o1);
o2 = (1/o1)**2;
print "o2 = " + str(o2);
o3 = o2 * o1 * o1;
print "o3 = " + str(o3);
o4 = (-69,20164)*oneOR + (-3,20164)*IOR + (-1,5041)*JOR + (-5,20164)*KOR  + (-3,10082)*oneOI + (-7,20164)*IOI + (-2,5041)*JOI + (-9,20164)*KOI;
print "o4 = " + str(o4);
o5 = o2 - o4;
print "o5  = " + str(o5);
print;


print "------- PolyRing(ZZ(),\"x,y,z\") ---------";
r = PolyRing(ZZ(),"x,y,z",PolyRing.grad);
print "r = " + str(r);
[one,x,y,z] = r.gens();
print "one = " + str(one);
print "x   = " + str(x);
print "y   = " + str(y);
print "z   = " + str(z);
p1 = 2 + 3 * x + 4 * y + 5 * z + ( x + y + z )**2;
print "p1  = " + str(p1);
p2  = z**2 + 2 * y * z + 2 * x * z + y**2 + 2 * x * y + x**2 + 5 * z + 4 * y + 3 * x + 2;
print "p2  = " + str(p2);
p3 = p1 - p2;
print "p3  = " + str(p3);
print "p3.factory() = " + str(p3.factory());
print;
Exemplo n.º 17
0
# jython examples for jas.
# $Id$
#

import sys;

from jas import PolyRing, QQ, RF
from jas import Ideal
from jas import startLog
from jas import terminate


# Montes JSC 2002, 33, 183-208, example 11.1
# integral function coefficients

r = PolyRing( PolyRing(QQ(),"c, b, a",PolyRing.lex), "z,y,x", PolyRing.lex );
print "Ring: " + str(r);
print;

[one,c,b,a,z,y,x] = r.gens();
print "gens: ", [ str(f) for f in r.gens() ];
print;

f1 =     x + c * y + b * z + a;
f2 = c * x +     y + a * z + b;
f3 = b * x + a * y +     z + c;

F = [f1,f2,f3];

print "F: ", [ str(f) for f in F ];
print;
Exemplo n.º 18
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import SolvableRing, SolvPolyRing, PolyRing
from jas import QQ, startLog, SRC, SRF

# Ore extension solvable polynomial example, Gomez-Torrecillas, 2003

pcz = PolyRing(QQ(), "x,y,z")
#is automatic: [one,x,y,z] = pcz.gens();

zrelations = [z, y, y * z + x]

print "zrelations: = " + str([str(f) for f in zrelations])
print

pz = SolvPolyRing(QQ(), "x,y,z", PolyRing.lex, zrelations)
print "SolvPolyRing: " + str(pz)
print

pzq = SRF(pz)
print "SolvableQuotientRing: " + str(pzq.ring.toScript())
# + ", assoz: " + str(pzq.ring.isAssociative());
#print "gens =" + str([ str(f) for f in pzq.ring.generators() ]);
print

pct = PolyRing(pzq, "t")
Exemplo n.º 19
0
## 2 z_2+6ay_2+20 y_2^3+2c \&
## 3 z_1^2+y_1^2+b \&
## 3z_2^2+y_2^2+b \&
## \end{Equations}
## \end{PossoExample}

import sys

from jas import Ring, PolyRing, RF, ZZ
from jas import startLog, terminate

# Hawes & Gibson example 2
# rational function coefficients

#r = Ring( "RatFunc(a, c, b) (y2, y1, z1, z2, x) L" );
r = PolyRing(RF(PolyRing(ZZ(), "a, c, b", PolyRing.lex)), "y2, y1, z1, z2, x",
             PolyRing.lex)
print "Ring: " + str(r)
print

ps = """
(
 ( x + 2 y1 z1 + { 3 a } y1^2 + 5 y1^4 + { 2 c } y1 ),
 ( x + 2 y2 z2 + { 3 a } y2^2 + 5 y2^4 + { 2 c } y2 ), 
 ( 2 z2 + { 6 a } y2 + 20 y2^3 + { 2 c } ), 
 ( 3 z1^2 + y1^2 + { b } ), 
 ( 3 z2^2 + y2^2 + { b } ) 
) 
"""

f = r.ideal(ps)
print "Ideal: " + str(f)
Exemplo n.º 20
0
#
# jython examples for jas.
# $Id$
#

import sys

from jas import Ring, PolyRing, RF, ZZ
from jas import terminate

# Raksanyi & Walter example
# rational function coefficients

#r = Ring( "RatFunc(a1, a2, a3, a4) (x1, x2, x3, x4) G" );
r = PolyRing(RF(PolyRing(ZZ(), "a1, a2, a3, a4", PolyRing.lex)),
             "x1, x2, x3, x4", PolyRing.grad)
print "Ring: " + str(r)
print

ps = """
(
 ( x4 - { a4 - a2 } ),
 ( x1 + x2 + x3 + x4 - { a1 + a3 + a4 } ),
 ( x1 x3 + x1 x4 + x2 x3 + x3 x4 - { a1 a4 + a1 a3 + a3 a4 } ),
 ( x1 x3 x4 - { a1 a3 a4 } )
) 
"""

f = r.ideal(ps)
print "Ideal: " + str(f)
print
#
# jython examples for jas.
# $Id$
#

import sys

from java.lang import System

from jas import Ring, PolyRing
from jas import QQ, AN
from jas import terminate, startLog

# polynomial examples: absolute factorization over Q(i)

Qr = PolyRing(QQ(), "i", PolyRing.lex)
print "Qr    = " + str(Qr)
[e, a] = Qr.gens()
print "e     = " + str(e)
print "a     = " + str(a)
print

imag = a ** 2 + 1
print "imag  = " + str(imag)
Qi = AN(imag, field=True)
print "Qi    = " + str(Qi.factory())
[one, i] = Qi.gens()
print "one   = " + str(one)
print "i     = " + str(i)
print
Exemplo n.º 22
0
# $Id$
#

import sys;

from jas import PolyRing, ZZ, QQ, RealN, CC, ZM, RF, terminate
from edu.jas.root import RealArithUtil
from edu.jas.arith import ArithUtil

# example for rational and real algebraic numbers
#
#

# continued fractions:

r = PolyRing(QQ(),"alpha",PolyRing.lex);
print "r = " + str(r);
e,a = r.gens();
print "e     = " + str(e);
print "a     = " + str(a);
sqrt2 = a**2 - 2;
print "sqrt2 = " + str(sqrt2);
Qs2r = RealN(sqrt2,[1,[3,2]],a-1);
#Qs2r = RealN(sqrt2,[-2,-1],a+1);
print "Qs2r  = " + str(Qs2r.factory()) + " :: " + str(Qs2r.elem);
one,alpha = Qs2r.gens();
print "one   = " + str(one);
print "alpha = " + str(alpha);


cf = Qs2r.contFrac(20);
Exemplo n.º 23
0
#
# jython examples for jas.
# $Id$
#

import sys

from java.lang import System

from jas import PolyRing, Ideal
from jas import QQ, AN, RF
from jas import terminate, startLog

# polynomial examples: prime/primary decomposition in Q[w2,x,wx,y,z]

Q = PolyRing(QQ(), "w2,x,wx,y,z", PolyRing.lex)
print "Q     = " + str(Q)

[e, w2, x, wx, y, z] = Q.gens()
print "e     = " + str(e)
print "w2    = " + str(w2)
print "x     = " + str(x)
print "wx    = " + str(wx)
print "y     = " + str(y)
print "z     = " + str(z)
print

w1 = w2 ** 2 - 2
w2 = wx ** 2 - x
f1 = (y ** 2 - x) * (y ** 2 - 2)
# f1 = ( y**2 - x )**3 * ( y**2 - 2 )**2;
Exemplo n.º 24
0
#
# jython examples for jas.
# $Id$
#

import sys

from jas import PolyRing, QQ, RF
from jas import startLog
from jas import terminate

# Montes JSC 2002, 33, 183-208, example 11.2
# integral function coefficients

r = PolyRing(PolyRing(QQ(), "f, e, d, c, b, a", PolyRing.lex), "y,x",
             PolyRing.lex)
#r = PolyRing( PolyRing(QQ(),"f, e, d, c, b, a",PolyRing.grad), "y,x", PolyRing.lex );
#r = PolyRing( PolyRing(QQ(),"f, e, d, c, b, a",PolyRing.lex), "y,x", PolyRing.grad );
#r = PolyRing( PolyRing(QQ(),"e, d, c, b, f, a",PolyRing.lex), "y,x", PolyRing.grad );
print "Ring: " + str(r)
print

#[one,e,d,c,b,f,a,y,x] = r.gens();
#automatic: [one,f,e,d,c,b,a,y,x] = r.gens();
print "gens: ", [str(f) for f in r.gens()]
print

f1 = x**2 + b * y**2 + 2 * c * x * y + 2 * d * x + 2 * e * y + f
f2 = x + c * y + d
f3 = b * y + c * x + e
# jython examples for jas.
# $Id$
#

import sys;
from java.lang import System
from java.lang import Integer

from jas import Ring, PolyRing
from jas import terminate
from jas import startLog
from jas import QQ, DD

# polynomial examples: complex roots over Q for zero dimensional ideal `cyclic5'

r = PolyRing(QQ(),"a,b,c,d,e",PolyRing.lex);
print "Ring: " + str(r);
print;

#is automatic: [one,a,b,c,d,e] = r.gens();

f1 = a + b + c + d + e;
f2 = a*b + b*c + c*d + d*e + e*a;
f3 = a*b*c + b*c*d + c*d*e + d*e*a + e*a*b;
f4 = a*b*c*d + b*c*d*e + c*d*e*a + d*e*a*b + e*a*b*c;
f5 = a*b*c*d*e - 1;

print "f1 = ", f1;
print "f2 = ", f2;
print "f3 = ", f3;
print "f4 = ", f4;
Exemplo n.º 26
0
# jython examples for jas.
# $Id$
#

from java.lang import System
from java.lang import Integer

from jas import PolyRing, QQ, ZM, ZZ
from jas import terminate
from jas import startLog

# polynomial examples: squarefree: characteristic 0

#r = PolyRing(PolyRing(QQ(),"u,v",PolyRing.lex),"x, y",PolyRing.lex)
#r = PolyRing(PolyRing(ZZ(),"u,v",PolyRing.lex),"x, y",PolyRing.lex)
r = PolyRing(PolyRing(ZM(7),"u,v",PolyRing.lex),"x, y",PolyRing.lex)

print "Ring: " + str(r);
print;

[one,u,v,x,y] = r.gens();

a = r.random(k=1,l=3);
b = r.random(k=1,l=3);
c = r.random(k=1,l=3);

if a.isZERO():
    a = x;
if b.isZERO():
    b = y;
if c.isZERO():
Exemplo n.º 27
0
# jython examples for jas.
# $Id$
#

import sys;

from jas import Ring, PolyRing, Ideal
from jas import QQ, ZZ, RF
from jas import startLog, terminate


# example: Algebraic Statistics
# Drton, Sturmfels, Sullivant, example 2.1.3


r = PolyRing(RF(PolyRing(QQ(),"u0,u1,u2,u12",PolyRing.lex)),"l1,l2",PolyRing.grad);
print "Ring: " + str(r);
print;

print one,u0,u1,u2,u12,l1,l2;

f1 = (u1+u12)*(l1+l2+2)*(l1+1)*(l1+l2+1)\
     + (u12)*l1*(l1+1)*(l1+l2+1)\
     - (u2+u12)*l1*(l1+l2+2)*(l1+l2+1)\
     - (u0+u1+u2+u12)*l1*(l1+l2+2)*(l1+1)  ;

f2 = (u2+u12)*(l1+l2+2)*(l2+1)*(l1+l2+1)\
     + (u12)*l2*(l2+1)*(l1+l2+1)\
     - (u1+u12)*l2*(l1+l2+2)*(l1+l2+1)\
     - (u0+u1+u2+u12)*l2*(l1+l2+2)*(l2+1)  ;
Exemplo n.º 28
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import Ring, PolyRing
from jas import ZZ, ZM, QQ, AN, RF, CR
from jas import terminate, startLog

# polynomial examples: factorization

#r = Ring( "Z(x) L" );
r = PolyRing( ZZ(), "(x)", PolyRing.lex );
print "Ring: " + str(r);
print;
[one,x] = r.gens();

#f = x**15 - 1;
#f = x * ( x + 1 )**2 * ( x**2 + x + 1 )**3;
#f = x**6 - 3 * x**5 + x**4 - 3 * x**3 - x**2 - 3 * x+ 1;
#f = x**(3*11*11) + 3 * x**(2*11*11) - x**(11*11);
#f = x**(3*11*11*11) + 3 * x**(2*11*11*11) - x**(11*11*11);
#f = (x**2+1)*(x-3)*(x-5)**3;
#f = x**4 + 1;
#f = x**12 + x**9 + x**6 + x**3 + 1;
#f = x**24 - 1;
#f = x**20 - 1;
#f = x**22 - 1;
#f = x**8 - 40 * x**6 + 352 * x**4 - 960 * x**2 + 576;
Exemplo n.º 29
0
import sys;

from jas import QQ, Ring, PolyRing, Ideal
from jas import startLog, terminate


# trinks 6/7 example

#r = Ring( "Mod 19 (B,S,T,Z,P,W) L" );
#r = Ring( "Mod 1152921504606846883 (B,S,T,Z,P,W) L" ); # 2^60-93
#r = Ring( "Quat(B,S,T,Z,P,W) L" );
#r = Ring( "Z(B,S,T,Z,P,W) L" );
#r = Ring( "C(B,S,T,Z,P,W) L" );
#r = Ring( "Rat(B,S,T,Z,P,W) L" );
r = PolyRing( QQ(),"B,S,T,Z,P,W", PolyRing.lex);
print "Ring: " + str(r);
print;


ps = """
( 
 ( 45 P + 35 S - 165 B - 36 ), 
 ( 35 P + 40 Z + 25 T - 27 S ), 
 ( 15 W + 25 S P + 30 Z - 18 T - 165 B**2 ), 
 ( - 9 W + 15 T P + 20 S Z ), 
 ( P W + 2 T Z - 11 B**3 ), 
 ( 99 W - 11 B S + 3 B**2 ),
 ( 10000 B**2 + 6600 B + 2673 )
) 
""";
#
# jython examples for jas.
# $Id$
#

import sys

from java.lang import System

from jas import QQ, AN, RF, Ring, PolyRing
from jas import terminate, startLog

# polynomial examples: factorization over Q(sqrt(2))(x)(sqrt(x))[y]

Q = PolyRing(QQ(),"w2",PolyRing.lex);
print "Q     = " + str(Q);
[e,a] = Q.gens();
print "e     = " + str(e);
print "a     = " + str(a);

root = a**2 - 2;
print "root  = " + str(root);
Q2 = AN(root,field=True);
print "Q2    = " + str(Q2.factory());
[one,w2] = Q2.gens();
#print "one   = " + str(one);
#print "w2    = " + str(w2);
print;

Qp = PolyRing(Q2,"x",PolyRing.lex);
print "Qp    = " + str(Qp);
Exemplo n.º 31
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import PolyRing, Ideal
from jas import terminate, startLog
from jas import ZM

# system biology examples: GB in Z_2
# see: Informatik Spektrum, 2009, February,
# Laubenbacher, Sturmfels: Computer Algebra in der Systembiologie

r = PolyRing(ZM(2),"M, B, A, L, P",PolyRing.lex);

print "PolyRing: " + str(r);
print;

[one,M,B,A,L,P] = r.gens();

f1 = M - A;
f2 = B - M;
f3 = A - A - L * B - A * L * B;
f4 = P - M;
f5 = L - P - L - L * B - L * P - L * B * P;
## t1 = M - 1;
## t2 = B - 1;
## t3 = A - 1;
## t4 = L - 1;
# jython examples for jas.
# $Id$
#

import sys

from java.lang import System

from jas import Ring, PolyRing, QQ, ZM, RF, GF
from jas import terminate, startLog, noThreads

# polynomial examples: ideal radical decomposition, inseparable cases, dim > 0

#noThreads(); # must be called very early

cr = PolyRing(GF(5), "c", PolyRing.lex)
print "coefficient Ring: " + str(cr)
rf = RF(cr)
print "coefficient quotient Ring: " + str(rf.ring)

r = PolyRing(rf, "x,y,z", PolyRing.lex)
print "Ring: " + str(r)
print

#automatic: [one,c,x,y,z] = r.gens();
print one, c, x, y, z

#sys.exit();

#f1 = (x**2 - 5)**2;
#f1 = (y**10 - x**5)**3;
Exemplo n.º 33
0
import sys;

from java.lang import System

from jas import Ring, PolyRing, QQ, ZM, RF, GF
from jas import terminate, startLog

# polynomial examples: ideal prime decomposition in char p > 0, inseparable cases

cr = PolyRing(GF(5),"c",PolyRing.lex);
print "coefficient Ring: " + str(cr);
rf = RF(cr);
print "coefficient quotient Ring: " + str(rf.ring);

r = PolyRing(rf,"x,y,z",PolyRing.lex);

print "Ring: " + str(r);
print;

#automatic: [one,c,x,y,z] = r.gens();
print one,c,x,y,z;

#sys.exit();

f1 = (x**2 - 2); #**2;
f2 = (y**2 - c)**5;
f3 = (z**2 - 2 * c); #**5;

print "f1 = ", f1;
print "f2 = ", f2;
Exemplo n.º 34
0
# $Id$
#

import sys;

from jas import Ring, PolyRing, Ideal
from jas import QQ, ZZ
from jas import startLog, terminate


# example: Algebraic Statistics
# Drton, Sturmfels, Sullivant, example 2.1.3


#r = PolyRing(QQ(),"l1,l2",PolyRing.grad);
r = PolyRing(QQ(),"l1,l2",PolyRing.lex);
print "Ring: " + str(r);
print;

print one,l1,l2;

u0 = 3; u1 = 5; u2 = 7; u12 = 11;

f1 = (u1+u12)*(l1+l2+2)*(l1+1)*(l1+l2+1)\
     + (u12)*l1*(l1+1)*(l1+l2+1)\
     - (u2+u12)*l1*(l1+l2+2)*(l1+l2+1)\
     - (u0+u1+u2+u12)*l1*(l1+l2+2)*(l1+1)  ;

f2 = (u2+u12)*(l1+l2+2)*(l2+1)*(l1+l2+1)\
     + (u12)*l2*(l2+1)*(l1+l2+1)\
     - (u1+u12)*l2*(l1+l2+2)*(l1+l2+1)\
Exemplo n.º 35
0
print "c^5:", c**5 + c.one()
print

c = CC((2, ), rn)
print "c:   ", c
print "1/c: " + str(1 / c)
print

zm = ZM(19, 11)
print "zm:   " + str(zm)
print "zm^2: " + str(zm * zm)
print "1/zm: " + str(1 / zm)
#print "zm.ring: " + str(zm.ring.toScript());
print

r = PolyRing(QQ(), "x,y", PolyRing.lex)
print "Ring: " + str(r)
print

# sage like: with generators for the polynomial ring
#is automatic: [one,x,y] = r.gens();
zero = r.zero()

try:
    f = RF(r)
except:
    f = None
print "f: " + str(f)

d = x**2 + 5 * x - 6
f = RF(r, d)
Exemplo n.º 36
0
#
# jython examples for jas.
# $Id$
#

import sys

from jas import Ring, PolyRing, QQ, ZZ, RingElem
from jas import startLog, terminate

# GB examples

#r = Ring( "Z(t,x,y,z) L" );
#r = Ring( "Mod 11(t,x,y,z) L" );
#r = Ring( "Rat(t,x,y) L" );
r = PolyRing(QQ(), "t,x,y", PolyRing.lex)
#r = PolyRing( ZZ(), "t,x,y", PolyRing.lex );
print "Ring: " + str(r)
print

ps = """
(
 ( t - x - 2 y ),
 ( x^4 + 4 ),
 ( y^4 + 4 )
) 
"""

# ( y^4 + 4 x y^3 - 2 y^3 - 6 x y^2 + 1 y^2 + 6 x y + 2 y - 2 x + 3 ),
# ( x^2 + 1 ),
# ( y^3 - 1 )
Exemplo n.º 37
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import PolyRing, QQ, ZM
from jas import terminate, startLog

import operator

# polynomial examples: squarefree: characteristic 0

r = PolyRing(QQ(), "x, y, z", PolyRing.lex)
print "Ring: " + str(r)
print

#automatic: [one,x,y,z] = r.gens();

a = r.random(k=2, l=3)
b = r.random(k=2, l=3)
c = r.random(k=1, l=3)

if a.isZERO():
    a = x
if b.isZERO():
    b = y
if c.isZERO():
    c = z
## 3 z_1^2+y_1^2+b \&
## 3z_2^2+y_2^2+b \&
## \end{Equations}
## \end{PossoExample}


import sys;

from jas import Ring, PolyRing, QQ
from jas import startLog, terminate

# Hawes & Gibson example 2
# rational function coefficients

#r = Ring( "IntFunc(a, c, b) (y2, y1, z1, z2, x) G" );
r = PolyRing( PolyRing(QQ(),"a, c, b",PolyRing.lex), "y2, y1, z1, z2, x", PolyRing.grad );
print "Ring: " + str(r);
print;

#[one,a,c,b,y2,y1,z1,z2,x] = r.gens();

p1 = x + 2 * y1 * z1 + 3 * a * y1**2 + 5 * y1**4 + 2 * c * y1;
p2 = x + 2 * y2 * z2 + 3 * a * y2**2 + 5 * y2**4 + 2 * c * y2;
p3 = 2 * z2 + 6 * a * y2 + 20 * y2**3 + 2 * c; 
p4 = 3 * z1**2 + y1**2 + b;
p5 = 3 * z2**2 + y2**2 + b; 

F = [p1,p2,p3,p4,p5];

g = r.ideal( list=F );
print "Ideal: " + str(g);
Exemplo n.º 39
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System
from java.lang import Integer

from jas import PolyRing, ZM, QQ
from jas import terminate
from jas import startLog

# polynomial examples: factorization over Z_p

r = PolyRing(ZM(1152921504606846883,field=True),"(x)",PolyRing.lex);
#r = PolyRing(ZM(19),"x",PolyRing.lex );
#r = PolyRing(ZM(23),"x",PolyRing.lex );

print "Ring: " + str(r);
print;

[one,x] = r.gens();


#f = x**4 - 1;
#f = x**3 + 1;
f = x**3 - x - 1;


print "f = ", f;
print;
Exemplo n.º 40
0
import sys

from jas import Ring, PolyRing, Ideal, QQ, ZZ, GF, ZM, CC
from jas import startLog, terminate

# trinks 6/7 example

# QQ = rational numbers, ZZ = integers, CC = complex rational numbers, GF = finite field
#QQ = QQ(); ZZ = ZZ(); CC = CC();
#r = PolyRing( GF(19),"B,S,T,Z,P,W", PolyRing.lex);
#r = PolyRing( GF(1152921504606846883),"B,S,T,Z,P,W", PolyRing.lex); # 2^60-93
#r = PolyRing( GF(2**60-93),"B,S,T,Z,P,W", PolyRing.lex);
#r = PolyRing( CC(),"B,S,T,Z,P,W", PolyRing.lex);
#r = PolyRing( ZZ(),"B,S,T,Z,P,W", PolyRing.lex); # not for parallel
r = PolyRing(QQ(), "B,S,T,Z,P,W", PolyRing.lex)
print "Ring: " + str(r)
print

# sage like: with generators for the polynomial ring
#[one,I,B,S,T,Z,P,W] = r.gens(); # is automaticaly included
#[one,B,S,T,Z,P,W] = r.gens(); # is automaticaly included

f1 = 45 * P + 35 * S - 165 * B - 36
f2 = 35 * P + 40 * Z + 25 * T - 27 * S
f3 = 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2
f4 = -9 * W + 15 * T * P + 20 * S * Z
f5 = P * W + 2 * T * Z - 11 * B**3
f6 = 99 * W - 11 * B * S + 3 * B**2
f7 = 10000 * B**2 + 6600 * B + 2673
Exemplo n.º 41
0
#
# jython examples for jas.
# $Id$
#

import sys;

from jas import Ring, PolyRing, Ideal
from jas import QQ, ZZ
from jas import startLog, terminate

# characteristic set example Circle of Apollonius, from CLO IVA

r = PolyRing( QQ(), "u1,u2,x1,x2,x3,x4,x5,x6,x7,x8", PolyRing.lex );
print "Ring: " + str(r);
print;

#[one,u1,u2,x1,x2,x3,x4,x5,x6,x7,x8] = r.gens();

h1 = 2 * x1 - u1;
h2 = 2 * x2 - u2;
h3 = 2 * x3 - u1;
h4 = 2 * x4 - u2;
h5 = u2 * x5 + u1 * x6 - u1 * u2;
h6 = u1 * x5 - u2 * x6;
h7 = x1**2 - x2**2 - 2 * x1 * x7 + 2 * x2 * x8;
h8 = x1**2 - 2 * x1 * x7 - x3**2 + 2 * x3 * x7 - x4**2 + 2 * x4 * x8;

g = ( ( x5 - x7 )**2 + ( x6 - x8 )**2 - ( x1 - x7 )**2 - x8**2 );

L = [h1,h2,h3,h4,h5,h6,h7,h8];
Exemplo n.º 42
0
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import Ring, PolyRing, QQ, ZZ, GF
from jas import terminate, startLog

# polynomial examples: gcd

#r = Ring( "Mod 1152921504606846883 (x,y,z) L" );
#r = Ring( "Rat(x,y,z) L" );
#r = Ring( "C(x,y,z) L" );
#r = Ring( "Z(x,y,z) L" );
r = PolyRing( QQ(), "x,y,z", PolyRing.lex );
print "Ring: " + str(r);
print;

#[one,x,y,z] = r.gens();

a = r.random();
b = r.random();
c = abs(r.random());
#c = 1; 
#a = 0;


print "a = ", a;
print "b = ", b;
print "c = ", c;
Exemplo n.º 43
0
# $Id$
#

import sys;

from jas import Ring, PolyRing, ParamIdeal, QQ
from jas import startLog
from jas import terminate


# 2 univariate polynomials of degree 2 example for comprehensive GB
# integral/rational function coefficients

#rp = PolyRing(QQ(), "a,b" );
rp = PolyRing(QQ(), "a" );
r = PolyRing( rp, "x,y,z", PolyRing.lex );
print "Ring: " + str(r);
print;

#one,a,b,x,y = r.gens();
one,a,x,y,z = r.gens();

#f1 = x * ( x**2 + a * y + b );
#f2 = x * ( y**2 + b * x + a );

f1 = ( x**2 + a * y**2 - x );
f2 = ( a * x**2 + y**2 - y );
f3 = ( x - y ) * z - 1;

print "f1 = " + str(f1);
print "f2 = " + str(f2);
Exemplo n.º 44
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import Ring, PolyRing, QQ, ZZ, GF, CC, ZM
from jas import terminate, startLog

# polynomial examples: Chines remainder theorem for polynomials

#r = PolyRing( ZM(1152921504606846883), "(x,y,z)", PolyRing.lex );
#r = PolyRing( CC(), "(x,y,z)", PolyRing.lex );
##r = PolyRing( ZZ(), "(x,y,z)", PolyRing.lex );
r = PolyRing(QQ(), "x,y,z", PolyRing.lex)
print "Ring: " + str(r)
print

#[one,x,y,z] = r.gens();

a = r.random(3, 4)
b = r.random(3, 3)
c = abs(r.random(3, 3))

print "a = ", a
print "b = ", b
print "c = ", c
print

ff = [[a, b, c], [a + 1, b, c], [a, b + 1, c], [a, b, c + 1]]
Exemplo n.º 45
0
import sys;

from java.lang import System
from java.lang import Integer

from jas import Ring
from jas import PolyRing
from jas import Ideal
from jas import terminate
from jas import startLog

from jas import QQ, DD, CR

# polynomial examples: complex factorization via algebraic factorization

r = PolyRing( CR(QQ()), "x", PolyRing.lex );

print "Ring: " + str(r);
print;

[one,I,x] = r.gens();


f1 = x**3 - 2;

f2 = ( x - I ) * ( x + I );

f3 = ( x**3 - 2 * I );

#f = f1**2 * f2 * f3;
f = f1 * f2 * f3;
#
# jython examples for jas.
# $Id$
#

import sys

from java.lang import System

from jas import PolyRing, QQ, DD, AN, BigDecimal
from jas import terminate, startLog

# roots simplification

r = PolyRing(QQ(), "I", PolyRing.lex)
print "Ring: " + str(r)
#print;

#automatic: [one,I] = r.gens();
print "one   = ", one
print "I     = ", I

eps = QQ(1, 10)**(BigDecimal.DEFAULT_PRECISION)
#-3
#eps = QQ(1,10) ** 7;
#eps = nil;
print "eps   = " + str(eps)

ip = (I**2 + 1)
# I
iq = AN(ip, 0, True)
Exemplo n.º 47
0
#
# jython examples for jas.
# $Id$
#

import sys;

from jas import PolyRing, QQ, RF
from jas import startLog
from jas import terminate


# Montes JSC 2002, 33, 183-208, example 11.1
# integral function coefficients

r = PolyRing( PolyRing(QQ(),"c, b, a",PolyRing.lex), "z,y,x", PolyRing.lex );
print "Ring: " + str(r);
print;

#automatic: [one,c,b,a,z,y,x] = r.gens();
print "gens: ", [ str(f) for f in r.gens() ];
print;

f1 =     x + c * y + b * z + a;
f2 = c * x +     y + a * z + b;
f3 = b * x + a * y +     z + c;

F = [f1,f2,f3];

print "F: ", [ str(f) for f in F ];
print;
Exemplo n.º 48
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import GF, PolyRing
from jas import terminate, startLog

# polynomial examples: factorization over Z_p

#r = Ring( "Mod 1152921504606846883 (x) L" );
#r = Ring( "Mod 19 (x) L" );
r = PolyRing( GF(19), "x", PolyRing.lex );
print "Ring: " + str(r);
print;

#[one,x] = r.gens();

#f = x**15 - 1;
#f = x * ( x + 1 )**2 * ( x**2 + x + 1 )**3;
#f = x**6 - 3 * x**5 + x**4 - 3 * x**3 - x**2 - 3 * x+ 1;
#f = x**(3*11*11) + 3 * x**(2*11*11) - x**(11*11);
#f = x**(3*11*11*11) + 3 * x**(2*11*11*11) - x**(11*11*11);
#f = (x**2+1)*(x-3)*(x-5)**3;
#f = x**4 + 1;
#f = x**12 + x**9 + x**6 + x**3 + 1;
#f = x**24 - 1;
#f = x**20 - 1;
#f = x**22 - 1;
Exemplo n.º 49
0
#
# jython examples for jas.
# $Id$
#

from java.lang import System

from jas import Ring, PolyRing, QQ, DD
from jas import terminate, startLog


# polynomial examples: real roots over Q for zero dimensional ideals

r = PolyRing(QQ(),"q,w,s,x",PolyRing.lex);
print "Ring: " + str(r);
print;

#automatic: [one,q,w,s,x] = r.gens();

# EF(QQ()).realExtend("q","q^3 - 3", "[1,2]").realExtend("w", "w^2 - q", "[1,2]").realExtend("s", "s^5 - 2", "[1,2]").polynomial("x").build();

f1 = q**3 - 3;
f2 = w**2 - q;
#f3 = s**5 - 2;
f3 = s**3 - 2;
f4 = x**2 - w * s;

print "f1 = ", f1;
print "f2 = ", f2;
print "f3 = ", f3;
print "f4 = ", f4;
Exemplo n.º 50
0
from jas import PolyRing, ZZ, QQ, ZM
from jas import terminate, startLog

from basic_sigbased_gb import sigbased_gb
from basic_sigbased_gb import ggv, ggv_first_implementation
from basic_sigbased_gb import coeff_free_sigbased_gb
from basic_sigbased_gb import arris_algorithm, min_size_mons
from basic_sigbased_gb import f5, f5z

from staggered_linear_basis import staglinbasis


#r = PolyRing( QQ(), "(B,S,T,Z,P,W)", PolyRing.lex );
#r = PolyRing( ZZ(), "(B,S,T,Z,P,W)", PolyRing.lex );
r = PolyRing( ZM(32003), "(B,S,T,Z,P,W)", PolyRing.lex );
#r = PolyRing( ZM(19), "(B,S,T,Z,P,W)", PolyRing.lex );
print "Ring: " + str(r);
print;

[one,B,S,T,Z,P,W] = r.gens();

p1 = 45 * P + 35 * S - 165 * B - 36; 
p2 = 35 * P + 40 * Z + 25 * T - 27 * S;
p3 = 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2; 
p4 = -9 * W + 15 * T * P + 20 * S * Z; 
p5 = P * W + 2 * T * Z - 11 * B**3;
p6 = 99 * W - 11 * B * S + 3 * B**2;
p7 = 10000 * B**2 + 6600 * B + 2673;

F = [p1,p2,p3,p4,p5,p6,p7];
Exemplo n.º 51
0
import sys;

from jas import Ring, PolyRing, ParamIdeal, QQ, ZM, RR
from jas import startLog, terminate


# Boolean coefficient boolean GB
# see S. Inoue and A. Nagai "On the Implementation of Boolean Groebner Bases" in ASCM 2009
# Z_2 regular ring coefficent example


r = PolyRing(RR(ZM(2),3),"a,x,y",PolyRing.lex);
print "r  = " + str(r);
#print len(r.gens())

[s1,s2,s3,a,x,y] = r.gens();
one = r.one();

print "one = " + str(one);
print "s1  = " + str(s1);
print "s2  = " + str(s2);
print "s3  = " + str(s3);
print "a   = " + str(a);
print "x   = " + str(x);
print "y   = " + str(y);

#brel = [ a**2 - a, x**2 - x, y**2 - y ]; 
brel = [ x**2 - x, y**2 - y ]; 

#print "brel = " + str(brel[0]) + ", " + str(brel[1]) + ", " + str(brel[2]);
print "brel = " + str(brel[0]) + ", " + str(brel[1]);
# jython examples for jas.
# $Id$
#

import sys;

from jas import PolyRing, QQ
from jas import startLog, terminate


# Raksanyi & Walter example
# integral/rational function coefficients

#r = Ring( "RatFunc(a1, a2, a3, a4) (x1, x2, x3, x4) L" );
#r = Ring( "IntFunc(a1, a2, a3, a4) (x1, x2, x3, x4) L" );
r = PolyRing( PolyRing(QQ(),"a1, a2, a3, a4",PolyRing.lex), 
              "x1, x2, x3, x4", PolyRing.lex);
print "Ring: " + str(r);
print;

ps = """
(
 ( x4 - { a4 - a2 } ),
 ( x1 + x2 + x3 + x4 - { a1 + a3 + a4 } ),
 ( x1 x3 + x1 x4 + x2 x3 + x3 x4 - { a1 a4 + a1 a3 + a3 a4 } ),
 ( x1 x3 x4 - { a1 a3 a4 } )
) 
""";

f = r.paramideal( ps );
print "ParamIdeal: " + str(f);
print;