Exemplo n.º 1
0
    def _make(self, hp, global_step=None):
        ts = NS()
        ts.global_step = global_step
        ts.x = tf.placeholder(dtype=tf.int32, name="x")
        ts.seq = self.model.make_training_graph(x=ts.x,
                                                length=self.segment_length)
        ts.final_state = ts.seq.final_state
        ts.loss = ts.seq.loss
        ts.error = ts.seq.error

        ts.learning_rate = tf.Variable(hp.initial_learning_rate,
                                       dtype=tf.float32,
                                       trainable=False,
                                       name="learning_rate")
        ts.decay_op = tf.assign(ts.learning_rate,
                                ts.learning_rate * hp.decay_rate)
        ts.optimizer = tf.train.AdamOptimizer(ts.learning_rate)
        ts.params = tf.trainable_variables()
        print[param.name for param in ts.params]

        ts.gradients = tf.gradients(
            ts.loss,
            ts.params,
            # secret memory-conserving sauce
            aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE)

        loose_params = [
            param for param, gradient in util.equizip(ts.params, ts.gradients)
            if gradient is None
        ]
        if loose_params:
            raise ValueError("loose parameters: %s" %
                             " ".join(param.name for param in loose_params))

        # tensorflow fails miserably to compute gradient for these
        for reg_var in tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES):
            ts.gradients[ts.params.index(reg_var)] += (
                hp.weight_decay *
                tf.gradients(tf.sqrt(tf.reduce_sum(reg_var**2)), [reg_var])[0])

        ts.clipped_gradients, _ = tf.clip_by_global_norm(
            ts.gradients, hp.clip_norm)
        ts.training_op = ts.optimizer.apply_gradients(
            util.equizip(ts.clipped_gradients, ts.params),
            global_step=ts.global_step)

        ts.summaries = [
            tf.summary.scalar("loss_train", ts.loss),
            tf.summary.scalar("error_train", ts.error),
            tf.summary.scalar("learning_rate", ts.learning_rate)
        ]
        for parameter, gradient in util.equizip(ts.params, ts.gradients):
            ts.summaries.append(
                tf.summary.scalar("meanlogabs_%s" % parameter.name,
                                  tfutil.meanlogabs(parameter)))
            ts.summaries.append(
                tf.summary.scalar("meanlogabsgrad_%s" % parameter.name,
                                  tfutil.meanlogabs(gradient)))

        return ts
Exemplo n.º 2
0
 def test_equizip(self):
     self.assertRaises(
         ValueError,
         lambda: list(util.equizip(range(2), range(3), range(5))))
     self.assertRaises(
         ValueError,
         lambda: list(util.equizip(range(5), range(3), range(5))))
     self.assertEqual([(2, 0), (1, 1), (0, 2)],
                      list(util.equizip(reversed(range(3)), range(3))))
Exemplo n.º 3
0
 def to_examples(segmented_examples):
     segments_by_example = [[[
         comparablearray(list(s.strip()), dtype="|S1")
     ] for s in e.split("|")] for e in segmented_examples]
     examples_by_segment = list(
         map(list, util.equizip(*segments_by_example)))
     return examples_by_segment
Exemplo n.º 4
0
def main(argv):
    primer_paths = argv[1:]

    assert FLAGS.model_ckpt
    model_dir = os.path.dirname(FLAGS.model_ckpt)
    if not FLAGS.model_hyperparameters:
        FLAGS.model_hyperparameters = os.path.join(model_dir,
                                                   "hyperparameters.yaml")
    if not FLAGS.base_output_path:
        FLAGS.base_output_path = model_dir + "/"

    hp = hyperparameters.load(FLAGS.model_hyperparameters)

    assert primer_paths

    dataset = datasets.construct(FLAGS.data_type,
                                 paths=primer_paths,
                                 frequency=hp.sampling_frequency,
                                 bit_depth=hp.bit_depth)

    primers = dataset.examples
    primers = preprocess_primers(primers, hp=hp)

    model = models.construct(hp)
    sampler = sampling.Sampler(model, hp=hp)
    saver = tf.train.Saver()
    session = tf.Session()
    saver.restore(session, FLAGS.model_ckpt)

    sample_length = hp.sampling_frequency * FLAGS.sample_duration
    xhat = sampler.run(primers=primers,
                       length=sample_length,
                       temperature=FLAGS.temperature,
                       session=session,
                       hp=hp)
    x, = util.examples_as_arrays(primers)

    for i, (p, s) in enumerate(util.equizip(x, xhat)):
        output_path = FLAGS.base_output_path + "temp_%s_%i" % (
            FLAGS.temperature, i)
        print output_path
        dataset.dump(output_path, [np.concatenate([p, s], axis=0)])

    output_path = FLAGS.base_output_path + "samples.npz"
    print "writing raw sample data to %s" % output_path
    np.savez_compressed(output_path, x=x, xhat=xhat)
Exemplo n.º 5
0
    def test_segmented_batches(self):
        length = np.random.randint(2, 100)
        segment_length = np.random.randint(1, length)
        example_count = np.random.randint(2, 100)
        batch_size = np.random.randint(1, example_count)
        feature_shapes = [
            np.random.randint(1, 10, size=np.random.randint(1, 4))
            for _ in range(np.random.randint(1, 4))
        ]
        examples = [[
            np.random.rand(length, *shape) for shape in feature_shapes
        ] for _ in range(example_count)]

        for batch in util.batches(examples, batch_size, augment=False):
            for segment in util.segments(examples, segment_length):
                self.assertEqual(batch_size, len(batch))
                for features in segment:
                    self.assertEqual(len(feature_shapes), len(features))
                    for feature, feature_shape in util.equizip(
                            features, feature_shapes):
                        self.assertLessEqual(len(feature), segment_length)
                        self.assertEqual(tuple(feature_shape),
                                         feature.shape[1:])
Exemplo n.º 6
0
def make_transition_graph(state,
                          transition,
                          x=None,
                          context=None,
                          temperature=1.0,
                          hp=None):
    """Make the graph that processes a single sequence element.

  Args:
    state: `_make_sequence_graph` loop state.
    transition: Model transition function mapping (xchunk, model_state,
        context) to (output, new_model_state).
    x: Sequence of integer (categorical) inputs. Axes [time, batch].
    context: Optional Tensor denoting context, shaped [batch, ?].
    temperature: Softmax temperature to use for sampling.
    hp: Model hyperparameters.

  Returns:
    Updated loop state.
  """
    state = NS.Copy(state)

    xchunk = _get_flat_chunk(state.xhats if x is None else x,
                             state.i * hp.chunk_size,
                             hp.chunk_size,
                             depth=hp.data_dim)
    embedding = tfutil.layers([xchunk], sizes=hp.io_sizes, use_bn=hp.use_bn)
    h, state.model = transition(embedding, state.model, context=context)

    # predict the next chunk
    exhats = []
    with tf.variable_scope("xhat") as scope:
        for j in range(hp.chunk_size):
            if j > 0:
                scope.reuse_variables()

            xchunk = _get_flat_chunk(state.xhats if x is None else x,
                                     state.i * hp.chunk_size + j,
                                     hp.chunk_size,
                                     depth=hp.data_dim)
            embedding = tfutil.layers([h, xchunk],
                                      sizes=hp.io_sizes,
                                      use_bn=hp.use_bn)
            exhat = tfutil.project(embedding, output_dim=hp.data_dim)
            exhats.append(exhat)

            state.xhats = state.xhats.write((state.i + 1) * hp.chunk_size + j,
                                            tfutil.sample(exhat, temperature))

    if x is not None:
        targets = tf.unpack(_get_1hot_chunk(x, (state.i + 1) * hp.chunk_size,
                                            hp.chunk_size,
                                            depth=hp.data_dim),
                            num=hp.chunk_size,
                            axis=1)
        state.losses = _put_chunk(state.losses, state.i * hp.chunk_size, [
            tf.nn.softmax_cross_entropy_with_logits(exhat, target)
            for exhat, target in util.equizip(exhats, targets)
        ])
        state.errors = _put_chunk(state.errors, state.i * hp.chunk_size, [
            tf.not_equal(tf.nn.top_k(exhat)[1],
                         tf.nn.top_k(target)[1])
            for exhat, target in util.equizip(exhats, targets)
        ])
        state.exhats = _put_chunk(state.exhats, state.i * hp.chunk_size,
                                  exhats)

    state.i += 1
    return state