def test_sort_and_grid_and_plot(outpath): """ Given an output path, run sample data included in lmatools through flash sorting and gridding""" base_sort_dir = outpath logger_setup(outpath) files = get_sample_data_list() center_ID = 'WTLMA' ctr_lat, ctr_lon = 33.5, -101.5 params = {'stations':(6,13), 'chi2':(0,1.0), 'ctr_lat':ctr_lat, 'ctr_lon':ctr_lon, 'distance':3000.0, 'thresh_critical_time':0.15, 'thresh_duration':3.0, 'mask_length':6, } h5_dir = os.path.join(base_sort_dir, 'h5_files') grid_dir = os.path.join(base_sort_dir, 'grid_files') plot_dir = os.path.join(base_sort_dir, 'plots') y,m,d,H,M,S = tfromfile(files[0]) date = datetime(y,m,d, H,M,S) # Create HDF5 flash files base_out_dir = (h5_dir+"/20%s" %(date.strftime('%y/%b/%d'))) if os.path.exists(base_out_dir) == False: os.makedirs(base_out_dir) subprocess.call(['chmod', 'a+w', base_out_dir, h5_dir+'/20%s' %(date.strftime('%y/%b')), h5_dir+'/20%s' %(date.strftime('%y'))]) tag = '' outdir = os.path.join(base_out_dir, tag) info = open(os.path.join(outdir, 'input_params.py'), 'w') info.write(str(params)) info.close() if True: cluster = DBSCANFlashSorter(params).cluster sort_files(files, outdir, cluster) # Figure out which HDF5 files were created h5_filenames = glob.glob(h5_dir+'/20%s/LYLOUT*.dat.flash.h5' %(date.strftime('%y/%b/%d'))) h5_filenames.sort() # Create NetCDF gridded data frame_interval=60.0*2 # seconds dx_km=3.0e3 # meters dy_km=3.0e3 x_bnd_km = (-200e3, 200e3) y_bnd_km = (-200e3, 200e3) z_bnd_km = (0.0e3, 15.0e3) # There are similar functions in lmatools to grid on a regular x,y grid in some map projection. # dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat, ctr_lon, # dx=dx_km, dy=dy_km, # x_bnd = x_bnd_km, y_bnd = y_bnd_km ) dx, dy, x_bnd, y_bnd = dx_km, dy_km, x_bnd_km, y_bnd_km # print("dx, dy = {0}, {1} deg".format(dx,dy)) # print("lon_range = {0} deg".format(x_bnd)) # print("lat_range = {0} deg".format(y_bnd)) for f in h5_filenames: y,m,d,H,M,S = tfromfile(f) # print y,m,d,H,M,S start_time = datetime(y,m,d, H,M,S) end_time = start_time + timedelta(0,600) # print start_time, end_time outpath = grid_dir+'/20%s' %(date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call(['chmod', 'a+w', outpath, grid_dir+'/20%s' %(date.strftime('%y/%b')), grid_dir+'/20%s' %(date.strftime('%y'))]) if True: grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, z_bnd=z_bnd_km, ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath = outpath, proj_name='aeqd', output_writer = write_cf_netcdf, output_writer_3d = write_cf_netcdf_3d, output_filename_prefix=center_ID, spatial_scale_factor=1.0e-3, # proj_name='latlong', # output_writer = write_cf_netcdf_latlon, # output_writer_3d = write_cf_netcdf_3d_latlon, # output_filename_prefix=center_ID, spatial_scale_factor=1.0, energy_grids = True ) # Create plots n_cols=2 mapping = { 'source':'lma_source', 'flash_extent':'flash_extent', 'flash_init':'flash_initiation', 'footprint':'flash_footprint', 'specific_energy':'specific_energy', 'flashsize_std':'flashsize_std', 'total_energy': 'total_energy' } nc_names = glob.glob(grid_dir+'/20%s/*.nc' %(date.strftime('%y/%b/%d'))) nc_names_3d = glob.glob(grid_dir+'/20%s/*_3d.nc' %(date.strftime('%y/%b/%d'))) nc_names_2d = list(set(nc_names) - set(nc_names_3d)) nc_names_2d.sort() nc_names_3d.sort() outpath = plot_dir+'/20%s' %(date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call(['chmod', 'a+w', outpath, plot_dir+'/20%s' %(date.strftime('%y/%b')), plot_dir+'/20%s' %(date.strftime('%y'))]) for f in nc_names_2d: gridtype = f.split('dx_')[-1].replace('.nc', '') var = mapping[gridtype] # make_plot(f, var, n_cols=n_cols, x_name='longitude', y_name='latitude', outpath = outpath) make_plot(f, var, n_cols=n_cols, x_name='x', y_name='y', outpath = outpath) for f in nc_names_3d: gridtype = f.split('dx_')[-1].replace('.nc', '').replace('_3d', '') var = mapping[gridtype] # grid_range = range_mapping[gridtype] ###Read grid files, then plot in either 2d or 3d space### # grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(f, var, x_name='longitude', y_name='latitude', z_name='altitude') grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(f, var, x_name='x', y_name='y', z_name='z') make_plot_3d(grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx, n_cols = n_cols, outpath = outpath)
def grid_and_plot(h5_filenames, base_sort_dir, dx=1.0e3, dy=1.0e3, dz=1.0e3, frame_interval=60.0, x_bnd=(-200.0e3, 200.0e3), y_bnd=(-200.0e3, 200.0e3), z_bnd=(0.0e3, 20.0e3), ctr_lat=33.5, ctr_lon=-101.5, center_ID='WTLMA', n_cols=2, base_date=None): """ Given a list of HDF5 filenames (sorted by time order) in h5_filenames, create 2D and 3D NetCDF grids with spacing dx, dy, dz in meters, frame_interval in seconds, and tuples of grid edges x_bnd, y_bnd, and z_bnd in meters The actual grids are in regular lat,lon coordinates, with spacing at the grid center matched to the dx, dy values given. n_cols controls how many columns are plotted on each page. Grids and plots are written to base_sort_dir/grid_files/ and base_sort_dir/plots/ base_date is used to optionally set a common reference time for each of the NetCDF grids. """ # not really in km, just a different name to distinguish from similar variables below. dx_km = dx dy_km = dy x_bnd_km = x_bnd y_bnd_km = y_bnd z_bnd_km = z_bnd grid_dir = os.path.join(base_sort_dir, 'grid_files') plot_dir = os.path.join(base_sort_dir, 'plots') # There are similar functions in lmatools to grid on a regular x,y grid in some map projection. dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat, ctr_lon, dx=dx_km, dy=dy_km, x_bnd=x_bnd_km, y_bnd=y_bnd_km) # print("dx, dy = {0}, {1} deg".format(dx,dy)) # print("lon_range = {0} deg".format(x_bnd)) # print("lat_range = {0} deg".format(y_bnd)) for f in h5_filenames: y, m, d, H, M, S = tfromfile(f) # print y,m,d,H,M,S start_time = datetime(y, m, d, H, M, S) end_time = start_time + timedelta(0, 600) date = start_time # print start_time, end_time outpath = grid_dir + '/20%s' % (date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call([ 'chmod', 'a+w', outpath, grid_dir + '/20%s' % (date.strftime('%y/%b')), grid_dir + '/20%s' % (date.strftime('%y')) ]) if True: grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong', base_date=base_date, energy_grids=True, dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, z_bnd=z_bnd_km, ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath=outpath, output_writer=write_cf_netcdf_latlon, output_writer_3d=write_cf_netcdf_3d_latlon, output_filename_prefix=center_ID, spatial_scale_factor=1.0) # Create plots mapping = { 'source': 'lma_source', 'flash_extent': 'flash_extent', 'flash_init': 'flash_initiation', 'footprint': 'flash_footprint', 'specific_energy': 'specific_energy', 'flashsize_std': 'flashsize_std', 'total_energy': 'total_energy' } nc_names = glob.glob(grid_dir + '/20%s/*.nc' % (date.strftime('%y/%b/%d'))) nc_names_3d = glob.glob(grid_dir + '/20%s/*_3d.nc' % (date.strftime('%y/%b/%d'))) nc_names_2d = list(set(nc_names) - set(nc_names_3d)) nc_names_2d.sort() nc_names_3d.sort() outpath = plot_dir + '/20%s' % (date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call([ 'chmod', 'a+w', outpath, plot_dir + '/20%s' % (date.strftime('%y/%b')), plot_dir + '/20%s' % (date.strftime('%y')) ]) for f in nc_names_2d: gridtype = f.split('dx_')[-1].replace('.nc', '') var = mapping[gridtype] make_plot(f, var, n_cols=n_cols, x_name='longitude', y_name='latitude', outpath=outpath) for f in nc_names_3d: gridtype = f.split('dx_')[-1].replace('.nc', '').replace('_3d', '') var = mapping[gridtype] # grid_range = range_mapping[gridtype] ###Read grid files, then plot in either 2d or 3d space### grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d( f, var, x_name='longitude', y_name='latitude', z_name='altitude') make_plot_3d(grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx, n_cols=n_cols, outpath=outpath) #, grid_range=grid_range) return nc_names_2d, nc_names_3d
# h5_path_searcher = os.path.join(LMA_DATA_DIR,'LYL*.flash.h5') # h5_filenames = glob.glob(h5_path_searcher) # ----- Create NetCDF grids ----- from lmatools.grid.make_grids import grid_h5flashfiles from lmatools.grid.AWIPS_tools import write_AWIPS_netcdf_grid x_coord, y_coord, lons, lats, extent_density_grid, AWIPS_outfiles, field_names = grid_h5flashfiles( h5_filenames, start_time, end_time, frame_interval=frame_interval, dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, ctr_lon=ctr_lon, ctr_lat=ctr_lat, proj_name=target_proj, proj_datum=target_datum, proj_ellipse=target_ellipse, output_writer=write_AWIPS_netcdf_grid, output_kwargs={'refresh_minutes': int(frame_interval / 60.0)}, outpath=AWIPS_GRID_DIR, ) # ----- Put ASCII data and AWIPS grids on the LDM queue ---- call([gzip_command, LMA_ASCII_outfile]) call([gzip_command] + list(AWIPS_outfiles)) LDM_files = [f + '.gz' for f in [LMA_ASCII_outfile] + list(AWIPS_outfiles)] for f in LDM_files: ldm_command = "sudo -u ldm /home/ldm/bin/pqinsert -v -f EXP -q /home/ldm/var/queues/ldm.pq {0:s}".format(
def test_sort_and_grid_and_plot(outpath): """ Given an output path, run sample data included in lmatools through flash sorting and gridding""" base_sort_dir = outpath logger_setup(outpath) files = get_sample_data_list() center_ID = 'WTLMA' ctr_lat, ctr_lon = 33.5, -101.5 params = { 'stations': (6, 13), 'chi2': (0, 1.0), 'ctr_lat': ctr_lat, 'ctr_lon': ctr_lon, 'distance': 3000.0, 'thresh_critical_time': 0.15, 'thresh_duration': 3.0, 'mask_length': 6, } h5_dir = os.path.join(base_sort_dir, 'h5_files') grid_dir = os.path.join(base_sort_dir, 'grid_files') plot_dir = os.path.join(base_sort_dir, 'plots') y, m, d, H, M, S = tfromfile(files[0]) date = datetime(y, m, d, H, M, S) # Create HDF5 flash files base_out_dir = (h5_dir + "/20%s" % (date.strftime('%y/%b/%d'))) if os.path.exists(base_out_dir) == False: os.makedirs(base_out_dir) subprocess.call([ 'chmod', 'a+w', base_out_dir, h5_dir + '/20%s' % (date.strftime('%y/%b')), h5_dir + '/20%s' % (date.strftime('%y')) ]) tag = '' outdir = os.path.join(base_out_dir, tag) info = open(os.path.join(outdir, 'input_params.py'), 'w') info.write(str(params)) info.close() run_files_with_params(files, outdir, params, cluster, retain_ascii_output=False, cleanup_tmp=True) # Figure out which HDF5 files were created h5_filenames = glob.glob(h5_dir + '/20%s/LYLOUT*.dat.flash.h5' % (date.strftime('%y/%b/%d'))) h5_filenames.sort() # Create NetCDF gridded data frame_interval = 60.0 * 2 # seconds dx_km = 3.0e3 # meters dy_km = 3.0e3 x_bnd_km = (-200e3, 200e3) y_bnd_km = (-200e3, 200e3) # There are similar functions in lmatools to grid on a regular x,y grid in some map projection. dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat, ctr_lon, dx=dx_km, dy=dy_km, x_bnd=x_bnd_km, y_bnd=y_bnd_km) # print("dx, dy = {0}, {1} deg".format(dx,dy)) # print("lon_range = {0} deg".format(x_bnd)) # print("lat_range = {0} deg".format(y_bnd)) for f in h5_filenames: y, m, d, H, M, S = tfromfile(f) # print y,m,d,H,M,S start_time = datetime(y, m, d, H, M, S) end_time = start_time + timedelta(0, 600) # print start_time, end_time outpath = grid_dir + '/20%s' % (date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call([ 'chmod', 'a+w', outpath, grid_dir + '/20%s' % (date.strftime('%y/%b')), grid_dir + '/20%s' % (date.strftime('%y')) ]) grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong', dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath=outpath, output_writer=write_cf_netcdf_latlon, output_filename_prefix=center_ID, spatial_scale_factor=1.0, energy_grids=True) # Create plots n_cols = 2 mapping = { 'source': 'lma_source', 'flash_extent': 'flash_extent', 'flash_init': 'flash_initiation', 'footprint': 'flash_footprint' } #nc_names = glob.glob('/home/ebruning/Mar18-19/grids/*.nc') nc_names = glob.glob(grid_dir + '/20%s/*.nc' % (date.strftime('%y/%b/%d'))) nc_names.sort() outpath = plot_dir + '/20%s' % (date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call([ 'chmod', 'a+w', outpath, plot_dir + '/20%s' % (date.strftime('%y/%b')), plot_dir + '/20%s' % (date.strftime('%y')) ]) for f in nc_names: gridtype = f.split('dx_')[-1].replace('.nc', '') var = mapping[gridtype] # print f make_plot(f, var, n_cols=n_cols, x_name='longitude', y_name='latitude', outpath=outpath)
def test_sort_and_grid_and_plot(outpath): """ Given an output path, run sample data included in lmatools through flash sorting and gridding""" base_sort_dir = outpath logger_setup(outpath) files = get_sample_data_list() center_ID = 'WTLMA' ctr_lat, ctr_lon = 33.5, -101.5 params = {'stations':(6,13), 'chi2':(0,1.0), 'ctr_lat':ctr_lat, 'ctr_lon':ctr_lon, 'distance':3000.0, 'thresh_critical_time':0.15, 'thresh_duration':3.0, 'mask_length':6, } h5_dir = os.path.join(base_sort_dir, 'h5_files') grid_dir = os.path.join(base_sort_dir, 'grid_files') plot_dir = os.path.join(base_sort_dir, 'plots') y,m,d,H,M,S = tfromfile(files[0]) date = datetime(y,m,d, H,M,S) # Create HDF5 flash files base_out_dir = (h5_dir+"/20%s" %(date.strftime('%y/%b/%d'))) if os.path.exists(base_out_dir) == False: os.makedirs(base_out_dir) subprocess.call(['chmod', 'a+w', base_out_dir, h5_dir+'/20%s' %(date.strftime('%y/%b')), h5_dir+'/20%s' %(date.strftime('%y'))]) tag = '' outdir = os.path.join(base_out_dir, tag) info = open(os.path.join(outdir, 'input_params.py'), 'w') info.write(str(params)) info.close() if True: cluster = DBSCANFlashSorter(params).cluster sort_files(files, outdir, cluster) # Figure out which HDF5 files were created h5_filenames = glob.glob(h5_dir+'/20%s/LYLOUT*.dat.flash.h5' %(date.strftime('%y/%b/%d'))) h5_filenames.sort() # Create NetCDF gridded data frame_interval=60.0*2 # seconds dx_km=3.0e3 # meters dy_km=3.0e3 x_bnd_km = (-200e3, 200e3) y_bnd_km = (-200e3, 200e3) z_bnd_km = (0.0e3, 15.0e3) # There are similar functions in lmatools to grid on a regular x,y grid in some map projection. dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat, ctr_lon, dx=dx_km, dy=dy_km, x_bnd = x_bnd_km, y_bnd = y_bnd_km ) # print("dx, dy = {0}, {1} deg".format(dx,dy)) # print("lon_range = {0} deg".format(x_bnd)) # print("lat_range = {0} deg".format(y_bnd)) for f in h5_filenames: y,m,d,H,M,S = tfromfile(f) # print y,m,d,H,M,S start_time = datetime(y,m,d, H,M,S) end_time = start_time + timedelta(0,600) # print start_time, end_time outpath = grid_dir+'/20%s' %(date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call(['chmod', 'a+w', outpath, grid_dir+'/20%s' %(date.strftime('%y/%b')), grid_dir+'/20%s' %(date.strftime('%y'))]) if True: grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong', dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, z_bnd=z_bnd_km, ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath = outpath, output_writer = write_cf_netcdf_latlon, output_writer_3d = write_cf_netcdf_3d_latlon, output_filename_prefix=center_ID, spatial_scale_factor=1.0 ) # Create plots n_cols=2 mapping = { 'source':'lma_source', 'flash_extent':'flash_extent', 'flash_init':'flash_initiation', 'footprint':'flash_footprint'} nc_names = glob.glob(grid_dir+'/20%s/*.nc' %(date.strftime('%y/%b/%d'))) nc_names_3d = glob.glob(grid_dir+'/20%s/*_3d.nc' %(date.strftime('%y/%b/%d'))) nc_names_2d = list(set(nc_names) - set(nc_names_3d)) nc_names_2d.sort() nc_names_3d.sort() outpath = plot_dir+'/20%s' %(date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call(['chmod', 'a+w', outpath, plot_dir+'/20%s' %(date.strftime('%y/%b')), plot_dir+'/20%s' %(date.strftime('%y'))]) for f in nc_names_2d: gridtype = f.split('dx_')[-1].replace('.nc', '') var = mapping[gridtype] make_plot(f, var, n_cols=n_cols, x_name='longitude', y_name='latitude', outpath = outpath) for f in nc_names_3d: gridtype = f.split('dx_')[-1].replace('.nc', '').replace('_3d', '') var = mapping[gridtype] # grid_range = range_mapping[gridtype] ###Read grid files, then plot in either 2d or 3d space### grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(f, var, x_name='longitude', y_name='latitude', z_name='altitude') make_plot_3d(grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx, n_cols = n_cols, outpath = outpath)
def grid_and_plot(h5_filenames, base_sort_dir, dx=1.0e3, dy=1.0e3, dz=1.0e3, frame_interval=60.0, x_bnd=(-200.0e3, 200.0e3), y_bnd=(-200.0e3, 200.0e3), z_bnd=(0.0e3, 20.0e3), ctr_lat=33.5, ctr_lon=-101.5, center_ID='WTLMA', n_cols=2, base_date=None ): """ Given a list of HDF5 filenames (sorted by time order) in h5_filenames, create 2D and 3D NetCDF grids with spacing dx, dy, dz in meters, frame_interval in seconds, and tuples of grid edges x_bnd, y_bnd, and z_bnd in meters The actual grids are in regular lat,lon coordinates, with spacing at the grid center matched to the dx, dy values given. n_cols controls how many columns are plotted on each page. Grids and plots are written to base_sort_dir/grid_files/ and base_sort_dir/plots/ base_date is used to optionally set a common reference time for each of the NetCDF grids. """ # not really in km, just a different name to distinguish from similar variables below. dx_km=dx dy_km=dy x_bnd_km = x_bnd y_bnd_km = y_bnd z_bnd_km = z_bnd grid_dir = os.path.join(base_sort_dir, 'grid_files') plot_dir = os.path.join(base_sort_dir, 'plots') # There are similar functions in lmatools to grid on a regular x,y grid in some map projection. dx, dy, x_bnd, y_bnd = dlonlat_at_grid_center(ctr_lat, ctr_lon, dx=dx_km, dy=dy_km, x_bnd = x_bnd_km, y_bnd = y_bnd_km ) # print("dx, dy = {0}, {1} deg".format(dx,dy)) # print("lon_range = {0} deg".format(x_bnd)) # print("lat_range = {0} deg".format(y_bnd)) for f in h5_filenames: y,m,d,H,M,S = tfromfile(f) # print y,m,d,H,M,S start_time = datetime(y,m,d, H,M,S) end_time = start_time + timedelta(0,600) date = start_time # print start_time, end_time outpath = grid_dir+'/20%s' %(date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call(['chmod', 'a+w', outpath, grid_dir+'/20%s' %(date.strftime('%y/%b')), grid_dir+'/20%s' %(date.strftime('%y'))]) if True: grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong', base_date = base_date, energy_grids=True, dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, z_bnd=z_bnd_km, ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath = outpath, output_writer = write_cf_netcdf_latlon, output_writer_3d = write_cf_netcdf_3d_latlon, output_filename_prefix=center_ID, spatial_scale_factor=1.0 ) # Create plots mapping = { 'source':'lma_source', 'flash_extent':'flash_extent', 'flash_init':'flash_initiation', 'footprint':'flash_footprint', 'specific_energy':'specific_energy', 'flashsize_std':'flashsize_std', 'total_energy': 'total_energy' } nc_names = glob.glob(grid_dir+'/20%s/*.nc' %(date.strftime('%y/%b/%d'))) nc_names_3d = glob.glob(grid_dir+'/20%s/*_3d.nc' %(date.strftime('%y/%b/%d'))) nc_names_2d = list(set(nc_names) - set(nc_names_3d)) nc_names_2d.sort() nc_names_3d.sort() outpath = plot_dir+'/20%s' %(date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call(['chmod', 'a+w', outpath, plot_dir+'/20%s' %(date.strftime('%y/%b')), plot_dir+'/20%s' %(date.strftime('%y'))]) for f in nc_names_2d: gridtype = f.split('dx_')[-1].replace('.nc', '') var = mapping[gridtype] make_plot(f, var, n_cols=n_cols, x_name='longitude', y_name='latitude', outpath = outpath) for f in nc_names_3d: gridtype = f.split('dx_')[-1].replace('.nc', '').replace('_3d', '') var = mapping[gridtype] # grid_range = range_mapping[gridtype] ###Read grid files, then plot in either 2d or 3d space### grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx = read_file_3d(f, var, x_name='longitude', y_name='latitude', z_name='altitude') make_plot_3d(grid, grid_name, x, y, z, t, grid_t_idx, grid_x_idx, grid_z_idx, n_cols = n_cols, outpath = outpath) #, grid_range=grid_range) return nc_names_2d, nc_names_3d
outpath = grid_dir + '/20%s' % (date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call([ 'chmod', 'a+w', outpath, grid_dir + '/20%s' % (date.strftime('%y/%b')), grid_dir + '/20%s' % (date.strftime('%y')) ]) grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong', dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath=outpath, output_writer=write_cf_netcdf_latlon, output_filename_prefix=center_ID, spatial_scale_factor=1.0) # Make plots if False: n_cols = 2 mapping = { 'source': 'lma_source', 'flash_extent': 'flash_extent', 'flash_init': 'flash_initiation',
# info = open(os.path.join(outdir, 'input_params.py'), 'w') # info.write(str(params)) # info.close() h5_filenames = run_files_with_params([LMA_ASCII_outfile], LMA_DATA_DIR, params, retain_ascii_output=False) # h5_path_searcher = os.path.join(LMA_DATA_DIR,'LYL*.flash.h5') # h5_filenames = glob.glob(h5_path_searcher) # ----- Create NetCDF grids ----- from lmatools.grid.make_grids import grid_h5flashfiles from lmatools.grid.AWIPS_tools import write_AWIPS_netcdf_grid x_coord, y_coord, lons, lats, extent_density_grid, AWIPS_outfiles, field_names = grid_h5flashfiles( h5_filenames, start_time, end_time, frame_interval=frame_interval, dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, ctr_lon=ctr_lon, ctr_lat=ctr_lat, proj_name = target_proj, proj_datum = target_datum, proj_ellipse = target_ellipse, output_writer = write_AWIPS_netcdf_grid, output_kwargs = {'refresh_minutes':int(frame_interval/60.0)}, outpath = AWIPS_GRID_DIR, ) # ----- Put ASCII data and AWIPS grids on the LDM queue ---- call([gzip_command, LMA_ASCII_outfile]) call([gzip_command] + list(AWIPS_outfiles)) LDM_files = [f + '.gz' for f in [LMA_ASCII_outfile]+list(AWIPS_outfiles)] for f in LDM_files: ldm_command = "sudo -u ldm /home/ldm/bin/pqinsert -v -f EXP -q /home/ldm/var/queues/ldm.pq {0:s}".format(f) print(ldm_command) # call(ldm_command.split())
print(("lat_range = {0} deg".format(y_bnd))) for f in h5_filenames: y,m,d,H,M,S = tfromfile(f) # print y,m,d,H,M,S start_time = datetime(y,m,d, H,M,S) end_time = start_time + timedelta(0,600) print(start_time, end_time) outpath = grid_dir+'/20%s' %(date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: os.makedirs(outpath) subprocess.call(['chmod', 'a+w', outpath, grid_dir+'/20%s' %(date.strftime('%y/%b')), grid_dir+'/20%s' %(date.strftime('%y'))]) grid_h5flashfiles(h5_filenames, start_time, end_time, frame_interval=frame_interval, proj_name='latlong', dx=dx, dy=dy, x_bnd=x_bnd, y_bnd=y_bnd, ctr_lon=ctr_lon, ctr_lat=ctr_lat, outpath = outpath, output_writer = write_cf_netcdf_latlon, output_filename_prefix=center_ID, spatial_scale_factor=1.0 ) # Make plots if False: n_cols=2 mapping = { 'source':'lma_source', 'flash_extent':'flash_extent', 'flash_init':'flash_initiation', 'footprint':'flash_footprint'} #nc_names = glob.glob('/home/ebruning/Mar18-19/grids/*.nc') nc_names = glob.glob(grid_dir+'/20%s/*.nc' %(date.strftime('%y/%b/%d'))) nc_names.sort() outpath = plot_dir+'/20%s' %(date.strftime('%y/%b/%d')) if os.path.exists(outpath) == False: