Exemplo n.º 1
0
def test_sort_and_grid_and_plot(outpath):
    """ Given an output path, run sample data included in lmatools through flash sorting and gridding"""
    base_sort_dir = outpath
    logger_setup(outpath)
    files = get_sample_data_list()
    center_ID = 'WTLMA'
    ctr_lat, ctr_lon = 33.5, -101.5
    params = {'stations':(6,13),
              'chi2':(0,1.0),
              'ctr_lat':ctr_lat, 'ctr_lon':ctr_lon,
              'distance':3000.0, 'thresh_critical_time':0.15,
              'thresh_duration':3.0,
              'mask_length':6,
              }
    h5_dir = os.path.join(base_sort_dir, 'h5_files')
    grid_dir = os.path.join(base_sort_dir, 'grid_files')
    plot_dir = os.path.join(base_sort_dir, 'plots')
    
    y,m,d,H,M,S = tfromfile(files[0])
    date = datetime(y,m,d, H,M,S)

    # Create HDF5 flash files
    base_out_dir = (h5_dir+"/20%s" %(date.strftime('%y/%b/%d')))
    if os.path.exists(base_out_dir) == False:
        os.makedirs(base_out_dir)
        subprocess.call(['chmod', 'a+w', base_out_dir, h5_dir+'/20%s' %(date.strftime('%y/%b')), h5_dir+'/20%s' %(date.strftime('%y'))])

    tag = ''
    outdir = os.path.join(base_out_dir, tag) 
    info = open(os.path.join(outdir, 'input_params.py'), 'w')
    info.write(str(params))
    info.close()
    
    if True:
        cluster = DBSCANFlashSorter(params).cluster
        sort_files(files, outdir, cluster)
    # Figure out which HDF5 files were created
    h5_filenames = glob.glob(h5_dir+'/20%s/LYLOUT*.dat.flash.h5' %(date.strftime('%y/%b/%d')))
    h5_filenames.sort()
    
    # Create NetCDF gridded data
    frame_interval=60.0*2 # seconds
    dx_km=3.0e3 # meters
    dy_km=3.0e3
    x_bnd_km = (-200e3, 200e3)
    y_bnd_km = (-200e3, 200e3)
    z_bnd_km = (0.0e3, 15.0e3)

    # There are similar functions in lmatools to grid on a regular x,y grid in some map projection.
    # dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat, ctr_lon,
    #                             dx=dx_km, dy=dy_km,
    #                             x_bnd = x_bnd_km, y_bnd = y_bnd_km )
    dx, dy, x_bnd, y_bnd = dx_km, dy_km, x_bnd_km, y_bnd_km
    # print("dx, dy = {0}, {1} deg".format(dx,dy))
    # print("lon_range = {0} deg".format(x_bnd))
    # print("lat_range = {0} deg".format(y_bnd))
    
    for f in h5_filenames:
        y,m,d,H,M,S = tfromfile(f)
        # print y,m,d,H,M,S
        start_time = datetime(y,m,d, H,M,S)
        end_time   = start_time + timedelta(0,600)
        # print start_time, end_time
    
        outpath = grid_dir+'/20%s' %(date.strftime('%y/%b/%d'))
        if os.path.exists(outpath) == False:
            os.makedirs(outpath)
            subprocess.call(['chmod', 'a+w', outpath, grid_dir+'/20%s' %(date.strftime('%y/%b')), grid_dir+'/20%s' %(date.strftime('%y'))])
        if True:
            grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval,
                    dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, z_bnd=z_bnd_km,
                    ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath = outpath,
                    proj_name='aeqd',
                    output_writer = write_cf_netcdf,
                    output_writer_3d = write_cf_netcdf_3d,
                    output_filename_prefix=center_ID, spatial_scale_factor=1.0e-3,
                    # proj_name='latlong',
                    # output_writer = write_cf_netcdf_latlon,
                    # output_writer_3d = write_cf_netcdf_3d_latlon,
                    # output_filename_prefix=center_ID, spatial_scale_factor=1.0,
                    energy_grids = True
                    )
        
    # Create plots
    n_cols=2
    mapping = { 'source':'lma_source',
                'flash_extent':'flash_extent',
                'flash_init':'flash_initiation',
                'footprint':'flash_footprint',
                'specific_energy':'specific_energy',
                'flashsize_std':'flashsize_std',
                'total_energy': 'total_energy'
               }
    
    nc_names = glob.glob(grid_dir+'/20%s/*.nc' %(date.strftime('%y/%b/%d')))
    nc_names_3d = glob.glob(grid_dir+'/20%s/*_3d.nc' %(date.strftime('%y/%b/%d')))
    nc_names_2d = list(set(nc_names) - set(nc_names_3d))
    nc_names_2d.sort()
    nc_names_3d.sort()
    outpath = plot_dir+'/20%s' %(date.strftime('%y/%b/%d'))
    if os.path.exists(outpath) == False:
        os.makedirs(outpath)
        subprocess.call(['chmod', 'a+w', outpath, plot_dir+'/20%s' %(date.strftime('%y/%b')), plot_dir+'/20%s' %(date.strftime('%y'))])

    for f in nc_names_2d:
        gridtype = f.split('dx_')[-1].replace('.nc', '')
        var = mapping[gridtype]
        # make_plot(f, var, n_cols=n_cols, x_name='longitude', y_name='latitude', outpath = outpath)
        make_plot(f, var, n_cols=n_cols, x_name='x', y_name='y', outpath = outpath)
    
    for f in nc_names_3d:
        gridtype = f.split('dx_')[-1].replace('.nc', '').replace('_3d', '')
        var = mapping[gridtype]
        # grid_range = range_mapping[gridtype]
   
        ###Read grid files, then plot in either 2d or 3d space###
        # grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(f, var, x_name='longitude', y_name='latitude', z_name='altitude')
        grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(f, var, x_name='x', y_name='y', z_name='z')
        make_plot_3d(grid, grid_name, x, y, z, t, 
                     grid_t_idx, grid_x_idx, grid_z_idx, 
                     n_cols = n_cols, outpath = outpath)
Exemplo n.º 2
0
def grid_and_plot(h5_filenames,
                  base_sort_dir,
                  dx=1.0e3,
                  dy=1.0e3,
                  dz=1.0e3,
                  frame_interval=60.0,
                  x_bnd=(-200.0e3, 200.0e3),
                  y_bnd=(-200.0e3, 200.0e3),
                  z_bnd=(0.0e3, 20.0e3),
                  ctr_lat=33.5,
                  ctr_lon=-101.5,
                  center_ID='WTLMA',
                  n_cols=2,
                  base_date=None):
    """ Given a list of HDF5 filenames (sorted by time order) in h5_filenames, 
        create 2D and 3D NetCDF grids with spacing dx, dy, dz in meters, 
        frame_interval in seconds, and tuples of grid edges 
        x_bnd, y_bnd, and z_bnd in meters
                  
        The actual grids are in regular lat,lon coordinates, with spacing at the 
        grid center matched to the dx, dy values given.
                                    
        n_cols controls how many columns are plotted on each page.
                  
        Grids and plots are written to base_sort_dir/grid_files/ and  base_sort_dir/plots/
				  
		base_date is used to optionally set a common reference time for each of the NetCDF grids.
    """
    # not really in km, just a different name to distinguish from similar variables below.
    dx_km = dx
    dy_km = dy
    x_bnd_km = x_bnd
    y_bnd_km = y_bnd
    z_bnd_km = z_bnd

    grid_dir = os.path.join(base_sort_dir, 'grid_files')
    plot_dir = os.path.join(base_sort_dir, 'plots')

    # There are similar functions in lmatools to grid on a regular x,y grid in some map projection.
    dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat,
                                                  ctr_lon,
                                                  dx=dx_km,
                                                  dy=dy_km,
                                                  x_bnd=x_bnd_km,
                                                  y_bnd=y_bnd_km)
    # print("dx, dy = {0}, {1} deg".format(dx,dy))
    # print("lon_range = {0} deg".format(x_bnd))
    # print("lat_range = {0} deg".format(y_bnd))

    for f in h5_filenames:
        y, m, d, H, M, S = tfromfile(f)
        # print y,m,d,H,M,S
        start_time = datetime(y, m, d, H, M, S)
        end_time = start_time + timedelta(0, 600)
        date = start_time
        # print start_time, end_time

        outpath = grid_dir + '/20%s' % (date.strftime('%y/%b/%d'))
        if os.path.exists(outpath) == False:
            os.makedirs(outpath)
            subprocess.call([
                'chmod', 'a+w', outpath,
                grid_dir + '/20%s' % (date.strftime('%y/%b')),
                grid_dir + '/20%s' % (date.strftime('%y'))
            ])
        if True:
            grid_h5flashfiles(h5_filenames,
                              start_time,
                              end_time,
                              frame_interval=frame_interval,
                              proj_name='latlong',
                              base_date=base_date,
                              energy_grids=True,
                              dx=dx,
                              dy=dy,
                              x_bnd=x_bnd,
                              y_bnd=y_bnd,
                              z_bnd=z_bnd_km,
                              ctr_lon=ctr_lon,
                              ctr_lat=ctr_lat,
                              outpath=outpath,
                              output_writer=write_cf_netcdf_latlon,
                              output_writer_3d=write_cf_netcdf_3d_latlon,
                              output_filename_prefix=center_ID,
                              spatial_scale_factor=1.0)

    # Create plots
    mapping = {
        'source': 'lma_source',
        'flash_extent': 'flash_extent',
        'flash_init': 'flash_initiation',
        'footprint': 'flash_footprint',
        'specific_energy': 'specific_energy',
        'flashsize_std': 'flashsize_std',
        'total_energy': 'total_energy'
    }

    nc_names = glob.glob(grid_dir + '/20%s/*.nc' % (date.strftime('%y/%b/%d')))
    nc_names_3d = glob.glob(grid_dir + '/20%s/*_3d.nc' %
                            (date.strftime('%y/%b/%d')))
    nc_names_2d = list(set(nc_names) - set(nc_names_3d))
    nc_names_2d.sort()
    nc_names_3d.sort()
    outpath = plot_dir + '/20%s' % (date.strftime('%y/%b/%d'))
    if os.path.exists(outpath) == False:
        os.makedirs(outpath)
        subprocess.call([
            'chmod', 'a+w', outpath,
            plot_dir + '/20%s' % (date.strftime('%y/%b')),
            plot_dir + '/20%s' % (date.strftime('%y'))
        ])

    for f in nc_names_2d:
        gridtype = f.split('dx_')[-1].replace('.nc', '')
        var = mapping[gridtype]
        make_plot(f,
                  var,
                  n_cols=n_cols,
                  x_name='longitude',
                  y_name='latitude',
                  outpath=outpath)

    for f in nc_names_3d:
        gridtype = f.split('dx_')[-1].replace('.nc', '').replace('_3d', '')
        var = mapping[gridtype]
        # grid_range = range_mapping[gridtype]
        ###Read grid files, then plot in either 2d or 3d space###
        grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(
            f, var, x_name='longitude', y_name='latitude', z_name='altitude')
        make_plot_3d(grid,
                     grid_name,
                     x,
                     y,
                     z,
                     t,
                     grid_t_idx,
                     grid_x_idx,
                     grid_z_idx,
                     n_cols=n_cols,
                     outpath=outpath)
        #, grid_range=grid_range)

    return nc_names_2d, nc_names_3d
Exemplo n.º 3
0
# h5_path_searcher = os.path.join(LMA_DATA_DIR,'LYL*.flash.h5')
# h5_filenames = glob.glob(h5_path_searcher)

# ----- Create NetCDF grids -----
from lmatools.grid.make_grids import grid_h5flashfiles
from lmatools.grid.AWIPS_tools import write_AWIPS_netcdf_grid

x_coord, y_coord, lons, lats, extent_density_grid, AWIPS_outfiles, field_names = grid_h5flashfiles(
    h5_filenames,
    start_time,
    end_time,
    frame_interval=frame_interval,
    dx=dx,
    dy=dy,
    x_bnd=x_bnd,
    y_bnd=y_bnd,
    ctr_lon=ctr_lon,
    ctr_lat=ctr_lat,
    proj_name=target_proj,
    proj_datum=target_datum,
    proj_ellipse=target_ellipse,
    output_writer=write_AWIPS_netcdf_grid,
    output_kwargs={'refresh_minutes': int(frame_interval / 60.0)},
    outpath=AWIPS_GRID_DIR,
)

# ----- Put ASCII data and AWIPS grids on the LDM queue ----
call([gzip_command, LMA_ASCII_outfile])
call([gzip_command] + list(AWIPS_outfiles))
LDM_files = [f + '.gz' for f in [LMA_ASCII_outfile] + list(AWIPS_outfiles)]
for f in LDM_files:
    ldm_command = "sudo -u ldm /home/ldm/bin/pqinsert -v -f EXP -q /home/ldm/var/queues/ldm.pq {0:s}".format(
Exemplo n.º 4
0
def test_sort_and_grid_and_plot(outpath):
    """ Given an output path, run sample data included in lmatools through flash sorting and gridding"""
    base_sort_dir = outpath
    logger_setup(outpath)
    files = get_sample_data_list()
    center_ID = 'WTLMA'
    ctr_lat, ctr_lon = 33.5, -101.5
    params = {
        'stations': (6, 13),
        'chi2': (0, 1.0),
        'ctr_lat': ctr_lat,
        'ctr_lon': ctr_lon,
        'distance': 3000.0,
        'thresh_critical_time': 0.15,
        'thresh_duration': 3.0,
        'mask_length': 6,
    }
    h5_dir = os.path.join(base_sort_dir, 'h5_files')
    grid_dir = os.path.join(base_sort_dir, 'grid_files')
    plot_dir = os.path.join(base_sort_dir, 'plots')

    y, m, d, H, M, S = tfromfile(files[0])
    date = datetime(y, m, d, H, M, S)

    # Create HDF5 flash files
    base_out_dir = (h5_dir + "/20%s" % (date.strftime('%y/%b/%d')))
    if os.path.exists(base_out_dir) == False:
        os.makedirs(base_out_dir)
        subprocess.call([
            'chmod', 'a+w', base_out_dir,
            h5_dir + '/20%s' % (date.strftime('%y/%b')),
            h5_dir + '/20%s' % (date.strftime('%y'))
        ])

    tag = ''
    outdir = os.path.join(base_out_dir, tag)
    info = open(os.path.join(outdir, 'input_params.py'), 'w')
    info.write(str(params))
    info.close()

    run_files_with_params(files,
                          outdir,
                          params,
                          cluster,
                          retain_ascii_output=False,
                          cleanup_tmp=True)
    # Figure out which HDF5 files were created
    h5_filenames = glob.glob(h5_dir + '/20%s/LYLOUT*.dat.flash.h5' %
                             (date.strftime('%y/%b/%d')))
    h5_filenames.sort()

    # Create NetCDF gridded data
    frame_interval = 60.0 * 2  # seconds
    dx_km = 3.0e3  # meters
    dy_km = 3.0e3
    x_bnd_km = (-200e3, 200e3)
    y_bnd_km = (-200e3, 200e3)

    # There are similar functions in lmatools to grid on a regular x,y grid in some map projection.
    dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat,
                                                  ctr_lon,
                                                  dx=dx_km,
                                                  dy=dy_km,
                                                  x_bnd=x_bnd_km,
                                                  y_bnd=y_bnd_km)
    # print("dx, dy = {0}, {1} deg".format(dx,dy))
    # print("lon_range = {0} deg".format(x_bnd))
    # print("lat_range = {0} deg".format(y_bnd))

    for f in h5_filenames:
        y, m, d, H, M, S = tfromfile(f)
        # print y,m,d,H,M,S
        start_time = datetime(y, m, d, H, M, S)
        end_time = start_time + timedelta(0, 600)
        # print start_time, end_time

        outpath = grid_dir + '/20%s' % (date.strftime('%y/%b/%d'))
        if os.path.exists(outpath) == False:
            os.makedirs(outpath)
            subprocess.call([
                'chmod', 'a+w', outpath,
                grid_dir + '/20%s' % (date.strftime('%y/%b')),
                grid_dir + '/20%s' % (date.strftime('%y'))
            ])
        grid_h5flashfiles(h5_filenames,
                          start_time,
                          end_time,
                          frame_interval=frame_interval,
                          proj_name='latlong',
                          dx=dx,
                          dy=dy,
                          x_bnd=x_bnd,
                          y_bnd=y_bnd,
                          ctr_lon=ctr_lon,
                          ctr_lat=ctr_lat,
                          outpath=outpath,
                          output_writer=write_cf_netcdf_latlon,
                          output_filename_prefix=center_ID,
                          spatial_scale_factor=1.0,
                          energy_grids=True)

    # Create plots
    n_cols = 2
    mapping = {
        'source': 'lma_source',
        'flash_extent': 'flash_extent',
        'flash_init': 'flash_initiation',
        'footprint': 'flash_footprint'
    }

    #nc_names = glob.glob('/home/ebruning/Mar18-19/grids/*.nc')
    nc_names = glob.glob(grid_dir + '/20%s/*.nc' % (date.strftime('%y/%b/%d')))
    nc_names.sort()
    outpath = plot_dir + '/20%s' % (date.strftime('%y/%b/%d'))
    if os.path.exists(outpath) == False:
        os.makedirs(outpath)
        subprocess.call([
            'chmod', 'a+w', outpath,
            plot_dir + '/20%s' % (date.strftime('%y/%b')),
            plot_dir + '/20%s' % (date.strftime('%y'))
        ])

    for f in nc_names:
        gridtype = f.split('dx_')[-1].replace('.nc', '')
        var = mapping[gridtype]
        # print f
        make_plot(f,
                  var,
                  n_cols=n_cols,
                  x_name='longitude',
                  y_name='latitude',
                  outpath=outpath)
def test_sort_and_grid_and_plot(outpath):
    """ Given an output path, run sample data included in lmatools through flash sorting and gridding"""
    base_sort_dir = outpath
    logger_setup(outpath)
    files = get_sample_data_list()
    center_ID = 'WTLMA'
    ctr_lat, ctr_lon = 33.5, -101.5
    params = {'stations':(6,13),
              'chi2':(0,1.0),
              'ctr_lat':ctr_lat, 'ctr_lon':ctr_lon,
              'distance':3000.0, 'thresh_critical_time':0.15,
              'thresh_duration':3.0,
              'mask_length':6,
              }
    h5_dir = os.path.join(base_sort_dir, 'h5_files')
    grid_dir = os.path.join(base_sort_dir, 'grid_files')
    plot_dir = os.path.join(base_sort_dir, 'plots')
    
    y,m,d,H,M,S = tfromfile(files[0])
    date = datetime(y,m,d, H,M,S)

    # Create HDF5 flash files
    base_out_dir = (h5_dir+"/20%s" %(date.strftime('%y/%b/%d')))
    if os.path.exists(base_out_dir) == False:
        os.makedirs(base_out_dir)
        subprocess.call(['chmod', 'a+w', base_out_dir, h5_dir+'/20%s' %(date.strftime('%y/%b')), h5_dir+'/20%s' %(date.strftime('%y'))])

    tag = ''
    outdir = os.path.join(base_out_dir, tag) 
    info = open(os.path.join(outdir, 'input_params.py'), 'w')
    info.write(str(params))
    info.close()
    
    if True:
        cluster = DBSCANFlashSorter(params).cluster
        sort_files(files, outdir, cluster)
    # Figure out which HDF5 files were created
    h5_filenames = glob.glob(h5_dir+'/20%s/LYLOUT*.dat.flash.h5' %(date.strftime('%y/%b/%d')))
    h5_filenames.sort()
    
    # Create NetCDF gridded data
    frame_interval=60.0*2 # seconds
    dx_km=3.0e3 # meters
    dy_km=3.0e3
    x_bnd_km = (-200e3, 200e3)
    y_bnd_km = (-200e3, 200e3)
    z_bnd_km = (0.0e3, 15.0e3)

    # There are similar functions in lmatools to grid on a regular x,y grid in some map projection.
    dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat, ctr_lon, 
                                dx=dx_km, dy=dy_km,
                                x_bnd = x_bnd_km, y_bnd = y_bnd_km )
    # print("dx, dy = {0}, {1} deg".format(dx,dy))
    # print("lon_range = {0} deg".format(x_bnd))
    # print("lat_range = {0} deg".format(y_bnd))
    
    for f in h5_filenames:
        y,m,d,H,M,S = tfromfile(f)
        # print y,m,d,H,M,S
        start_time = datetime(y,m,d, H,M,S)
        end_time   = start_time + timedelta(0,600)
        # print start_time, end_time
    
        outpath = grid_dir+'/20%s' %(date.strftime('%y/%b/%d'))
        if os.path.exists(outpath) == False:
            os.makedirs(outpath)
            subprocess.call(['chmod', 'a+w', outpath, grid_dir+'/20%s' %(date.strftime('%y/%b')), grid_dir+'/20%s' %(date.strftime('%y'))])
        if True:
            grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong',
                    dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, z_bnd=z_bnd_km,
                    ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath = outpath,
                    output_writer = write_cf_netcdf_latlon, output_writer_3d = write_cf_netcdf_3d_latlon,
                    output_filename_prefix=center_ID, spatial_scale_factor=1.0
                    )
        
    # Create plots
    n_cols=2
    mapping = { 'source':'lma_source',
                'flash_extent':'flash_extent',
                'flash_init':'flash_initiation',
                'footprint':'flash_footprint'}
    
    nc_names = glob.glob(grid_dir+'/20%s/*.nc' %(date.strftime('%y/%b/%d')))
    nc_names_3d = glob.glob(grid_dir+'/20%s/*_3d.nc' %(date.strftime('%y/%b/%d')))
    nc_names_2d = list(set(nc_names) - set(nc_names_3d))
    nc_names_2d.sort()
    nc_names_3d.sort()
    outpath = plot_dir+'/20%s' %(date.strftime('%y/%b/%d'))
    if os.path.exists(outpath) == False:
        os.makedirs(outpath)
        subprocess.call(['chmod', 'a+w', outpath, plot_dir+'/20%s' %(date.strftime('%y/%b')), plot_dir+'/20%s' %(date.strftime('%y'))])

    for f in nc_names_2d:
        gridtype = f.split('dx_')[-1].replace('.nc', '')
        var = mapping[gridtype]
        make_plot(f, var, n_cols=n_cols, x_name='longitude', y_name='latitude', outpath = outpath)
    
    for f in nc_names_3d:
        gridtype = f.split('dx_')[-1].replace('.nc', '').replace('_3d', '')
        var = mapping[gridtype]
        # grid_range = range_mapping[gridtype]
   
        ###Read grid files, then plot in either 2d or 3d space###
        grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(f, var, x_name='longitude', y_name='latitude', z_name='altitude')
        make_plot_3d(grid, grid_name, x, y, z, t, 
                     grid_t_idx, grid_x_idx, grid_z_idx, 
                     n_cols = n_cols, outpath = outpath)
Exemplo n.º 6
0
def grid_and_plot(h5_filenames, base_sort_dir, dx=1.0e3, dy=1.0e3, dz=1.0e3, frame_interval=60.0,
                  x_bnd=(-200.0e3, 200.0e3), y_bnd=(-200.0e3, 200.0e3), z_bnd=(0.0e3, 20.0e3),
                  ctr_lat=33.5, ctr_lon=-101.5, center_ID='WTLMA',
                  n_cols=2, base_date=None
                  ):
    """ Given a list of HDF5 filenames (sorted by time order) in h5_filenames, 
        create 2D and 3D NetCDF grids with spacing dx, dy, dz in meters, 
        frame_interval in seconds, and tuples of grid edges 
        x_bnd, y_bnd, and z_bnd in meters
                  
        The actual grids are in regular lat,lon coordinates, with spacing at the 
        grid center matched to the dx, dy values given.
                                    
        n_cols controls how many columns are plotted on each page.
                  
        Grids and plots are written to base_sort_dir/grid_files/ and  base_sort_dir/plots/
				  
		base_date is used to optionally set a common reference time for each of the NetCDF grids.
    """              
    # not really in km, just a different name to distinguish from similar variables below.
    dx_km=dx
    dy_km=dy
    x_bnd_km = x_bnd
    y_bnd_km = y_bnd
    z_bnd_km = z_bnd

    grid_dir = os.path.join(base_sort_dir, 'grid_files')
    plot_dir = os.path.join(base_sort_dir, 'plots')

    # There are similar functions in lmatools to grid on a regular x,y grid in some map projection.
    dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat, ctr_lon, 
                                dx=dx_km, dy=dy_km,
                                x_bnd = x_bnd_km, y_bnd = y_bnd_km )
    # print("dx, dy = {0}, {1} deg".format(dx,dy))
    # print("lon_range = {0} deg".format(x_bnd))
    # print("lat_range = {0} deg".format(y_bnd))
    
    for f in h5_filenames:
        y,m,d,H,M,S = tfromfile(f)
        # print y,m,d,H,M,S
        start_time = datetime(y,m,d, H,M,S)
        end_time   = start_time + timedelta(0,600)
        date = start_time
        # print start_time, end_time
    
        outpath = grid_dir+'/20%s' %(date.strftime('%y/%b/%d'))
        if os.path.exists(outpath) == False:
            os.makedirs(outpath)
            subprocess.call(['chmod', 'a+w', outpath, grid_dir+'/20%s' %(date.strftime('%y/%b')), grid_dir+'/20%s' %(date.strftime('%y'))])
        if True:
            grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong',
                    base_date = base_date, energy_grids=True,
					dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, z_bnd=z_bnd_km,
                    ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath = outpath,
                    output_writer = write_cf_netcdf_latlon, output_writer_3d = write_cf_netcdf_3d_latlon,
                    output_filename_prefix=center_ID, spatial_scale_factor=1.0
                    )
        
    # Create plots
    mapping = { 'source':'lma_source',
                'flash_extent':'flash_extent',
                'flash_init':'flash_initiation',
                'footprint':'flash_footprint',
                'specific_energy':'specific_energy',
                'flashsize_std':'flashsize_std',
                'total_energy': 'total_energy'
               }
    
    nc_names = glob.glob(grid_dir+'/20%s/*.nc' %(date.strftime('%y/%b/%d')))
    nc_names_3d = glob.glob(grid_dir+'/20%s/*_3d.nc' %(date.strftime('%y/%b/%d')))
    nc_names_2d = list(set(nc_names) - set(nc_names_3d))
    nc_names_2d.sort()
    nc_names_3d.sort()
    outpath = plot_dir+'/20%s' %(date.strftime('%y/%b/%d'))
    if os.path.exists(outpath) == False:
        os.makedirs(outpath)
        subprocess.call(['chmod', 'a+w', outpath, plot_dir+'/20%s' %(date.strftime('%y/%b')), plot_dir+'/20%s' %(date.strftime('%y'))])

    for f in nc_names_2d:
        gridtype = f.split('dx_')[-1].replace('.nc', '')
        var = mapping[gridtype]
        make_plot(f, var, n_cols=n_cols, x_name='longitude', y_name='latitude', outpath = outpath)
    
    for f in nc_names_3d:
        gridtype = f.split('dx_')[-1].replace('.nc', '').replace('_3d', '')
        var = mapping[gridtype]
        # grid_range = range_mapping[gridtype]
        ###Read grid files, then plot in either 2d or 3d space###
        grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(f, var, x_name='longitude', y_name='latitude', z_name='altitude')
        make_plot_3d(grid, grid_name, x, y, z, t,
                     grid_t_idx, grid_x_idx, grid_z_idx,
                     n_cols = n_cols, outpath = outpath)
        #, grid_range=grid_range)
        
    return nc_names_2d, nc_names_3d
Exemplo n.º 7
0
    outpath = grid_dir + '/20%s' % (date.strftime('%y/%b/%d'))
    if os.path.exists(outpath) == False:
        os.makedirs(outpath)
        subprocess.call([
            'chmod', 'a+w', outpath,
            grid_dir + '/20%s' % (date.strftime('%y/%b')),
            grid_dir + '/20%s' % (date.strftime('%y'))
        ])
    grid_h5flashfiles(h5_filenames,
                      start_time,
                      end_time,
                      frame_interval=frame_interval,
                      proj_name='latlong',
                      dx=dx,
                      dy=dy,
                      x_bnd=x_bnd,
                      y_bnd=y_bnd,
                      ctr_lon=ctr_lon,
                      ctr_lat=ctr_lat,
                      outpath=outpath,
                      output_writer=write_cf_netcdf_latlon,
                      output_filename_prefix=center_ID,
                      spatial_scale_factor=1.0)

# Make plots
if False:
    n_cols = 2
    mapping = {
        'source': 'lma_source',
        'flash_extent': 'flash_extent',
        'flash_init': 'flash_initiation',
Exemplo n.º 8
0
# info = open(os.path.join(outdir, 'input_params.py'), 'w')
# info.write(str(params))
# info.close()

h5_filenames = run_files_with_params([LMA_ASCII_outfile], LMA_DATA_DIR, params, retain_ascii_output=False)
# h5_path_searcher = os.path.join(LMA_DATA_DIR,'LYL*.flash.h5')
# h5_filenames = glob.glob(h5_path_searcher)

# ----- Create NetCDF grids ----- 
from lmatools.grid.make_grids import grid_h5flashfiles
from lmatools.grid.AWIPS_tools import write_AWIPS_netcdf_grid

x_coord, y_coord, lons, lats, extent_density_grid, AWIPS_outfiles, field_names = grid_h5flashfiles(
            h5_filenames, start_time, end_time, frame_interval=frame_interval, 
            dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, ctr_lon=ctr_lon, ctr_lat=ctr_lat,
            proj_name = target_proj, proj_datum = target_datum, proj_ellipse = target_ellipse,
            output_writer = write_AWIPS_netcdf_grid, output_kwargs = {'refresh_minutes':int(frame_interval/60.0)},
            outpath = AWIPS_GRID_DIR,
            )
            


# ----- Put ASCII data and AWIPS grids on the LDM queue ----
call([gzip_command, LMA_ASCII_outfile])
call([gzip_command] + list(AWIPS_outfiles))
LDM_files = [f + '.gz' for f in [LMA_ASCII_outfile]+list(AWIPS_outfiles)]
for f in LDM_files:
    ldm_command = "sudo -u ldm /home/ldm/bin/pqinsert -v -f EXP -q /home/ldm/var/queues/ldm.pq {0:s}".format(f)
    print(ldm_command)
    # call(ldm_command.split())
Exemplo n.º 9
0
print(("lat_range = {0} deg".format(y_bnd)))

for f in h5_filenames:
    y,m,d,H,M,S = tfromfile(f)
    # print y,m,d,H,M,S
    start_time = datetime(y,m,d, H,M,S)
    end_time   = start_time + timedelta(0,600)
    print(start_time, end_time)
    

    outpath = grid_dir+'/20%s' %(date.strftime('%y/%b/%d'))
    if os.path.exists(outpath) == False:
        os.makedirs(outpath)
        subprocess.call(['chmod', 'a+w', outpath, grid_dir+'/20%s' %(date.strftime('%y/%b')), grid_dir+'/20%s' %(date.strftime('%y'))])
    grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong',
                dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath = outpath,
                output_writer = write_cf_netcdf_latlon, output_filename_prefix=center_ID, spatial_scale_factor=1.0
                )

# Make plots
if False:
    n_cols=2
    mapping = { 'source':'lma_source',
                'flash_extent':'flash_extent',
                'flash_init':'flash_initiation',
                'footprint':'flash_footprint'}

    #nc_names = glob.glob('/home/ebruning/Mar18-19/grids/*.nc')
    nc_names = glob.glob(grid_dir+'/20%s/*.nc' %(date.strftime('%y/%b/%d')))
    nc_names.sort()
    outpath = plot_dir+'/20%s' %(date.strftime('%y/%b/%d'))
    if os.path.exists(outpath) == False: