Exemplo n.º 1
0
    analyze_cmd.add_argument("--dataset", type=str, default='/home-nfs/tawara/work/ttic/MyPython/src/timit/timit_3.test.npz',
                           help="Which dataset to use")
    rng = numpy.random.RandomState(1)
    args = ap.parse_args()
    t_start = time.time()

    if args.cmd == 'analyze':
        batchsize = args.batchsize
        filename = args.load_from
        print "load from %s" % filename
        model = pickle.load(open(filename,'rb'))
        model.device_id = [0]
        cuda.get_device(0).use()
        offset = range(-context_length, context_length+1)
        x_test, frame_index = load_timit_labelled_kaldi(\
            KaldiArk('/data2/tawara/work/ttic/MyPython/src/kaldi/timit/feats_test_cmvn.ark'), \
                nnet_transf = '/data2/tawara/work/ttic/MyPython/src/kaldi/timit/final.feature_transform')
        x_train,_ = load_data(\
            KaldiScp('/data2/tawara/work/ttic/MyPython/src/kaldi/timit/data/fbank/train_tr90/feats.scp'), \
                offsets = offset)
        N_test=x_test.shape[0]
        N_train=x_train.shape[0]
        print "Applying batch normalization"
        for i in xrange(0, N_train, batchsize):
            x_batch = x_train[i : i + batchsize]
            model.forward(x_batch,test=False)
        logger.info("Extracting final layer")
        save_to = args.save_to
        print 'Saving output layer to %s' % filename+'.post.ark'

        ark=KaldiArk(filename+'.post.ark','wb')
Exemplo n.º 2
0
    with open('timit/triplets') as cv:
        tbl = {i:[int(p),int(s)] for p,s,i,_ in csv.reader(cv,delimiter=' ')}

    phones=[]
    states=[]

    for value in y:
        phones.append(tbl[str(value)][0])

    tmp=[]
    for value in y:
        tmp.append(str(tbl[str(value)][0])+'_'+str(tbl[str(value)][1]))
    d={}
    cnt =0
    for value in tmp:
        if not d.has_key(value):
            d[value] = cnt
            cnt += 1
        states.append(d[value])
    res={}
    res['phones']=np.asarray(phones, dtype=np.int32)
    res['states']=np.asarray(states, dtype=np.int32)
    return res

if __name__ == "__main__":
    
    x_train_lb, y_train_lb = load_timit_labelled_kaldi('fbank/train_tr90_lb10', 'models/pdf.ark', nnet_transf = 'models/final.feature_transform')
    print convert(y_train_lb)['phones'][0:10]
    print convert(y_train_lb)['states'][0:10]
    print len(set(convert(y_train_lb)['phones'])),len(set(convert(y_train_lb)['states']))