Exemplo n.º 1
0
def prepare(cfg):
    torch.cuda.set_device(cfg['training']['gpus'][0])
    handlers = Handlers()

    # IO configuration
    # Batch size for I/O becomes minibatch size
    batch_size = cfg['iotool']['batch_size']
    cfg['iotool']['batch_size'] = cfg['training']['minibatch_size']
    handlers.data_io, cfg['data_keys'] = loader_factory(cfg)
    # TODO check that it does what we want (cycle through dataloader)
    # check on a small sample, check 1/ it cycles through and 2/ randomness
    if cfg['training']['train']:
        handlers.data_io_iter = iter(cycle(handlers.data_io))
    else:
        handlers.data_io_iter = itertools.cycle(handlers.data_io)
    cfg['iotool']['batch_size'] = batch_size

    # Trainer configuration
    handlers.trainer = trainval(cfg)

    # Restore weights if necessary
    loaded_iteration = handlers.trainer.initialize()
    if cfg['training']['train']:
        handlers.iteration = loaded_iteration

    make_directories(cfg, loaded_iteration, handlers=handlers)
    return handlers
Exemplo n.º 2
0
def test_model_train(config):
    """
    TODO should test whether a model can be trained.
    Need to write a fixture to generate dummy input data. Maybe we need to
    explicitly define 1 test / model instead of a fixture?
    """
    trainer = trainval(config)
Exemplo n.º 3
0
def prepare(cfg):
    """
    Prepares high level API handlers, namely trainval instance and torch DataLoader (w/ iterator)
    INPUT
      - cfg is a full configuration block after pre-processed by process_config function
    OUTPUT
      - Handler instance attached with trainval/DataLoader instances (if in config)
    """
    handlers = Handlers()
    handlers.cfg = cfg

    # Instantiate DataLoader
    handlers.data_io = loader_factory(cfg)

    # IO iterator
    handlers.data_io_iter = itertools.cycle(handlers.data_io)

    if 'trainval' in cfg:
        # Set random seed for reproducibility
        np.random.seed(cfg['trainval']['seed'])
        torch.manual_seed(cfg['trainval']['seed'])

        # Set primary device
        if len(cfg['trainval']['gpus']) > 0:
            torch.cuda.set_device(cfg['trainval']['gpus'][0])


        # TODO check that it does what we want (cycle through dataloader)
        # check on a small sample, check 1/ it cycles through and 2/ randomness
        if cfg['trainval']['train']:
            handlers.data_io_iter = iter(cycle(handlers.data_io))

        # Trainer configuration
        handlers.trainer = trainval(cfg)

        # set the shared clock
        handlers.watch = handlers.trainer._watch

        # Restore weights if necessary
        loaded_iteration = handlers.trainer.initialize()
        if cfg['trainval']['train']:
            handlers.iteration = loaded_iteration

        make_directories(cfg, loaded_iteration, handlers=handlers)

    return handlers
Exemplo n.º 4
0
valid_dataset = cycle(valid_data)

from mlreco.trainval import trainval
from mlreco.main_funcs import get_data_minibatched

nf_dim, ef_dim = valid_data.get_feature_dimensions()
cfg['model']['modules']['edge_model']['model_cfg']['n_node_features'] = nf_dim
cfg['model']['modules']['edge_model']['model_cfg']['n_edge_features'] = ef_dim
cfg['model']['network_input'] = [
    'vertex_features', 'edge_features', 'edge_index', 'batch'
]
cfg['model']['loss_input'] = ['target', 'edge_index', 'batch']
cfg['data_keys'] = [
    'edge_index', 'vertex_features', 'edge_features', 'batch', 'target'
]
Trainer = trainval(cfg)
loaded_iteration = Trainer.initialize()

from mlreco.utils.gnn.features.utils import edge_labels_to_node_labels
from mlreco.utils.metrics import *

valid_dataset = cycle(valid_data)
pred_sbd = []
for t in range(len(valid_data)):
    data_blob = get_data_minibatched(valid_dataset, cfg)
    Trainer._train = False
    res = Trainer.forward(data_blob)
    data_blob = get_data_minibatched(valid_dataset, cfg)
    input_keys = Trainer._input_keys
    loss_keys = Trainer._loss_keys
    target = data_blob['target'][0][0]