def _update(self, clique_data, parent=None):
        for c in clique_data['cliques']:
            self.cliques[c['name']] = v = self.model.variable(
                c['name'],
                Domain.inRange(0.0, 1.0),
                Domain.isInteger()
            )

            for img, cmd in product(c['images'], c['commands']):
                self.by_img_cmd[img,cmd].append(v)

            self._obj.append(Expr.mul(float(c['time']), v))

            if parent is not None:
                self.model.constraint(
                    'c-%s-%s' % (c['name'], parent['name']),
                    Expr.sub(v, self.cliques[parent['name']]),
                    Domain.lessThan(0.0)
                )

            for child in c['children']:
                self._update(child, c)

        for inter in clique_data['intersections']:
            self.model.constraint(
                'iter-%d' % self._inter,
                Expr.add([self.cliques[i] for i in inter]),
                Domain.lessThan(1.0)
            )
            self._inter += 1
    def solve(self, problem, saver):
        # Construct model.
        self.problem = problem

        # Do recursive maximal clique detection.
        self.clique_data = clique_data = problem.cliques()
        self.model = model = Model()
        if self.time is not None:
            model.setSolverParam('mioMaxTime', 60.0  * int(self.time))

        # Each image needs to run all its commands. This keep track of
        # what variables run each command for each image.
        self.by_img_cmd = by_img_cmd = defaultdict(list)

        # Objective is the total cost of all the commands we run.
        self._obj = []

        # x[i,c] = 1 if image i incurs the cost of command c directly
        self.x = x = {}
        for img, cmds in problem.images.items():
            for cmd in cmds:
                name = 'x[%s,%s]' % (img, cmd)
                x[name] = v = self.model.variable(
                    name,
                    Domain.inRange(0.0, 1.0),
                    Domain.isInteger()
                )
                self._obj.append(Expr.mul(float(problem.commands[cmd]), v))
                by_img_cmd[img,cmd].append(v)

        # cliques[i] = 1 if clique i is used, 0 otherwise
        self.cliques = {}
        self._inter = 1
        self._update(clique_data)

        # Each image has to run each of its commands.
        for img_cmd, vlist in by_img_cmd.items():
            name = 'img-cmd-%s-%s' % img_cmd
            self.model.constraint(
                name,
                Expr.add(vlist),
                Domain.equalsTo(1.0)
            )

        model.objective('z', ObjectiveSense.Minimize, Expr.add(self._obj))
        model.setLogHandler(sys.stdout)
        model.acceptedSolutionStatus(AccSolutionStatus.Feasible)
        model.solve()

        # Translate the output of this to a schedule.
        schedule = defaultdict(list)
        self._translate(schedule, clique_data)
        for name, v in x.items():
            img, cmd = name.replace('x[','').replace(']','').split(',')
            if v.level()[0] > 0.5:
                schedule[img].append(cmd)
        saver(schedule)
Exemplo n.º 3
0
    def solve(self, problem, saver):
        # Construct model.
        self.problem = problem

        # Do recursive maximal clique detection.
        self.clique_data = clique_data = problem.cliques()
        self.model = model = Model()
        if self.time is not None:
            model.setSolverParam('mioMaxTime', 60.0 * int(self.time))

        # Each image needs to run all its commands. This keep track of
        # what variables run each command for each image.
        self.by_img_cmd = by_img_cmd = defaultdict(list)

        # Objective is the total cost of all the commands we run.
        self._obj = []

        # x[i,c] = 1 if image i incurs the cost of command c directly
        self.x = x = {}
        for img, cmds in problem.images.items():
            for cmd in cmds:
                name = 'x[%s,%s]' % (img, cmd)
                x[name] = v = self.model.variable(name,
                                                  Domain.inRange(0.0, 1.0),
                                                  Domain.isInteger())
                self._obj.append(Expr.mul(float(problem.commands[cmd]), v))
                by_img_cmd[img, cmd].append(v)

        # cliques[i] = 1 if clique i is used, 0 otherwise
        self.cliques = {}
        self._inter = 1
        self._update(clique_data)

        # Each image has to run each of its commands.
        for img_cmd, vlist in by_img_cmd.items():
            name = 'img-cmd-%s-%s' % img_cmd
            self.model.constraint(name, Expr.add(vlist), Domain.equalsTo(1.0))

        model.objective('z', ObjectiveSense.Minimize, Expr.add(self._obj))
        model.setLogHandler(sys.stdout)
        model.acceptedSolutionStatus(AccSolutionStatus.Feasible)
        model.solve()

        # Translate the output of this to a schedule.
        schedule = defaultdict(list)
        self._translate(schedule, clique_data)
        for name, v in x.items():
            img, cmd = name.replace('x[', '').replace(']', '').split(',')
            if v.level()[0] > 0.5:
                schedule[img].append(cmd)
        saver(schedule)
Exemplo n.º 4
0
    def _update(self, clique_data, parent=None):
        for c in clique_data['cliques']:
            self.cliques[c['name']] = v = self.model.variable(
                c['name'], Domain.inRange(0.0, 1.0), Domain.isInteger())

            for img, cmd in product(c['images'], c['commands']):
                self.by_img_cmd[img, cmd].append(v)

            self._obj.append(Expr.mul(float(c['time']), v))

            if parent is not None:
                self.model.constraint(
                    'c-%s-%s' % (c['name'], parent['name']),
                    Expr.sub(v, self.cliques[parent['name']]),
                    Domain.lessThan(0.0))

            for child in c['children']:
                self._update(child, c)

        for inter in clique_data['intersections']:
            self.model.constraint('iter-%d' % self._inter,
                                  Expr.add([self.cliques[i] for i in inter]),
                                  Domain.lessThan(1.0))
            self._inter += 1
#
#    Image 2:
#        x_2_a = 1
#        x_2_b = 1
#        x_2_c = 1
#        x_2_d = 1
#
#    Image 3:
#        x_3_b = 1
#        x_3_c = 1
#        x_3_d = 1

r = {'A': 5.0, 'B': 10.0, 'C': 7.0, 'D': 12.0}

m = Model()
binary = (Domain.inRange(0.0, 1.0), Domain.isInteger())

# Provide a variable for each image and command. This is 1 if the command
# is not run as part of a clique for the image.
x_1_a = m.variable('x_1_a', *binary)
x_1_b = m.variable('x_1_b', *binary)

x_2_a = m.variable('x_2_a', *binary)
x_2_b = m.variable('x_2_b', *binary)
x_2_c = m.variable('x_2_c', *binary)
x_2_d = m.variable('x_2_d', *binary)

x_3_b = m.variable('x_3_b', *binary)
x_3_c = m.variable('x_3_c', *binary)
x_3_d = m.variable('x_3_d', *binary)
#
#    Images:
#        w_1 = 0
#        w_2 = 1
#        w_3 = 1
#
#    Commands:
#        y_a = 0
#        y_b = 1
#        y_c = 1
#        y_d = 1

r = {'A': 5.0, 'B': 10.0, 'C': 7.0, 'D': 12.0}

m = Model()
binary = (Domain.inRange(0.0, 1.0), Domain.isInteger())

# Variables to determine if we include commands in the clique.
y_a = m.variable('y_a', *binary)
y_b = m.variable('y_b', *binary)
y_c = m.variable('y_c', *binary)
y_d = m.variable('y_d', *binary)

# Variables to determine if we include images in the clique.
w_1 = m.variable('w_1', *binary)
w_2 = m.variable('w_2', *binary)
w_3 = m.variable('w_3', *binary)

# Variables to enforce relationships between y and w decisions.
z_1_a = m.variable('z_1_a', *binary)
z_1_b = m.variable('z_1_b', *binary)
Exemplo n.º 7
0
    def solve(self, problem, saver):
        # Construct model.
        self.problem = problem
        self.model = model = Model()
        if self.time is not None:
            model.setSolverParam('mioMaxTime', 60.0 * int(self.time))

        # x[1,c] = 1 if the master schedule has (null, c) in its first stage
        # x[s,c1,c2] = 1 if the master schedule has (c1, c2) in stage s > 1
        x = {}
        for s in problem.all_stages:
            if s == 1:
                # First arc in the individual image path.
                for c in problem.commands:
                    x[1, c] = model.variable('x[1,%s]' % c, 1,
                                             Domain.inRange(0.0, 1.0),
                                             Domain.isInteger())

            else:
                # Other arcs.
                for c1, c2 in product(problem.commands, problem.commands):
                    if c1 == c2:
                        continue
                    x[s, c1, c2] = model.variable('x[%s,%s,%s]' % (s, c1, c2),
                                                  1, Domain.inRange(0.0, 1.0),
                                                  Domain.isInteger())

        smax = max(problem.all_stages)
        obj = [0.0]

        # TODO: deal with images that do not have the same number of commands.
        # t[s,c] is the total time incurred at command c in stage s
        t = {}
        for s in problem.all_stages:
            for c in problem.commands:
                t[s, c] = model.variable('t[%s,%s]' % (c, s), 1,
                                         Domain.greaterThan(0.0))
                if s == 1:
                    model.constraint(
                        't[1,%s]' % c,
                        Expr.sub(t[1, c],
                                 Expr.mul(float(problem.commands[c]), x[1,
                                                                        c])),
                        Domain.greaterThan(0.0))
                else:
                    rhs = [0.0]
                    for c1, coeff in problem.commands.items():
                        if c1 == c:
                            continue
                        else:
                            rhs = Expr.add(
                                rhs, Expr.mulElm(t[s - 1, c1], x[s, c1, c]))
                    model.constraint('t[%s,%s]' % (s, c),
                                     Expr.sub(t[1, c], rhs),
                                     Domain.greaterThan(0.0))

                    # Objective function = sum of aggregate  comand times
                    if s == smax:
                        obj = Expr.add(obj, t[s, c])

        # y[i,1,c] = 1 if image i starts by going to c
        # y[i,s,c1,c2] = 1 if image i goes from command c1 to c2 in stage s > 1
        y = {}
        for i, cmds in problem.images.items():
            for s in problem.stages[i]:
                if s == 1:
                    # First arc in the individual image path.
                    for c in cmds:
                        y[i, 1, c] = model.variable('y[%s,1,%s]' % (i, c), 1,
                                                    Domain.inRange(0.0, 1.0),
                                                    Domain.isInteger())
                        model.constraint('x_y[i%s,1,c%s]' % (i, c),
                                         Expr.sub(x[1, c], y[i, 1, c]),
                                         Domain.greaterThan(0.0))

                else:
                    # Other arcs.
                    for c1, c2 in product(cmds, cmds):
                        if c1 == c2:
                            continue
                        y[i, s, c1, c2] = model.variable(
                            'y[%s,%s,%s,%s]' % (i, s, c1, c2), 1,
                            Domain.inRange(0.0, 1.0), Domain.isInteger())
                        model.constraint(
                            'x_y[i%s,s%s,c%s,c%s]' % (i, s, c1, c2),
                            Expr.sub(x[s, c1, c2], y[i, s, c1, c2]),
                            Domain.greaterThan(0.0))

            for c in cmds:
                # Each command is an arc destination exactly once.
                arcs = [y[i, 1, c]]
                for c1 in cmds:
                    if c1 == c:
                        continue
                    arcs.extend(
                        [y[i, s, c1, c] for s in problem.stages[i][1:]])

                model.constraint('y[i%s,c%s]' % (i, c), Expr.add(arcs),
                                 Domain.equalsTo(1.0))

                # Network balance equations (stages 2 to |stages|-1).
                # Sum of arcs in = sum of arcs out.
                for s in problem.stages[i][:len(problem.stages[i]) - 1]:
                    if s == 1:
                        arcs_in = [y[i, 1, c]]
                    else:
                        arcs_in = [y[i, s, c1, c] for c1 in cmds if c1 != c]

                    arcs_out = [y[i, s + 1, c, c2] for c2 in cmds if c2 != c]

                    model.constraint(
                        'y[i%s,s%s,c%s]' % (i, s, c),
                        Expr.sub(Expr.add(arcs_in), Expr.add(arcs_out)),
                        Domain.equalsTo(0.0))

        model.objective('z', ObjectiveSense.Minimize, Expr.add(x.values()))
        #        model.objective('z', ObjectiveSense.Minimize, obj)
        model.setLogHandler(sys.stdout)
        model.acceptedSolutionStatus(AccSolutionStatus.Feasible)
        model.solve()

        # Create optimal schedule.
        schedule = defaultdict(list)
        for i, cmds in problem.images.items():
            for s in problem.stages[i]:
                if s == 1:
                    # First stage starts our walk.
                    for c in cmds:
                        if y[i, s, c].level()[0] > 0.5:
                            schedule[i].append(c)
                            break
                else:
                    # After that we know what our starting point is.
                    for c2 in cmds:
                        if c2 == c:
                            continue
                        if y[i, s, c, c2].level()[0] > 0.5:
                            schedule[i].append(c2)
                            c = c2
                            break

        saver(schedule)
    def solve(self, problem, saver):
        # Construct model.
        self.problem = problem
        self.model = model = Model()
        if self.time is not None:
            model.setSolverParam('mioMaxTime', 60.0  * int(self.time))

        # x[1,c] = 1 if the master schedule has (null, c) in its first stage
        # x[s,c1,c2] = 1 if the master schedule has (c1, c2) in stage s > 1
        x = {}
        for s in problem.all_stages:
            if s == 1:
                # First arc in the individual image path.
                for c in problem.commands:
                    x[1,c] = model.variable(
                        'x[1,%s]' % c, 1,
                        Domain.inRange(0.0, 1.0),
                        Domain.isInteger()
                    )

            else:
                # Other arcs.
                for c1, c2 in product(problem.commands, problem.commands):
                    if c1 == c2:
                        continue
                    x[s,c1,c2] = model.variable(
                        'x[%s,%s,%s]' % (s,c1,c2), 1,
                        Domain.inRange(0.0, 1.0),
                        Domain.isInteger()
                    )

        smax = max(problem.all_stages)
        obj = [0.0]

        # TODO: deal with images that do not have the same number of commands.
        # t[s,c] is the total time incurred at command c in stage s
        t = {}
        for s in problem.all_stages:
            for c in problem.commands:
                t[s,c] = model.variable(
                    't[%s,%s]' % (c,s), 1,
                    Domain.greaterThan(0.0)
                )
                if s == 1:
                    model.constraint('t[1,%s]' % c,
                        Expr.sub(t[1,c], Expr.mul(float(problem.commands[c]), x[1,c])),
                        Domain.greaterThan(0.0)
                    )
                else:
                    rhs = [0.0]
                    for c1, coeff in problem.commands.items():
                        if c1 == c:
                            continue
                        else:
                            rhs = Expr.add(rhs, Expr.mulElm(t[s-1,c1], x[s,c1,c]))
                    model.constraint('t[%s,%s]' % (s,c),
                        Expr.sub(t[1,c], rhs),
                        Domain.greaterThan(0.0)
                    )

                    # Objective function = sum of aggregate  comand times
                    if s == smax:
                        obj = Expr.add(obj, t[s,c])

        # y[i,1,c] = 1 if image i starts by going to c
        # y[i,s,c1,c2] = 1 if image i goes from command c1 to c2 in stage s > 1
        y = {}
        for i, cmds in problem.images.items():
            for s in problem.stages[i]:
                if s == 1:
                    # First arc in the individual image path.
                    for c in cmds:
                        y[i,1,c] = model.variable(
                            'y[%s,1,%s]' % (i,c), 1,
                            Domain.inRange(0.0, 1.0),
                            Domain.isInteger()
                        )
                        model.constraint('x_y[i%s,1,c%s]' % (i,c),
                            Expr.sub(x[1,c], y[i,1,c]),
                            Domain.greaterThan(0.0)
                        )

                else:
                    # Other arcs.
                    for c1, c2 in product(cmds, cmds):
                        if c1 == c2:
                            continue
                        y[i,s,c1,c2] = model.variable(
                            'y[%s,%s,%s,%s]' % (i,s,c1,c2), 1,
                            Domain.inRange(0.0, 1.0),
                            Domain.isInteger()
                        )
                        model.constraint('x_y[i%s,s%s,c%s,c%s]' % (i,s,c1,c2),
                            Expr.sub(x[s,c1,c2], y[i,s,c1,c2]),
                            Domain.greaterThan(0.0)
                        )

            for c in cmds:
                # Each command is an arc destination exactly once.
                arcs = [y[i,1,c]]
                for c1 in cmds:
                    if c1 == c:
                        continue
                    arcs.extend([y[i,s,c1,c] for s in problem.stages[i][1:]])

                model.constraint('y[i%s,c%s]' % (i,c),
                    Expr.add(arcs),
                    Domain.equalsTo(1.0)
                )

                # Network balance equations (stages 2 to |stages|-1).
                # Sum of arcs in = sum of arcs out.
                for s in problem.stages[i][:len(problem.stages[i])-1]:
                    if s == 1:
                        arcs_in = [y[i,1,c]]
                    else:
                        arcs_in = [y[i,s,c1,c] for c1 in cmds if c1 != c]

                    arcs_out = [y[i,s+1,c,c2] for c2 in cmds if c2 != c]

                    model.constraint('y[i%s,s%s,c%s]' % (i,s,c),
                        Expr.sub(Expr.add(arcs_in), Expr.add(arcs_out)),
                        Domain.equalsTo(0.0)
                    )


        model.objective('z', ObjectiveSense.Minimize, Expr.add(x.values()))
#        model.objective('z', ObjectiveSense.Minimize, obj)
        model.setLogHandler(sys.stdout)
        model.acceptedSolutionStatus(AccSolutionStatus.Feasible)
        model.solve()

        # Create optimal schedule.
        schedule = defaultdict(list)
        for i, cmds in problem.images.items():
            for s in problem.stages[i]:
                if s == 1:
                    # First stage starts our walk.
                    for c in cmds:
                        if y[i,s,c].level()[0] > 0.5:
                            schedule[i].append(c)
                            break
                else:
                    # After that we know what our starting point is.
                    for c2 in cmds:
                        if c2 == c:
                            continue
                        if y[i,s,c,c2].level()[0] > 0.5:
                            schedule[i].append(c2)
                            c = c2
                            break

        saver(schedule)
    def solve(self, problem, saver):
        # Construct model.
        self.problem = problem
        self.model = model = Model()
        if self.time is not None:
            model.setSolverParam('mioMaxTime', 60.0  * int(self.time))

        # x[i,s,c] = 1 if image i runs command c during stage s, 0 otherwise.
        self.x = x = {}
        for i, cmds in problem.images.items():
            for s, c in product(problem.stages[i], cmds):
                x[i,s,c] = model.variable(
                    'x[%s,%s,%s]' % (i,s,c), 1,
                    Domain.inRange(0.0, 1.0),
                    Domain.isInteger()
                )

        # y[ip,iq,s,c] = 1 if images ip & iq have a shared path through stage
        #                s by running command c during s, 0 otherwise.
        y = {}
        for (ip, iq), cmds in problem.shared_cmds.items():
            for s, c in product(problem.shared_stages[ip, iq], cmds):
                y[ip,iq,s,c] = model.variable(
                    'y[%s,%s,%s,%s]' % (ip,iq,s,c), 1,
                    Domain.inRange(0.0, 1.0),
                    Domain.isInteger()
                    # Domain.inRange(0.0, 1.0)
                )

        # TODO: need to remove presolved commands so the heuristic doesn't try them.
        # TODO: Add a heuristic initial solution.
        # TODO: Presolving

        # Each image one command per stage, and each command once.
        for i in problem.images:
            for s in problem.stages[i]:
                model.constraint('c1[%s,%s]' % (i,s),
                    Expr.add([x[i,s,c] for c in problem.images[i]]),
                    Domain.equalsTo(1.0)
                )
            for c in problem.images[i]:
                model.constraint('c2[%s,%s]' % (i,c),
                    Expr.add([x[i,s,c] for s in problem.stages[i]]),
                    Domain.equalsTo(1.0)
                )

        # Find shared paths among image pairs.
        for (ip, iq), cmds in problem.shared_cmds.items():
            for s in problem.shared_stages[ip,iq]:
                for c in cmds:
                    model.constraint('c3[%s,%s,%s,%s]' % (ip,iq,s,c),
                        Expr.sub(y[ip,iq,s,c], x[ip,s,c]),
                        Domain.lessThan(0.0)
                    )
                    model.constraint('c4[%s,%s,%s,%s]' % (ip,iq,s,c),
                        Expr.sub(y[ip,iq,s,c], x[iq,s,c]),
                        Domain.lessThan(0.0)
                    )
                if s > 1:
                    lhs = Expr.add([y[ip,iq,s,c] for c in cmds])
                    rhs = Expr.add([y[ip,iq,s-1,c] for c in cmds])
                    model.constraint('c5[%s,%s,%s,%s]' % (ip,iq,s,c),
                        Expr.sub(lhs, rhs), Domain.lessThan(0.0)
                    )

        if y:
            obj = Expr.add(y.values())
        else:
            obj = 0.0
        model.objective('z', ObjectiveSense.Maximize, obj)
        model.setLogHandler(sys.stdout)
        model.acceptedSolutionStatus(AccSolutionStatus.Feasible)
        model.solve()

        # Create optimal schedule.
        schedule = defaultdict(list)
        for i, stages in problem.stages.items():
            for s in stages:
                for c in problem.images[i]:
                    if x[i,s,c].level()[0] > 0.5:
                        schedule[i].append(c)
                        break

        saver(schedule)