Exemplo n.º 1
0
def mpf_pow(s, t, prec, rnd=round_fast):
    """
    Compute s**t. Raises ComplexResult if s is negative and t is
    fractional.
    """
    ssign, sman, sexp, sbc = s
    tsign, tman, texp, tbc = t
    if ssign and texp < 0:
        raise ComplexResult("negative number raised to a fractional power")
    if texp >= 0:
        return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd)
    # s**(n/2) = sqrt(s)**n
    if texp == -1:
        if tman == 1:
            if tsign:
                return mpf_div(fone, mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), prec, rnd)
            return mpf_sqrt(s, prec, rnd)
        else:
            if tsign:
                return mpf_pow_int(mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), -tman, prec, rnd)
            return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd)
    # General formula: s**t = exp(t*log(s))
    # TODO: handle rnd direction of the logarithm carefully
    c = mpf_log(s, prec+10, rnd)
    return mpf_exp(mpf_mul(t, c), prec, rnd)
Exemplo n.º 2
0
def mpf_pow(s, t, prec, rnd=round_fast):
    """
    Compute s**t. Raises ComplexResult if s is negative and t is
    fractional.
    """
    ssign, sman, sexp, sbc = s
    tsign, tman, texp, tbc = t
    if ssign and texp < 0:
        raise ComplexResult("negative number raised to a fractional power")
    if texp >= 0:
        return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd)
    # s**(n/2) = sqrt(s)**n
    if texp == -1:
        if tman == 1:
            if tsign:
                return mpf_div(fone, mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), prec, rnd)
            return mpf_sqrt(s, prec, rnd)
        else:
            if tsign:
                return mpf_pow_int(mpf_sqrt(s, prec+10,
                    reciprocal_rnd[rnd]), -tman, prec, rnd)
            return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd)
    # General formula: s**t = exp(t*log(s))
    # TODO: handle rnd direction of the logarithm carefully
    c = mpf_log(s, prec+10, rnd)
    return mpf_exp(mpf_mul(t, c), prec, rnd)
Exemplo n.º 3
0
def mpi_pow_int(s, n, prec):
    sa, sb = s
    if n < 0:
        return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec)
    if n == 0:
        return (fone, fone)
    if n == 1:
        return s
    # Odd -- signs are preserved
    if n & 1:
        a = mpf_pow_int(sa, n, prec, round_floor)
        b = mpf_pow_int(sb, n, prec, round_ceiling)
    # Even -- important to ensure positivity
    else:
        sas = mpf_sign(sa)
        sbs = mpf_sign(sb)
        # Nonnegative?
        if sas >= 0:
            a = mpf_pow_int(sa, n, prec, round_floor)
            b = mpf_pow_int(sb, n, prec, round_ceiling)
        # Nonpositive?
        elif sbs <= 0:
            a = mpf_pow_int(sb, n, prec, round_floor)
            b = mpf_pow_int(sa, n, prec, round_ceiling)
        # Mixed signs?
        else:
            a = fzero
            # max(-a,b)**n
            sa = mpf_neg(sa)
            if mpf_ge(sa, sb):
                b = mpf_pow_int(sa, n, prec, round_ceiling)
            else:
                b = mpf_pow_int(sb, n, prec, round_ceiling)
    return a, b
Exemplo n.º 4
0
def mpi_pow_int(s, n, prec):
    sa, sb = s
    if n < 0:
        return mpi_div((fone, fone), mpi_pow_int(s, -n, prec + 20), prec)
    if n == 0:
        return (fone, fone)
    if n == 1:
        return s
    # Odd -- signs are preserved
    if n & 1:
        a = mpf_pow_int(sa, n, prec, round_floor)
        b = mpf_pow_int(sb, n, prec, round_ceiling)
    # Even -- important to ensure positivity
    else:
        sas = mpf_sign(sa)
        sbs = mpf_sign(sb)
        # Nonnegative?
        if sas >= 0:
            a = mpf_pow_int(sa, n, prec, round_floor)
            b = mpf_pow_int(sb, n, prec, round_ceiling)
        # Nonpositive?
        elif sbs <= 0:
            a = mpf_pow_int(sb, n, prec, round_floor)
            b = mpf_pow_int(sa, n, prec, round_ceiling)
        # Mixed signs?
        else:
            a = fzero
            # max(-a,b)**n
            sa = mpf_neg(sa)
            if mpf_ge(sa, sb):
                b = mpf_pow_int(sa, n, prec, round_ceiling)
            else:
                b = mpf_pow_int(sb, n, prec, round_ceiling)
    return a, b
Exemplo n.º 5
0
def twinprime_fixed(prec):
    def I(n):
        return sum(
            moebius(d) << (n // d) for d in xrange(1, n + 1) if not n % d) // n

    wp = 2 * prec + 30
    res = fone
    primes = [from_rational(1, p, wp) for p in [2, 3, 5, 7]]
    ppowers = [mpf_mul(p, p, wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec + 10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3 * 15 * 35), wp)
    res = mpf_div(res, from_int(4 * 16 * 36), wp)
    return to_fixed(res, prec)
Exemplo n.º 6
0
def mpf_bernoulli_huge(n, prec, rnd=None):
    wp = prec + 10
    piprec = wp + int(math.log(n,2))
    v = mpf_gamma_int(n+1, wp)
    v = mpf_mul(v, mpf_zeta_int(n, wp), wp)
    v = mpf_mul(v, mpf_pow_int(mpf_pi(piprec), -n, wp))
    v = mpf_shift(v, 1-n)
    if not n & 3:
        v = mpf_neg(v)
    return mpf_pos(v, prec, rnd or round_fast)
Exemplo n.º 7
0
def mpf_bernoulli_huge(n, prec, rnd=None):
    wp = prec + 10
    piprec = wp + int(math.log(n, 2))
    v = mpf_gamma_int(n + 1, wp)
    v = mpf_mul(v, mpf_zeta_int(n, wp), wp)
    v = mpf_mul(v, mpf_pow_int(mpf_pi(piprec), -n, wp))
    v = mpf_shift(v, 1 - n)
    if not n & 3:
        v = mpf_neg(v)
    return mpf_pos(v, prec, rnd or round_fast)
Exemplo n.º 8
0
def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s + 1, wp), from_int(s - 1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp * 0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE**s)
        t += 1 << max(0, wp - s * 2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp) / (s - 1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp / 2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s * math.log(k, 2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec),
                                wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp / 2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k + 1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp + 1 - s)))
    if (s in zeta_int_cache
            and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp - wp))
    return from_man_exp(t, -wp - wp, prec, rnd)
Exemplo n.º 9
0
def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s+1, wp), from_int(s-1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp*0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE ** s)
        t += 1 << max(0, wp - s*2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp)/(s-1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp/2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s*math.log(k,2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec), wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k+1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp+1-s)))
    if (s in zeta_int_cache and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp-wp))
    return from_man_exp(t, -wp-wp, prec, rnd)
Exemplo n.º 10
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if not exp:
            return fone
        if x == fninf:
            return fzero
        return x
    # Fast handling e**n. TODO: the best cutoff depends on both the
    # size of n and the precision.
    if prec > 600 and exp >= 0:
        return mpf_pow_int(mpf_e(prec + 10), (-1)**sign * (man << exp), prec,
                           rnd)
    mag = bc + exp
    if mag < -prec - 10:
        return mpf_perturb(fone, sign, prec, rnd)
    # extra precision needs to be similar in magnitude to log_2(|x|)
    # for the modulo reduction, plus r for the error from squaring r times
    wp = prec + max(0, mag)
    if wp < 300:
        r = int(2 * wp**0.4)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        # abs(x) > 1?
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series(t, wp, r)
    else:
        r = int(0.7 * wp**0.5)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series2(t, wp, r)
    bc = wp - 2 + bctable[int(man >> (wp - 2))]
    return normalize(0, man, int(-wp + n), bc, prec, rnd)
Exemplo n.º 11
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if not exp:
            return fone
        if x == fninf:
            return fzero
        return x
    # Fast handling e**n. TODO: the best cutoff depends on both the
    # size of n and the precision.
    if prec > 600 and exp >= 0:
        return mpf_pow_int(mpf_e(prec+10), (-1)**sign *(man<<exp), prec, rnd)
    mag = bc+exp
    if mag < -prec-10:
        return mpf_perturb(fone, sign, prec, rnd)
    # extra precision needs to be similar in magnitude to log_2(|x|)
    # for the modulo reduction, plus r for the error from squaring r times
    wp = prec + max(0, mag)
    if wp < 300:
        r = int(2*wp**0.4)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        # abs(x) > 1?
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series(t, wp, r)
    else:
        r = int(0.7 * wp**0.5)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series2(t, wp, r)
    bc = wp - 2 + bctable[int(man >> (wp - 2))]
    return normalize(0, man, int(-wp+n), bc, prec, rnd)
Exemplo n.º 12
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if man:
        mag = bc + exp
        wp = prec + 14
        if sign:
            man = -man
        # TODO: the best cutoff depends on both x and the precision.
        if prec > 600 and exp >= 0:
            # Need about log2(exp(n)) ~= 1.45*mag extra precision
            e = mpf_e(wp + int(1.45 * mag))
            return mpf_pow_int(e, man << exp, prec, rnd)
        if mag < -wp:
            return mpf_perturb(fone, sign, prec, rnd)
        # |x| >= 2
        if mag > 1:
            # For large arguments: exp(2^mag*(1+eps)) =
            # exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...)
            # so about mag extra bits is required.
            wpmod = wp + mag
            offset = exp + wpmod
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            lg2 = ln2_fixed(wpmod)
            n, t = divmod(t, lg2)
            n = int(n)
            t >>= mag
        else:
            offset = exp + wp
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            n = 0
        man = exp_basecase(t, wp)
        return from_man_exp(man, n - wp, prec, rnd)
    if not exp:
        return fone
    if x == fninf:
        return fzero
    return x
Exemplo n.º 13
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if man:
        mag = bc + exp
        wp = prec + 14
        if sign:
            man = -man
        # TODO: the best cutoff depends on both x and the precision.
        if prec > 600 and exp >= 0:
            # Need about log2(exp(n)) ~= 1.45*mag extra precision
            e = mpf_e(wp + int(1.45 * mag))
            return mpf_pow_int(e, man << exp, prec, rnd)
        if mag < -wp:
            return mpf_perturb(fone, sign, prec, rnd)
        # |x| >= 2
        if mag > 1:
            # For large arguments: exp(2^mag*(1+eps)) =
            # exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...)
            # so about mag extra bits is required.
            wpmod = wp + mag
            offset = exp + wpmod
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            lg2 = ln2_fixed(wpmod)
            n, t = divmod(t, lg2)
            n = int(n)
            t >>= mag
        else:
            offset = exp + wp
            if offset >= 0:
                t = man << offset
            else:
                t = man >> (-offset)
            n = 0
        man = exp_basecase(t, wp)
        return from_man_exp(man, n - wp, prec, rnd)
    if not exp:
        return fone
    if x == fninf:
        return fzero
    return x
Exemplo n.º 14
0
def twinprime_fixed(prec):
    def I(n):
        return sum(moebius(d)<<(n//d) for d in xrange(1,n+1) if not n%d)//n
    wp = 2*prec + 30
    res = fone
    primes = [from_rational(1,p,wp) for p in [2,3,5,7]]
    ppowers = [mpf_mul(p,p,wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec+10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3*15*35), wp)
    res = mpf_div(res, from_int(4*16*36), wp)
    return to_fixed(res, prec)
Exemplo n.º 15
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if not exp:
            return fone
        if x == fninf:
            return fzero
        return x
    mag = bc+exp
    # Fast handling e**n. TODO: the best cutoff depends on both the
    # size of n and the precision.
    if prec > 600 and exp >= 0:
        e = mpf_e(prec+10+int(1.45*mag))
        return mpf_pow_int(e, (-1)**sign *(man<<exp), prec, rnd)
    if mag < -prec-10:
        return mpf_perturb(fone, sign, prec, rnd)
    # extra precision needs to be similar in magnitude to log_2(|x|)
    # for the modulo reduction, plus r for the error from squaring r times
    wp = prec + max(0, mag)
    if wp < 300:
        r = int(2*wp**0.4)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        # abs(x) > 1?
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series(t, wp, r)
    else:
        use_newton = False
        # put a bound on exp to avoid infinite recursion in exp_newton
        # TODO find a good bound
        if wp > LIM_EXP_SERIES2 and exp < 1000:
            if mag > 0:
                use_newton = True
            elif mag <= 0 and -mag <= ns_exp[-1]:
                i = bisect(ns_exp, -mag-1)
                if i < len(ns_exp):
                    wp0 = precs_exp[i]
                    if wp > wp0:
                        use_newton = True

        if not use_newton:
            r = int(0.7 * wp**0.5)
            if mag < 0:
                r = max(1, r + mag)
            wp += r + 20
            t = to_fixed(x, wp)
            if mag > 1:
                lg2 = ln2_fixed(wp)
                n, t = divmod(t, lg2)
            else:
                n = 0
            man = exp_series2(t, wp, r)
        else:
            # if x is very small or very large use
            # exp(x + m) = exp(x) * e**m
            if mag > LIM_MAG:
                wp += mag*10 + 100
                n = int(mag * math.log(2)) + 1
                x = mpf_sub(x, from_int(n, wp), wp)
            elif mag <= 0:
                wp += -mag*10 + 100
                if mag < 0:
                    n = int(-mag * math.log(2)) + 1
                    x = mpf_add(x, from_int(n, wp), wp)
            res = exp_newton(x, wp)
            sign, man, exp, bc = res
            if mag < 0:
                t = mpf_pow_int(mpf_e(wp), n, wp)
                res = mpf_div(res, t, wp)
                sign, man, exp, bc = res
            if mag > LIM_MAG:
                t = mpf_pow_int(mpf_e(wp), n, wp)
                res = mpf_mul(res, t, wp)
                sign, man, exp, bc = res
            return normalize(sign, man, exp, bc, prec, rnd)
    bc = bitcount(man)
    return normalize(0, man, int(-wp+n), bc, prec, rnd)
Exemplo n.º 16
0
def mpf_expint(n, x, prec, rnd=round_fast, gamma=False):
    """
    E_n(x), n an integer, x real

    With gamma=True, computes Gamma(n,x)   (upper incomplete gamma function)

    Returns (real, None) if real, otherwise (real, imag)
    The imaginary part is an optional branch cut term

    """
    sign, man, exp, bc = x
    if not man:
        if gamma:
            if x == fzero:
                # Actually gamma function pole
                if n <= 0:
                    return finf, None
                return mpf_gamma_int(n, prec, rnd), None
            if x == finf:
                return fzero, None
            # TODO: could return finite imaginary value at -inf
            return fnan, fnan
        else:
            if x == fzero:
                if n > 1:
                    return from_rational(1, n-1, prec, rnd), None
                else:
                    return finf, None
            if x == finf:
                return fzero, None
            return fnan, fnan
    n_orig = n
    if gamma:
        n = 1-n
    wp = prec + 20
    xmag = exp + bc
    # Beware of near-poles
    if xmag < -10:
        raise NotImplementedError
    nmag = bitcount(abs(n))
    have_imag = n > 0 and sign
    negx = mpf_neg(x)
    # Skip series if direct convergence
    if n == 0 or 2*nmag - xmag < -wp:
        if gamma:
            v = mpf_exp(negx, wp)
            re = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), prec, rnd)
        else:
            v = mpf_exp(negx, wp)
            re = mpf_div(v, x, prec, rnd)
    else:
        # Finite number of terms, or...
        can_use_asymptotic_series = -3*wp < n <= 0
        # ...large enough?
        if not can_use_asymptotic_series:
            xi = abs(to_int(x))
            m = min(max(1, xi-n), 2*wp)
            siz = -n*nmag + (m+n)*bitcount(abs(m+n)) - m*xmag - (144*m//100)
            tol = -wp-10
            can_use_asymptotic_series = siz < tol
        if can_use_asymptotic_series:
            r = ((-MPZ_ONE) << (wp+wp)) // to_fixed(x, wp)
            m = n
            t = r*m
            s = MPZ_ONE << wp
            while m and t:
                s += t
                m += 1
                t = (m*r*t) >> wp
            v = mpf_exp(negx, wp)
            if gamma:
                # ~ exp(-x) * x^(n-1) * (1 + ...)
                v = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), wp)
            else:
                # ~ exp(-x)/x * (1 + ...)
                v = mpf_div(v, x, wp)
            re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd)
        elif n == 1:
            re = mpf_neg(mpf_ei(negx, prec, rnd))
        elif n > 0 and n < 3*wp:
            T1 = mpf_neg(mpf_ei(negx, wp))
            if gamma:
                if n_orig & 1:
                    T1 = mpf_neg(T1)
            else:
                T1 = mpf_mul(T1, mpf_pow_int(negx, n-1, wp), wp)
            r = t = to_fixed(x, wp)
            facs = [1] * (n-1)
            for k in range(1,n-1):
                facs[k] = facs[k-1] * k
            facs = facs[::-1]
            s = facs[0] << wp
            for k in range(1, n-1):
                if k & 1:
                    s -= facs[k] * t
                else:
                    s += facs[k] * t
                t = (t*r) >> wp
            T2 = from_man_exp(s, -wp, wp)
            T2 = mpf_mul(T2, mpf_exp(negx, wp))
            if gamma:
                T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp)
            R = mpf_add(T1, T2)
            re = mpf_div(R, from_int(ifac(n-1)), prec, rnd)
        else:
            raise NotImplementedError
    if have_imag:
        M = from_int(-ifac(n-1))
        if gamma:
            im = mpf_div(mpf_pi(wp), M, prec, rnd)
        else:
            im = mpf_div(mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig-1, wp), wp), M, prec, rnd)
        return re, im
    else:
        return re, None
Exemplo n.º 17
0
def mpf_expint(n, x, prec, rnd=round_fast, gamma=False):
    """
    E_n(x), n an integer, x real

    With gamma=True, computes Gamma(n,x)   (upper incomplete gamma function)

    Returns (real, None) if real, otherwise (real, imag)
    The imaginary part is an optional branch cut term

    """
    sign, man, exp, bc = x
    if not man:
        if gamma:
            if x == fzero:
                # Actually gamma function pole
                if n <= 0:
                    return finf
                return mpf_gamma_int(n, prec, rnd)
            if x == finf:
                return fzero, None
            # TODO: could return finite imaginary value at -inf
            return fnan, fnan
        else:
            if x == fzero:
                if n > 1:
                    return from_rational(1, n - 1, prec, rnd), None
                else:
                    return finf, None
            if x == finf:
                return fzero, None
            return fnan, fnan
    n_orig = n
    if gamma:
        n = 1 - n
    wp = prec + 20
    xmag = exp + bc
    # Beware of near-poles
    if xmag < -10:
        raise NotImplementedError
    nmag = bitcount(abs(n))
    have_imag = n > 0 and sign
    negx = mpf_neg(x)
    # Skip series if direct convergence
    if n == 0 or 2 * nmag - xmag < -wp:
        if gamma:
            v = mpf_exp(negx, wp)
            re = mpf_mul(v, mpf_pow_int(x, n_orig - 1, wp), prec, rnd)
        else:
            v = mpf_exp(negx, wp)
            re = mpf_div(v, x, prec, rnd)
    else:
        # Finite number of terms, or...
        can_use_asymptotic_series = -3 * wp < n <= 0
        # ...large enough?
        if not can_use_asymptotic_series:
            xi = abs(to_int(x))
            m = min(max(1, xi - n), 2 * wp)
            siz = -n * nmag + (m + n) * bitcount(abs(m + n)) - m * xmag - (
                144 * m // 100)
            tol = -wp - 10
            can_use_asymptotic_series = siz < tol
        if can_use_asymptotic_series:
            r = ((-MP_ONE) << (wp + wp)) // to_fixed(x, wp)
            m = n
            t = r * m
            s = MP_ONE << wp
            while m and t:
                s += t
                m += 1
                t = (m * r * t) >> wp
            v = mpf_exp(negx, wp)
            if gamma:
                # ~ exp(-x) * x^(n-1) * (1 + ...)
                v = mpf_mul(v, mpf_pow_int(x, n_orig - 1, wp), wp)
            else:
                # ~ exp(-x)/x * (1 + ...)
                v = mpf_div(v, x, wp)
            re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd)
        elif n == 1:
            re = mpf_neg(mpf_ei(negx, prec, rnd))
        elif n > 0 and n < 3 * wp:
            T1 = mpf_neg(mpf_ei(negx, wp))
            if gamma:
                if n_orig & 1:
                    T1 = mpf_neg(T1)
            else:
                T1 = mpf_mul(T1, mpf_pow_int(negx, n - 1, wp), wp)
            r = t = to_fixed(x, wp)
            facs = [1] * (n - 1)
            for k in range(1, n - 1):
                facs[k] = facs[k - 1] * k
            facs = facs[::-1]
            s = facs[0] << wp
            for k in range(1, n - 1):
                if k & 1:
                    s -= facs[k] * t
                else:
                    s += facs[k] * t
                t = (t * r) >> wp
            T2 = from_man_exp(s, -wp, wp)
            T2 = mpf_mul(T2, mpf_exp(negx, wp))
            if gamma:
                T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp)
            R = mpf_add(T1, T2)
            re = mpf_div(R, from_int(int_fac(n - 1)), prec, rnd)
        else:
            raise NotImplementedError
    if have_imag:
        M = from_int(-int_fac(n - 1))
        if gamma:
            im = mpf_div(mpf_pi(wp), M, prec, rnd)
        else:
            im = mpf_div(
                mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig - 1, wp), wp), M,
                prec, rnd)
        return re, im
    else:
        return re, None