Exemplo n.º 1
0
def solve_sdp_program(W):
    assert W.ndim == 2
    assert W.shape[0] == W.shape[1]
    W = W.copy()
    n = W.shape[0]
    W = expand_matrix(W)
    with Model('gw_max_3_cut') as M:
        W = Matrix.dense(W / 3.)
        J = Matrix.ones(3*n, 3*n)
        # variable
        Y = M.variable('Y', Domain.inPSDCone(3*n))
        # objective function
        M.objective(ObjectiveSense.Maximize, Expr.dot(W, Expr.sub(J, Y)))
        # constraints
        for i in range(3*n):
            M.constraint(f'c_{i}{i}', Y.index(i, i), Domain.equalsTo(1.))
        for i in range(n):
            M.constraint(f'c_{i}^01', Y.index(i*3,   i*3+1), Domain.equalsTo(-1/2.))
            M.constraint(f'c_{i}^02', Y.index(i*3,   i*3+2), Domain.equalsTo(-1/2.))
            M.constraint(f'c_{i}^12', Y.index(i*3+1, i*3+2), Domain.equalsTo(-1/2.))
            for j in range(i+1, n):
                for a, b in product(range(3), repeat=2):
                    M.constraint(f'c_{i}{j}^{a}{b}-0', Y.index(i*3 + a, j*3 + b), Domain.greaterThan(-1/2.))
                    M.constraint(f'c_{i}{j}^{a}{b}-1', Expr.sub(Y.index(i*3 + a, j*3 + b), Y.index(i*3 + (a + 1) % 3, j*3 + (b + 1) % 3)), Domain.equalsTo(0.))
                    M.constraint(f'c_{i}{j}^{a}{b}-2', Expr.sub(Y.index(i*3 + a, j*3 + b), Y.index(i*3 + (a + 2) % 3, j*3 + (b + 2) % 3)), Domain.equalsTo(0.))
        # solution
        M.solve()
        Y_opt = Y.level()
    return np.reshape(Y_opt, (3*n,3*n))
Exemplo n.º 2
0
def solve_sdp_program(A):
    assert A.ndim == 2
    assert A.shape[0] == A.shape[1]
    A = A.copy()
    n = A.shape[0]
    with Model('theta_2') as M:
        # variable
        X = M.variable('X', Domain.inPSDCone(n + 1))
        t = M.variable()
        # objective function
        M.objective(ObjectiveSense.Maximize, t)
        # constraints
        for i in range(n + 1):
            M.constraint(f'c{i}{i}', X.index(i, i), Domain.equalsTo(1.))
            if i == 0:
                continue
            M.constraint(f'c0,{i}', Expr.sub(X.index(0, i), t),
                         Domain.greaterThan(0.))
            for j in range(i + 1, n + 1):
                if A[i - 1, j - 1] == 0:
                    M.constraint(f'c{i},{j}', X.index(i, j),
                                 Domain.equalsTo(0.))
        # solution
        M.solve()
        X_sol = X.level()
        t_sol = t.level()
    t_sol = t_sol[0]
    theta = 1. / t_sol**2
    return theta
Exemplo n.º 3
0
    def __Declare_SpeedUp_Vars(self, COModel):
        n, N = self.n, 2 * self.m + 2 * self.n + len(self.roads)
        if self.co_params['speedup']['Tau'] is True:
            Tau = COModel.variable('Tau', 1, Domain.greaterThan(0.0))  # scalar
        else:
            Tau = COModel.variable('Tau', 1, Domain.unbounded())  # scalar

        if self.co_params['speedup']['Eta'] is True:
            Eta = COModel.variable('Eta', [n, n],
                                   Domain.inPSDCone(n))  # n by n matrix
        else:
            Eta = COModel.variable('Eta', [n, n],
                                   Domain.unbounded())  # n by n matrix

        if self.co_params['speedup']['W'] is True:
            W = COModel.variable('W', [N, N],
                                 Domain.inPSDCone(N))  # N by N matrix
        else:
            W = COModel.variable('W', [N, N],
                                 Domain.unbounded())  # N by N matrix
        return Tau, Eta, W
Exemplo n.º 4
0
def solve_sdp_program(A):
    assert A.ndim == 2
    assert A.shape[0] == A.shape[1]
    A = A.copy()
    n = A.shape[0]
    with Model('theta_1') as M:
        A = Matrix.dense(A)
        # variable
        X = M.variable('X', Domain.inPSDCone(n))
        # objective function
        M.objective(ObjectiveSense.Maximize,
                    Expr.sum(Expr.dot(Matrix.ones(n, n), X)))
        # constraints
        M.constraint(f'c1', Expr.sum(Expr.dot(X, A)), Domain.equalsTo(0.))
        M.constraint(f'c2', Expr.sum(Expr.dot(X, Matrix.eye(n))),
                     Domain.equalsTo(1.))
        # solution
        M.solve()
        sol = X.level()
    return sum(sol)
Exemplo n.º 5
0
def solve_sdp_program(W):
    assert W.ndim == 2
    assert W.shape[0] == W.shape[1]
    W = W.copy()
    n = W.shape[0]
    with Model('gw_max_cut') as M:
        W = Matrix.dense(W / 4.)
        J = Matrix.ones(n, n)
        # variable
        Y = M.variable('Y', Domain.inPSDCone(n))
        # objective function
        M.objective(ObjectiveSense.Maximize, Expr.dot(W, Expr.sub(J, Y)))
        # constraints
        for i in range(n):
            M.constraint(f'c_{i}', Y.index(i, i), Domain.equalsTo(1.))
        # solve
        M.solve()
        # solution
        Y_opt = Y.level()
    return np.reshape(Y_opt, (n, n))
Exemplo n.º 6
0
def solve_sdp_program(W, k):
    assert W.ndim == 2
    assert W.shape[0] == W.shape[1]
    W = W.copy()
    n = W.shape[0]
    with Model('fj_max_k_cut') as M:
        W = Matrix.dense((k - 1) / (2 * k) * W)
        J = Matrix.ones(n, n)
        # variable
        Y = M.variable('Y', Domain.inPSDCone(n))
        # objective function
        M.objective(ObjectiveSense.Maximize, Expr.dot(W, Expr.sub(J, Y)))
        # constraints
        for i in range(n):
            M.constraint(f'c_{i}', Y.index(i, i), Domain.equalsTo(1.))
            for j in range(i + 1, n):
                M.constraint(f'c_{i},{j}', Y.index(i, j),
                             Domain.greaterThan(-1 / (k - 1)))
        # solution
        M.solve()
        Y_opt = Y.level()
    return np.reshape(Y_opt, (n, n))
Exemplo n.º 7
0
    def Build_Co_Model(self):
        r = len(self.roads)
        mu, sigma = self.mu, self.sigma
        m, n, r = self.m, self.n, len(self.roads)
        f, h = self.f, self.h
        M, N = m + n + r, 2 * m + 2 * n + r
        A = self.__Construct_A_Matrix()
        A_Mat = Matrix.dense(A)
        b = self.__Construct_b_vector()

        # ---- build Mosek Model
        COModel = Model()

        # -- Decision Variable
        Z = COModel.variable('Z', m, Domain.inRange(0.0, 1.0))
        I = COModel.variable('I', m, Domain.greaterThan(0.0))
        Alpha = COModel.variable('Alpha', M,
                                 Domain.unbounded())  # M by 1 vector
        Beta = COModel.variable('Beta', M, Domain.unbounded())  # M by 1 vector
        Theta = COModel.variable('Theta', N,
                                 Domain.unbounded())  # N by 1 vector
        # M1_matrix related decision variables
        '''
            [tau, xi^T, phi^T
        M1 = xi, eta,   psi^t
             phi, psi,   w  ]
        '''
        # no-need speedup variables
        Psi = COModel.variable('Psi', [N, n], Domain.unbounded())
        Xi = COModel.variable('Xi', n, Domain.unbounded())  # n by 1 vector
        Phi = COModel.variable('Phi', N, Domain.unbounded())  # N by 1 vector
        # has the potential to speedup
        Tau, Eta, W = self.__Declare_SpeedUp_Vars(COModel)

        # M2 matrix decision variables
        '''
            [a, b^T, c^T
        M2 = b, e,   d^t
             c, d,   f  ]
        '''
        a_M2 = COModel.variable('a_M2', 1, Domain.greaterThan(0.0))
        b_M2 = COModel.variable('b_M2', n, Domain.greaterThan(0.0))
        c_M2 = COModel.variable('c_M2', N, Domain.greaterThan(0.0))
        e_M2 = COModel.variable('e_M2', [n, n], Domain.greaterThan(0.0))
        d_M2 = COModel.variable('d_M2', [N, n], Domain.greaterThan(0.0))
        f_M2 = COModel.variable('f_M2', [N, N], Domain.greaterThan(0.0))

        # -- Objective Function
        obj_1 = Expr.dot(f, Z)
        obj_2 = Expr.dot(h, I)
        obj_3 = Expr.dot(b, Alpha)
        obj_4 = Expr.dot(b, Beta)
        obj_5 = Expr.dot([1], Expr.add(Tau, a_M2))
        obj_6 = Expr.dot([2 * mean for mean in mu], Expr.add(Xi, b_M2))
        obj_7 = Expr.dot(sigma, Expr.add(Eta, e_M2))
        COModel.objective(
            ObjectiveSense.Minimize,
            Expr.add([obj_1, obj_2, obj_3, obj_4, obj_5, obj_6, obj_7]))

        # Constraint 1
        _expr = Expr.sub(Expr.mul(A_Mat.transpose(), Alpha), Theta)
        _expr = Expr.sub(_expr, Expr.mul(2, Expr.add(Phi, c_M2)))
        _expr_rhs = Expr.vstack(Expr.constTerm([0.0] * n), Expr.mul(-1, I),
                                Expr.constTerm([0.0] * M))
        COModel.constraint('constr1', Expr.sub(_expr, _expr_rhs),
                           Domain.equalsTo(0.0))
        del _expr, _expr_rhs

        # Constraint 2
        _first_term = Expr.add([
            Expr.mul(Beta.index(row),
                     np.outer(A[row], A[row]).tolist()) for row in range(M)
        ])
        _second_term = Expr.add([
            Expr.mul(Theta.index(k), Matrix.sparse(N, N, [k], [k], [1]))
            for k in range(N)
        ])
        _third_term = Expr.add(W, f_M2)
        _expr = Expr.sub(Expr.add(_first_term, _second_term), _third_term)
        COModel.constraint('constr2', _expr, Domain.equalsTo(0.0))
        del _expr, _first_term, _second_term, _third_term

        # Constraint 3
        _expr = Expr.mul(-2, Expr.add(Psi, d_M2))
        _expr_rhs = Matrix.sparse([[Matrix.eye(n)], [Matrix.sparse(N - n, n)]])
        COModel.constraint('constr3', Expr.sub(_expr, _expr_rhs),
                           Domain.equalsTo(0))
        del _expr, _expr_rhs

        # Constraint 4: I <= M*Z
        COModel.constraint('constr4', Expr.sub(Expr.mul(20000.0, Z), I),
                           Domain.greaterThan(0.0))

        # Constraint 5: M1 is SDP
        COModel.constraint(
            'constr5',
            Expr.vstack(Expr.hstack(Tau, Xi.transpose(), Phi.transpose()),
                        Expr.hstack(Xi, Eta, Psi.transpose()),
                        Expr.hstack(Phi, Psi, W)), Domain.inPSDCone(1 + n + N))

        return COModel