Exemplo n.º 1
0
def year_dist(final_year_dict): 
    df = pd.DataFrame(final_year_dict, columns = ['no_studies', 'year'])
    pos = list(range(len(df['no_studies'])))
    width = 0.25
    fig, ax = plt.subplots( figsize=(23,12))

    
    # Create a bar with riboseq files data in position pos,
    plt.bar(pos,df['no_studies'], width, alpha=1,color=redhex,linewidth=0,label="Number of studies")#df['readlengths'][0])

    # Set the y axis label
    ax.set_ylabel('Number of studies', labelpad=100,fontsize="21")
    ax.set_xlabel('Publication year',fontsize="21")
    # Set the chart's title
    ax.set_title("No. of studies per year",y=1.05,fontsize="25")

    # Set the position of the x ticks
    ax.set_xticks([p + 1 * width for p in pos])
    
    # Set the labels for the x ticks
    ax.set_xticklabels(df['year'])

    # Setting the x-axis and y-axis limits
    plt.xlim(min(pos)-width, max(pos)+width*4)
    plt.ylim([0, max(df['no_studies'])*1.1])


    ax.set_axis_bgcolor(background_col)
    ax.tick_params('both', labelsize=16)
    plt.grid(color="white", linewidth=2,linestyle="solid")
    plugins.connect(fig, plugins.TopToolbar(xoffset=-13, yoffset=115),plugins.DownloadPNG(returnstr="Study distribution by year"))
    return mpld3.fig_to_html(fig)
Exemplo n.º 2
0
def org_breakdown_plot(read_dict):
    df = pd.DataFrame(read_dict,
                      columns=['riboseq_files', 'rnaseq_files', 'organisms'])
    pos = list(range(len(df['riboseq_files'])))
    width = 0.25
    fig, ax = plt.subplots(figsize=(23, 12))

    # Create a bar with riboseq files data in position pos,
    plt.bar(pos,
            df['riboseq_files'],
            width,
            alpha=1,
            color=redhex,
            linewidth=0,
            label="Riboseq files")  #df['readlengths'][0])
    # Create a bar with rnaseq files data in position pos + some width buffer,
    plt.bar([p + width for p in pos],
            df['rnaseq_files'],
            width,
            alpha=1,
            color=greenhex,
            linewidth=0,
            label="Rnaseq files")

    # Set the y axis label
    ax.set_ylabel('Count', labelpad=100, fontsize="21")
    ax.set_xlabel('Organisms', fontsize="21")
    # Set the chart's title
    ax.set_title("No. of files per organism", y=1.05, fontsize="25")

    # Set the position of the x ticks
    ax.set_xticks([p + 1 * width for p in pos])

    # Set the labels for the x ticks
    ax.set_xticklabels(df['organisms'])

    # Setting the x-axis and y-axis limits
    plt.xlim(min(pos) - width, max(pos) + width * 4)
    plt.ylim([0, max(max(df['riboseq_files']), max(df['rnaseq_files'])) * 1.1])

    # Adding the legend and showing the plot
    leg = plt.legend(['Riboseq files', 'Rnaseq files'], loc='upper right')
    leg.get_frame().set_edgecolor('#D2D2EB')
    ax.set_axis_bgcolor(background_col)
    ax.tick_params('both', labelsize=16)
    plt.grid(color="white", linewidth=2, linestyle="solid")
    plugins.connect(fig, plugins.TopToolbar(xoffset=-13, yoffset=115),
                    plugins.DownloadPNG(returnstr="Organism breakdown"))
    return mpld3.fig_to_html(fig)
Exemplo n.º 3
0
def generate_plot(tran, ambig, min_read, max_read, master_filepath_dict, lite,
                  offset_dict, ribocoverage, organism, normalize, short_code,
                  background_col, hili_start, hili_stop, comp_uag_col,
                  comp_uga_col, comp_uaa_col, trips_annotation_location,
                  title_size, subheading_size, axis_label_size, marker_size,
                  cds_marker_size, cds_marker_colour, legend_size,
                  transcriptome):
    labels = []
    start_visible = []
    line_collections = []
    all_stops = ["TAG", "TAA", "TGA"]
    returnstr = "Position,"
    y_max = 50
    if normalize == True:
        y_max = 0

    connection = sqlite3.connect('{}/trips.sqlite'.format(config.SCRIPT_LOC))
    # connection = sqlite3.connect('/home/DATA/www/tripsviz/tripsviz/trips.sqlite')
    connection.text_factory = str
    cursor = connection.cursor()
    cursor.execute(
        "SELECT owner FROM organisms WHERE organism_name = '{}' and transcriptome_list = '{}';"
        .format(organism, transcriptome))
    owner = (cursor.fetchone())[0]
    if owner == 1:
        if os.path.isfile("{0}{1}/{1}.{2}.sqlite".format(
                config.ANNOTATION_DIR, organism, transcriptome)):
            transhelve = sqlite3.connect("{0}{1}/{1}.{2}.sqlite".format(
                config.ANNOTATION_DIR, organism, transcriptome))
        else:
            return "Cannot find annotation file {}.{}.sqlite".format(
                organism, transcriptome)
    else:
        transhelve = sqlite3.connect(
            "{0}transcriptomes/{1}/{2}/{3}/{2}_{3}.v2.sqlite".format(
                config.UPLOADS_DIR, owner, organism, transcriptome))
    cursor = transhelve.cursor()
    cursor.execute(
        "SELECT * from transcripts WHERE transcript = '{}'".format(tran))
    result = cursor.fetchone()
    traninfo = {
        "transcript": result[0],
        "gene": result[1],
        "length": result[2],
        "cds_start": result[3],
        "cds_stop": result[4],
        "seq": result[5],
        "strand": result[6],
        "stop_list": result[7].split(","),
        "start_list": result[8].split(","),
        "exon_junctions": result[9].split(","),
        "tran_type": result[10],
        "principal": result[11]
    }
    traninfo["stop_list"] = [int(x) for x in traninfo["stop_list"]]
    traninfo["start_list"] = [int(x) for x in traninfo["start_list"]]
    if str(traninfo["exon_junctions"][0]) != "":
        traninfo["exon_junctions"] = [
            int(x) for x in traninfo["exon_junctions"]
        ]
    else:
        traninfo["exon_junctions"] = []
    transhelve.close()
    gene = traninfo["gene"]
    tranlen = traninfo["length"]
    cds_start = traninfo["cds_start"]
    cds_stop = traninfo["cds_stop"]
    strand = traninfo["strand"]

    if cds_start == 'NULL' or cds_start == None:
        cds_start = 0
    if cds_stop == 'NULL' or cds_stop == None:
        cds_stop = 0

    all_starts = traninfo["start_list"]
    all_stops = {"TAG": [], "TAA": [], "TGA": []}
    seq = traninfo["seq"].upper()
    for i in range(0, len(seq)):
        if seq[i:i + 3] in all_stops:
            all_stops[seq[i:i + 3]].append(i + 1)
    start_stop_dict = {
        1: {
            "starts": [0],
            "stops": {
                "TGA": [0],
                "TAG": [0],
                "TAA": [0]
            }
        },
        2: {
            "starts": [0],
            "stops": {
                "TGA": [0],
                "TAG": [0],
                "TAA": [0]
            }
        },
        3: {
            "starts": [0],
            "stops": {
                "TGA": [0],
                "TAG": [0],
                "TAA": [0]
            }
        }
    }
    for start in all_starts:
        rem = ((start - 1) % 3) + 1
        start_stop_dict[rem]["starts"].append(start - 1)
    for stop in all_stops:
        for stop_pos in all_stops[stop]:
            rem = ((stop_pos - 1) % 3) + 1
            start_stop_dict[rem]["stops"][stop].append(stop_pos - 1)

    fig = plt.figure(figsize=(23, 12))
    ax_main = plt.subplot2grid((30, 1), (0, 0), rowspan=22)
    if normalize != True:
        label = 'Read count'
    else:
        label = 'Normalized read count'
    ax_main.set_ylabel(label, fontsize=axis_label_size, labelpad=30)
    label = 'Position (nucleotides)'
    ax_main.set_xlabel(label, fontsize=axis_label_size, labelpad=10)

    #if normalize is true work out the factors for each colour
    if normalize == True:
        all_mapped_reads = []
        for color in master_filepath_dict:
            all_mapped_reads.append(
                master_filepath_dict[color]["mapped_reads"])
        min_reads = float(min(all_mapped_reads))
        for color in master_filepath_dict:
            factor = min_reads / float(
                master_filepath_dict[color]["mapped_reads"])
            master_filepath_dict[color]["factor"] = factor

    # So items can be plotted alphabetically
    unsorted_list = []
    for color in master_filepath_dict:
        input_list = [
            color, master_filepath_dict[color]["file_names"],
            master_filepath_dict[color]["file_descs"],
            master_filepath_dict[color]["file_ids"],
            master_filepath_dict[color]["filepaths"],
            master_filepath_dict[color]["file_type"],
            master_filepath_dict[color]["minread"],
            master_filepath_dict[color]["maxread"]
        ]
        if "factor" in master_filepath_dict[color]:
            input_list.append(master_filepath_dict[color]["factor"])
        unsorted_list.append(input_list)

    sorted_list = sorted(unsorted_list, key=lambda x: x[1][0])
    returndict = {}
    for item in sorted_list:
        # needed to make get_reads accept file_paths
        file_paths = {"riboseq": {}}
        for i in range(0, len(item[3])):
            file_paths["riboseq"][item[3][i]] = item[4][i]
        file_names = item[1][0]
        file_descs = item[2]
        if item[5] == "riboseq":
            filename_reads, seqvar_dict = get_reads(ambig, item[6], item[7],
                                                    tran, file_paths, tranlen,
                                                    ribocoverage, organism,
                                                    False, False, "fiveprime",
                                                    "riboseq", 1)
        else:
            filename_reads, seqvar_dict = get_reads(ambig, item[6], item[7],
                                                    tran, file_paths, tranlen,
                                                    True, organism, False,
                                                    False, "fiveprime",
                                                    "riboseq", 1)
        if normalize == False:
            try:
                max_val = max(filename_reads.values()) * 1.1
                if max_val > y_max:
                    y_max = max_val
            except Exception as e:
                print "Error", e
                pass
            labels.append(file_names)
            start_visible.append(True)
            plot_filename = ax_main.plot(filename_reads.keys(),
                                         filename_reads.values(),
                                         alpha=1,
                                         label=labels,
                                         zorder=1,
                                         color=item[0],
                                         linewidth=3)
            line_collections.append(plot_filename)
            returndict[file_names] = {}
            for pos in filename_reads:
                returndict[file_names][pos] = filename_reads[pos]

        else:
            normalized_reads = {}
            print "Normalization is true, normalizing by factor", item[8]
            for pos in filename_reads:
                normalized_reads[pos] = filename_reads[pos] * item[8]
            try:
                max_val = max(normalized_reads.values()) * 1.1
                if max_val > y_max:
                    y_max = max_val
            except Exception as e:
                print "Error", e
                pass
            labels.append(file_names)
            start_visible.append(True)
            plot_filename = ax_main.plot(normalized_reads.keys(),
                                         normalized_reads.values(),
                                         alpha=1,
                                         label=labels,
                                         zorder=1,
                                         color=item[0],
                                         linewidth=3)

            line_collections.append(plot_filename)
            returndict[file_names] = {}
            for pos in filename_reads:
                returndict[file_names][pos] = normalized_reads[pos]

    for plot_filename in returndict:
        returnstr += "{},".format(plot_filename)
    returnstr += "\n"

    for i in range(0, tranlen):
        returnstr += "{},".format(i)
        for plot_filename in returndict:
            returnstr += "{},".format(returndict[plot_filename][i])
        returnstr += "\n"

    ax_main.set_ylim(0, y_max)
    # draw cds start
    plt.plot((cds_start, cds_start), (0, y_max),
             cds_marker_colour,
             linestyle=':',
             linewidth=cds_marker_size)

    # draw cds end
    plt.plot((cds_stop, cds_stop), (0, y_max),
             cds_marker_colour,
             linestyle=':',
             linewidth=cds_marker_size)
    ax_f1 = plt.subplot2grid((30, 1), (27, 0), rowspan=1, sharex=ax_main)
    ax_f1.set_axis_bgcolor('lightgray')
    ax_f2 = plt.subplot2grid((30, 1), (28, 0), rowspan=1, sharex=ax_main)
    ax_f2.set_axis_bgcolor('lightgray')
    ax_f6 = plt.subplot2grid((30, 1), (29, 0), rowspan=1, sharex=ax_main)
    ax_f6.set_axis_bgcolor('lightgray')
    ax_f6.set_xlabel('Transcript: {}   Length: {} nt'.format(tran, tranlen),
                     fontsize=subheading_size,
                     labelpad=10)

    for axis, frame in ((ax_f1, 1), (ax_f2, 2), (ax_f6, 3)):
        color = color_dict['frames'][frame - 1]
        axis.set_xlim(0, tranlen)
        starts = [(item, 1) for item in start_stop_dict[frame]['starts']]
        axis.broken_barh(starts, (0.5, 1),
                         color='white',
                         zorder=5,
                         linewidth=2)
        stops = [(item, 1) for item in start_stop_dict[frame]['stops']]
        uag_stops = [(item, 1)
                     for item in start_stop_dict[frame]['stops']['TAG']]
        uaa_stops = [(item, 1)
                     for item in start_stop_dict[frame]['stops']['TAA']]
        uga_stops = [(item, 1)
                     for item in start_stop_dict[frame]['stops']['TGA']]
        axis.broken_barh(uag_stops, (0, 1),
                         color=comp_uag_col,
                         zorder=2,
                         linewidth=2)
        axis.broken_barh(uaa_stops, (0, 1),
                         color=comp_uaa_col,
                         zorder=2,
                         linewidth=2)
        axis.broken_barh(uga_stops, (0, 1),
                         color=comp_uga_col,
                         zorder=2,
                         linewidth=2)
        axis.set_ylabel('{}'.format(frame),
                        rotation='horizontal',
                        labelpad=10,
                        verticalalignment='center')
        axis.set_ylim(0, 1)
        axis.tick_params(top=False,
                         left=False,
                         right=False,
                         bottom=False,
                         labeltop=False,
                         labelleft=False,
                         labelright=False,
                         labelbottom=False)
    ax_f6.axes.get_yaxis().set_ticks([])
    ax_f2.axes.get_yaxis().set_ticks([])
    ax_f1.axes.get_yaxis().set_ticks([])
    title_str = '{} ({})'.format(gene, short_code)
    plt.title(title_str, fontsize=title_size, y=36)

    if not (hili_start == 0 and hili_stop == 0):
        hili_start = int(hili_start)
        hili_stop = int(hili_stop)
        hili = ax_main.fill_between([hili_start, hili_stop], [y_max, y_max],
                                    zorder=0,
                                    alpha=0.75,
                                    color="#fffbaf")
        labels.append("Highligter")
        start_visible.append(True)
        line_collections.append(hili)

    leg_offset = (legend_size - 17) * 5
    if leg_offset < 0:
        leg_offset = 0
    leg_offset += 230
    ilp = plugins.InteractiveLegendPlugin(line_collections,
                                          labels,
                                          alpha_unsel=0.05,
                                          xoffset=leg_offset,
                                          yoffset=20,
                                          start_visible=start_visible,
                                          fontsize=legend_size)
    plugins.connect(fig, ilp, plugins.TopToolbar(yoffset=100),
                    plugins.DownloadProfile(returnstr=returnstr),
                    plugins.DownloadPNG(returnstr=title_str))
    ax_main.set_axis_bgcolor(background_col)
    # This changes the size of the tick markers, works on both firefox and chrome.
    ax_main.tick_params('both', labelsize=marker_size)
    ax_main.xaxis.set_major_locator(plt.MaxNLocator(3))
    ax_main.yaxis.set_major_locator(plt.MaxNLocator(3))
    ax_main.grid(color="white", linewidth=20, linestyle="solid")
    graph = "<div style='padding-left: 55px;padding-top: 22px;'> <a href='https://trips.ucc.ie/short/{0}' target='_blank' ><button class='button centerbutton' type='submit'><b>Direct link to this plot</b></button></a> </div>".format(
        short_code)

    graph += mpld3.fig_to_html(fig)
    return graph
Exemplo n.º 4
0
def generate_plot(tran, ambig, min_read, max_read, lite, ribocoverage,
                  organism, readscore, noisered, primetype, minfiles, nucseq,
                  user_hili_starts, user_hili_stops, uga_diff, file_paths_dict,
                  short_code, color_readlen_dist, background_col, uga_col,
                  uag_col, uaa_col, advanced, trips_annotation_location,
                  seqhili, seq_rules, title_size, subheading_size,
                  axis_label_size, marker_size, transcriptome,
                  trips_uploads_location, cds_marker_size, cds_marker_colour,
                  legend_size, ribo_linewidth, secondary_readscore, pcr,
                  mismatches, hili_start, hili_stop):
    if lite == "n" and ribocoverage == True:
        return "Error: Cannot display Ribo-Seq Coverage when 'Line Graph' is turned off"
    labels = [
        "Frame 1 profiles", "Frame 2 profiles", "Frame 3 profiles", "RNA",
        "Exon Junctions"
    ]
    start_visible = [True, True, True, True, False]
    if mismatches == True:
        labels.append("Mismatches A")
        labels.append("Mismatches T")
        labels.append("Mismatches G")
        labels.append("Mismatches C")
        start_visible.append(False)
        start_visible.append(False)
        start_visible.append(False)
        start_visible.append(False)
    start_visible.append(True)
    labels.append("CDS markers")
    #This is a list of booleans that decide if the interactive legends boxes are filled in or not.Needs to be same length as labels
    stop_codons = ["TAG", "TAA", "TGA"]
    frame_orfs = {1: [], 2: [], 3: []}
    connection = sqlite3.connect(
        '/home/DATA/www/tripsviz/tripsviz/trips.sqlite')
    connection.text_factory = str
    cursor = connection.cursor()
    cursor.execute(
        "SELECT owner FROM organisms WHERE organism_name = '{}' and transcriptome_list = '{}';"
        .format(organism, transcriptome))
    owner = (cursor.fetchone())[0]
    if owner == 1:
        transhelve = sqlite3.connect("{0}{1}/{1}.v2.sqlite".format(
            trips_annotation_location, organism))
    else:
        transhelve = sqlite3.connect(
            "{0}transcriptomes/{1}/{2}/{3}/{2}_{3}.v2.sqlite".format(
                trips_uploads_location, owner, organism, transcriptome))
    cursor = transhelve.cursor()
    cursor.execute(
        "SELECT * from transcripts WHERE transcript = '{}'".format(tran))
    result = cursor.fetchone()
    traninfo = {
        "transcript": result[0],
        "gene": result[1],
        "length": result[2],
        "cds_start": result[3],
        "cds_stop": result[4],
        "seq": result[5],
        "strand": result[6],
        "stop_list": result[7].split(","),
        "start_list": result[8].split(","),
        "exon_junctions": result[9].split(","),
        "tran_type": result[10],
        "principal": result[11]
    }
    try:
        traninfo["stop_list"] = [int(x) for x in traninfo["stop_list"]]
    except:
        traninfo["stop_list"] = []

    try:
        traninfo["start_list"] = [int(x) for x in traninfo["start_list"]]
    except:
        traninfo["start_list"] = []

    if str(traninfo["exon_junctions"][0]) != "":
        traninfo["exon_junctions"] = [
            int(x) for x in traninfo["exon_junctions"]
        ]
    else:
        traninfo["exon_junctions"] = []
    transhelve.close()
    gene = traninfo["gene"]
    tranlen = traninfo["length"]
    cds_start = traninfo["cds_start"]
    cds_stop = traninfo["cds_stop"]
    if cds_start == "NULL" or cds_start == None:
        cds_start = 0
    if cds_stop == "NULL" or cds_stop == None:
        cds_stop = 0
    all_starts = traninfo["start_list"]
    all_stops = {"TAG": [], "TAA": [], "TGA": []}
    exon_junctions = traninfo["exon_junctions"]
    seq = traninfo["seq"].upper()
    for i in range(0, len(seq)):
        if seq[i:i + 3] in stop_codons:
            all_stops[seq[i:i + 3]].append(i + 1)
    # Error occurs if one of the frames is empty for any given start/stop, so we initialise with -5 as this won't be seen by user and will prevent the error
    start_stop_dict = {
        1: {
            "starts": [-5],
            "stops": {
                "TGA": [-5],
                "TAG": [-5],
                "TAA": [-5]
            }
        },
        2: {
            "starts": [-5],
            "stops": {
                "TGA": [-5],
                "TAG": [-5],
                "TAA": [-5]
            }
        },
        3: {
            "starts": [-5],
            "stops": {
                "TGA": [-5],
                "TAG": [-5],
                "TAA": [-5]
            }
        }
    }
    for start in all_starts:
        rem = ((start - 1) % 3) + 1
        start_stop_dict[rem]["starts"].append(start)
    for stop in all_stops:
        for stop_pos in all_stops[stop]:
            rem = ((stop_pos - 1) % 3) + 1
            start_stop_dict[rem]["stops"][stop].append(stop_pos)
    #find all open reading frames
    for frame in [1, 2, 3]:
        for start in start_stop_dict[frame]["starts"]:
            best_stop_pos = 10000000
            for stop in start_stop_dict[frame]["stops"]:
                for stop_pos in start_stop_dict[frame]["stops"][stop]:
                    if stop_pos > start and stop_pos < best_stop_pos:
                        best_stop_pos = stop_pos
            if best_stop_pos != 10000000:
                frame_orfs[frame].append((start, best_stop_pos))
    all_rna_reads, rna_seqvar_dict = get_reads(ambig,
                                               min_read,
                                               max_read,
                                               tran,
                                               file_paths_dict,
                                               tranlen,
                                               True,
                                               organism,
                                               False,
                                               noisered,
                                               primetype,
                                               "rnaseq",
                                               readscore,
                                               pcr,
                                               get_mismatches=mismatches)
    all_subcodon_reads, ribo_seqvar_dict = get_reads(ambig,
                                                     min_read,
                                                     max_read,
                                                     tran,
                                                     file_paths_dict,
                                                     tranlen,
                                                     ribocoverage,
                                                     organism,
                                                     True,
                                                     noisered,
                                                     primetype,
                                                     "riboseq",
                                                     readscore,
                                                     secondary_readscore,
                                                     pcr,
                                                     get_mismatches=mismatches)
    seq_var_dict = merge_dicts(ribo_seqvar_dict, rna_seqvar_dict)
    try:
        rnamax = max(all_rna_reads.values())
    except:
        rnamax = 0
    try:
        subcodonmax = max(all_subcodon_reads.values())
    except:
        subcodonmax = 0

    y_max = max(1, rnamax, subcodonmax) * 1.1
    fig = plt.figure(figsize=(23, 12))
    ax_main = plt.subplot2grid((30, 1), (0, 0), rowspan=22)
    ax_main.spines['bottom'].set_visible(False)
    alt_seq_type_vars = []
    # Plot any alternative sequence types if there are any
    for seq_type in file_paths_dict:
        if seq_type != "riboseq" and seq_type != "rnaseq":
            if seq_rules[seq_type]["frame_breakdown"] == 1:
                frame_breakdown = True
            else:
                frame_breakdown = False
            alt_sequence_reads, empty_seqvar_dict = get_reads(
                ambig, min_read, max_read, tran, file_paths_dict, tranlen,
                True, organism, frame_breakdown, noisered, primetype, seq_type,
                readscore)

            if frame_breakdown == False:
                alt_seq_plot = ax_main.plot(alt_sequence_reads.keys(),
                                            alt_sequence_reads.values(),
                                            alpha=1,
                                            label=seq_type,
                                            zorder=2,
                                            color='lightblue',
                                            linewidth=2)
                labels.append(seq_type)
                start_visible.append(True)
                alt_seq_type_vars.append(alt_seq_plot)
            else:
                alt_frame_counts = {
                    0: collections.OrderedDict(),
                    1: collections.OrderedDict(),
                    2: collections.OrderedDict()
                }
                for key in alt_sequence_reads:
                    start = key
                    rem = start % 3
                    if rem == 1:  # frame 1
                        frame = 2
                    elif rem == 2:  # frame 2
                        frame = 0
                    elif rem == 0:  # frame 3
                        frame = 1
                    alt_frame_counts[frame][key] = alt_sequence_reads[key]
                frame0_altseqplot = ax_main.plot(alt_frame_counts[0].keys(),
                                                 alt_frame_counts[0].values(),
                                                 alpha=0.75,
                                                 label=seq_type + "frame0",
                                                 zorder=2,
                                                 color="#FF4A45",
                                                 linewidth=2)
                frame1_altseqplot = ax_main.plot(alt_frame_counts[1].keys(),
                                                 alt_frame_counts[1].values(),
                                                 alpha=0.75,
                                                 label=seq_type + "frame1",
                                                 zorder=2,
                                                 color="#64FC44",
                                                 linewidth=2)
                frame2_altseqplot = ax_main.plot(alt_frame_counts[2].keys(),
                                                 alt_frame_counts[2].values(),
                                                 alpha=0.75,
                                                 label=seq_type + "frame2*",
                                                 zorder=2,
                                                 color="#5687F9",
                                                 linewidth=2)
                labels.append(seq_type + "frame 1")
                labels.append(seq_type + "frame 2")
                labels.append(seq_type + "frame 3")
                start_visible.append(True)
                start_visible.append(True)
                start_visible.append(True)
                alt_seq_type_vars.append(frame0_altseqplot)
                alt_seq_type_vars.append(frame1_altseqplot)
                alt_seq_type_vars.append(frame2_altseqplot)
            if max(alt_sequence_reads.values()) > y_max:
                y_max = max(alt_sequence_reads.values())

    label = 'Read count'
    ax_main.set_ylabel(label, fontsize=axis_label_size, labelpad=30)
    label = 'Position (nucleotides)'
    ax_main.set_xlabel(label, fontsize=axis_label_size)
    ax_main.set_ylim(0, y_max)

    if lite == "n":
        rna_bars = ax_main.bar(all_rna_reads.keys(),
                               all_rna_reads.values(),
                               alpha=1,
                               label=labels,
                               zorder=1,
                               color='lightgray',
                               linewidth=0,
                               width=1)
    else:
        rna_bars = ax_main.plot(all_rna_reads.keys(),
                                all_rna_reads.values(),
                                alpha=1,
                                label=labels,
                                zorder=1,
                                color='#a7adb7',
                                linewidth=4)
    #if lite == "n":
    #	all_profiles = ax_main.bar(all_ribo_reads.keys(), all_ribo_reads.values(), alpha=0.01, label = labels, zorder=2, color='crimson', linewidth=0,width=1)
    #else:
    #	all_profiles = ax_main.plot(all_ribo_reads.keys(), all_ribo_reads.values(), alpha=0.01, label = labels, zorder=2, color='crimson', linewidth=1)
    cds_markers = ax_main.plot((cds_start + 1, cds_start + 1), (0, y_max),
                               color=cds_marker_colour,
                               linestyle='solid',
                               linewidth=cds_marker_size)
    cds_markers += ax_main.plot((cds_stop + 1, cds_stop + 1), (0, y_max),
                                color=cds_marker_colour,
                                linestyle='solid',
                                linewidth=cds_marker_size)
    ax_f1 = plt.subplot2grid((30, 1), (26, 0), rowspan=1, sharex=ax_main)
    ax_f1.set_axis_bgcolor(color_dict['frames'][0])
    ax_f2 = plt.subplot2grid((30, 1), (27, 0), rowspan=1, sharex=ax_main)
    ax_f2.set_axis_bgcolor(color_dict['frames'][1])
    ax_f3 = plt.subplot2grid((30, 1), (28, 0), rowspan=1, sharex=ax_main)
    ax_f3.set_axis_bgcolor(color_dict['frames'][2])
    ax_nucseq = plt.subplot2grid((30, 1), (29, 0), rowspan=1, sharex=ax_main)
    ax_nucseq.set_xlabel('Transcript: {} Length: {} nt'.format(tran, tranlen),
                         fontsize=subheading_size,
                         labelpad=10)

    #plot a dummy exon junction at postion -1, needed in cases there are no exon junctions, this wont be seen
    allexons = ax_main.plot((-1, -1), (0, 1),
                            alpha=0.01,
                            color='black',
                            linestyle='-.',
                            linewidth=2)
    for exon in exon_junctions:
        allexons += ax_main.plot((exon, exon), (0, y_max),
                                 alpha=0.01,
                                 color='black',
                                 linestyle='-.',
                                 linewidth=3)

    #dictionary for each frame in which the keys are the posistions and the values are the counts
    frame_counts = {
        0: collections.OrderedDict(),
        1: collections.OrderedDict(),
        2: collections.OrderedDict()
    }
    for key in all_subcodon_reads:
        rem = key % 3
        if rem == 1:  # frame 1
            frame = 2
        elif rem == 2:  # frame 2
            frame = 0
        elif rem == 0:  # frame 3
            frame = 1
        frame_counts[frame][key] = all_subcodon_reads[key]
        if lite == "n":
            frame_counts[frame][key + 1] = 0
            frame_counts[frame][key + 2] = 0

    if lite == "n":
        frame0subpro = ax_main.bar(frame_counts[0].keys(),
                                   frame_counts[0].values(),
                                   alpha=0.75,
                                   label=labels,
                                   zorder=2,
                                   color="#FF4A45",
                                   width=1,
                                   linewidth=0)
        frame1subpro = ax_main.bar(frame_counts[1].keys(),
                                   frame_counts[1].values(),
                                   alpha=0.75,
                                   label=labels,
                                   zorder=2,
                                   color="#64FC44",
                                   width=1,
                                   linewidth=0)
        frame2subpro = ax_main.bar(frame_counts[2].keys(),
                                   frame_counts[2].values(),
                                   alpha=0.75,
                                   label=labels,
                                   zorder=2,
                                   color="#5687F9",
                                   width=1,
                                   linewidth=0)
    else:
        frame0subpro = ax_main.plot(frame_counts[0].keys(),
                                    frame_counts[0].values(),
                                    alpha=0.75,
                                    label=labels,
                                    zorder=2,
                                    color="#FF4A45",
                                    linewidth=ribo_linewidth)
        frame1subpro = ax_main.plot(frame_counts[1].keys(),
                                    frame_counts[1].values(),
                                    alpha=0.75,
                                    label=labels,
                                    zorder=2,
                                    color="#64FC44",
                                    linewidth=ribo_linewidth)
        frame2subpro = ax_main.plot(frame_counts[2].keys(),
                                    frame_counts[2].values(),
                                    alpha=0.75,
                                    label=labels,
                                    zorder=2,
                                    color="#5687F9",
                                    linewidth=ribo_linewidth)
    if mismatches == True:
        a_mismatches = ax_main.plot(seq_var_dict["A"].keys(),
                                    seq_var_dict["A"].values(),
                                    alpha=0.01,
                                    label=labels,
                                    zorder=2,
                                    color="purple",
                                    linewidth=2)
        t_mismatches = ax_main.plot(seq_var_dict["T"].keys(),
                                    seq_var_dict["T"].values(),
                                    alpha=0.01,
                                    label=labels,
                                    zorder=2,
                                    color="yellow",
                                    linewidth=2)
        g_mismatches = ax_main.plot(seq_var_dict["G"].keys(),
                                    seq_var_dict["G"].values(),
                                    alpha=0.01,
                                    label=labels,
                                    zorder=2,
                                    color="orange",
                                    linewidth=2)
        c_mismatches = ax_main.plot(seq_var_dict["C"].keys(),
                                    seq_var_dict["C"].values(),
                                    alpha=0.01,
                                    label=labels,
                                    zorder=2,
                                    color="pink",
                                    linewidth=2)

    xy = 0
    if nucseq == True:
        ax_nucseq.set_axis_bgcolor(background_col)
        mrnaseq = seq.replace("T", "U")
        for char in mrnaseq:
            ax_nucseq.text((xy + 1) - 0.1,
                           0.2,
                           mrnaseq[xy],
                           fontsize=20,
                           color="grey")
            xy += 1

    # If the user passed a list of sequences to highlight, find and plot them here.
    if seqhili != ['']:
        near_cog_starts, signalhtml = get_user_defined_seqs(seq, seqhili)
        for slip in near_cog_starts[0]:
            try:
                hili_sequences += ax_f1.plot((slip, slip), (0, 0.5),
                                             alpha=1,
                                             label=labels,
                                             zorder=4,
                                             color='black',
                                             linewidth=5)
            except Exception as e:
                hili_sequences = ax_f1.plot((slip, slip), (0, 0.5),
                                            alpha=1,
                                            label=labels,
                                            zorder=4,
                                            color='black',
                                            linewidth=5)
        for slip in near_cog_starts[1]:
            try:
                hili_sequences += ax_f2.plot((slip, slip), (0, 0.5),
                                             alpha=1,
                                             label=labels,
                                             zorder=4,
                                             color='black',
                                             linewidth=5)
            except:
                hili_sequences = ax_f2.plot((slip, slip), (0, 0.5),
                                            alpha=1,
                                            label=labels,
                                            zorder=4,
                                            color='black',
                                            linewidth=5)
        for slip in near_cog_starts[2]:
            try:
                hili_sequences += ax_f3.plot((slip, slip), (0, 0.5),
                                             alpha=1,
                                             label=labels,
                                             zorder=4,
                                             color='black',
                                             linewidth=5)
            except:
                hili_sequences = ax_f3.plot((slip, slip), (0, 0.5),
                                            alpha=1,
                                            label=labels,
                                            zorder=4,
                                            color='black',
                                            linewidth=5)

        #Plot sequence identifiers which will create a popup telling user what the subsequence is (useful if they have passed multiple subsequences)
        frame1_subsequences = ax_f1.plot(near_cog_starts[0],
                                         [0.25] * len(near_cog_starts[0]),
                                         'o',
                                         color='b',
                                         mec='k',
                                         ms=12,
                                         mew=1,
                                         alpha=0,
                                         zorder=4)
        frame2_subsequences = ax_f2.plot(near_cog_starts[1],
                                         [0.25] * len(near_cog_starts[1]),
                                         'o',
                                         color='b',
                                         mec='k',
                                         ms=12,
                                         mew=1,
                                         alpha=0,
                                         zorder=4)
        frame3_subsequences = ax_f3.plot(near_cog_starts[2],
                                         [0.25] * len(near_cog_starts[2]),
                                         'o',
                                         color='b',
                                         mec='k',
                                         ms=12,
                                         mew=1,
                                         alpha=0,
                                         zorder=4)

        #Attach the labels to the subsequences plotted above
        signaltooltip1 = plugins.PointHTMLTooltip(frame1_subsequences[0],
                                                  signalhtml[0],
                                                  voffset=10,
                                                  hoffset=10,
                                                  css=point_tooltip_css)
        signaltooltip2 = plugins.PointHTMLTooltip(frame2_subsequences[0],
                                                  signalhtml[1],
                                                  voffset=10,
                                                  hoffset=10,
                                                  css=point_tooltip_css)
        signaltooltip3 = plugins.PointHTMLTooltip(frame3_subsequences[0],
                                                  signalhtml[2],
                                                  voffset=10,
                                                  hoffset=10,
                                                  css=point_tooltip_css)
    for axisname in (ax_f1, ax_f2, ax_f3, ax_nucseq):
        axisname.tick_params(top=False,
                             bottom=False,
                             labelleft=False,
                             labelright=False,
                             labelbottom=False)
    for label in ax_main.xaxis.get_majorticklabels():
        label.set_fontsize(36)
    for axis, frame in ((ax_f1, 1), (ax_f2, 2), (ax_f3, 3)):
        axis.set_xlim(1, tranlen)
        starts = [(item, 1) for item in start_stop_dict[frame]['starts']]
        uag_stops = [(item, 1)
                     for item in start_stop_dict[frame]['stops']['TAG']]
        uaa_stops = [(item, 1)
                     for item in start_stop_dict[frame]['stops']['TAA']]
        uga_stops = [(item, 1)
                     for item in start_stop_dict[frame]['stops']['TGA']]
        axis.broken_barh(starts, (0.5, 1), color="white", zorder=2)
        axis.broken_barh(uag_stops, (0, 1),
                         color=uag_col,
                         zorder=2,
                         linewidth=2)
        axis.broken_barh(uaa_stops, (0, 1),
                         color=uaa_col,
                         zorder=2,
                         linewidth=2)
        axis.broken_barh(uga_stops, (0, 1),
                         color=uga_col,
                         zorder=2,
                         linewidth=2)
        axis.set_ylim(0, 1)
        axis.set_ylabel('{}'.format(frame),
                        labelpad=10,
                        verticalalignment='center',
                        rotation="horizontal",
                        color="black")
    title_str = '{} ({})'.format(gene, short_code)
    plt.title(title_str, fontsize=title_size, y=36)
    line_collections = [
        frame0subpro, frame1subpro, frame2subpro, rna_bars, allexons
    ]

    if mismatches == True:
        line_collections.append(a_mismatches)
        line_collections.append(t_mismatches)
        line_collections.append(g_mismatches)
        line_collections.append(c_mismatches)
    line_collections.append(cds_markers)

    if not (hili_start == 0 and hili_stop == 0):
        hili_start = int(hili_start)
        hili_stop = int(hili_stop)
        hili = ax_main.fill_between([hili_start, hili_stop], [y_max, y_max],
                                    zorder=0,
                                    alpha=0.75,
                                    color="#fffbaf")
        labels.append("Highligted region")
        start_visible.append(True)
        line_collections.append(hili)

    for alt_plot in alt_seq_type_vars:
        line_collections.append(alt_plot)
    if 'hili_sequences' in locals():
        labels.append("Highligted sequences")
        start_visible.append(True)
        line_collections.append(hili_sequences)
    if user_hili_starts != [] and user_hili_stops != []:
        for i in range(0, len(user_hili_starts)):
            user_hili_start = int(user_hili_starts[i])
            user_hili_stop = int(user_hili_stops[i])
            try:
                hili += ax_main.fill_between([user_hili_start, user_hili_stop],
                                             [y_max, y_max],
                                             alpha=0.75,
                                             color="#fffbaf")
            except:
                hili = ax_main.fill_between([user_hili_start, user_hili_stop],
                                            [y_max, y_max],
                                            alpha=0.75,
                                            color="#fffbaf")
        labels.append("Highligter")
        start_visible.append(True)
        line_collections.append(hili)

    leg_offset = (legend_size - 17) * 5
    if leg_offset < 0:
        leg_offset = 0

    ilp = plugins.InteractiveLegendPlugin(line_collections,
                                          labels,
                                          alpha_unsel=0,
                                          alpha_sel=0.85,
                                          start_visible=start_visible,
                                          fontsize=legend_size,
                                          xoffset=leg_offset)
    htmllabels = {1: [], 2: [], 3: []}
    all_start_points = {1: [], 2: [], 3: []}
    try:
        con_scores = SqliteDict("{0}homo_sapiens/score_dict.sqlite".format(
            trips_annotation_location))
    except Exception as e:
        print "Couldn't open conservation scores " + e
        con_scores = []
    for frame in [1, 2, 3]:
        orf_list = frame_orfs[frame]
        for tup in orf_list:
            orf_ribo = 0.0
            outframe_ribo = 0.0
            orf_rna = 0.0001
            start = tup[0]
            try:
                context = (seq[start - 7:start + 4].upper()).replace("T", "U")
            except Exception as e:
                con_score = "?"
            if len(context) != 11 or context[6:9] != "AUG":
                con_score = "?"
            else:
                try:
                    con_score = con_scores[context.upper()]
                except Exception as e:
                    con_score = "?"
            all_start_points[frame].append(start - 1)
            stop = tup[1]
            other_ribo = 0.0
            otherother_ribo = 0.0
            for i in range(start + 2, stop, 3):
                for subframe in [0, 1, 2]:
                    if i in frame_counts[subframe]:
                        orf_ribo += frame_counts[subframe][i]

            for i in range(start, stop, 3):
                for subframe in [0, 1, 2]:
                    if i in frame_counts[subframe]:
                        outframe_ribo += frame_counts[subframe][i]

            for i in range(start + 1, stop, 3):
                for subframe in [0, 1, 2]:
                    if i in frame_counts[subframe]:
                        outframe_ribo += frame_counts[subframe][i]

            for i in range(start, stop + 1):
                if i in all_rna_reads:
                    orf_rna += all_rna_reads[i]

            orf_te = float(orf_ribo) / float(orf_rna)
            orf_len = int(stop - start)

            try:
                in_out_ratio = orf_ribo / outframe_ribo
            except:
                in_out_ratio = "Null"

            datadict = {
                'inframe ribo': [orf_ribo],
                'outframe ribo': [outframe_ribo],
                'in/out ratio': [in_out_ratio],
                'rna': [orf_rna],
                'te': [orf_te],
                'len': [orf_len],
                'context_score': [str(con_score) + "/150"]
            }
            df = pd.DataFrame(datadict,
                              columns=([
                                  "inframe ribo", "outframe ribo",
                                  "in/out ratio", "rna", "te", "len",
                                  "context_score"
                              ]))
            label = df.ix[[0], :].T
            label.columns = ["Start pos: {}".format(start - 1)]
            htmllabels[frame].append(str(label.to_html()))

    points1 = ax_f1.plot(all_start_points[1],
                         [0.75] * len(all_start_points[1]),
                         'o',
                         color='b',
                         mec='k',
                         ms=13,
                         mew=1,
                         alpha=0,
                         zorder=3)
    points2 = ax_f2.plot(all_start_points[2],
                         [0.75] * len(all_start_points[2]),
                         'o',
                         color='b',
                         mec='k',
                         ms=13,
                         mew=1,
                         alpha=0,
                         zorder=3)
    points3 = ax_f3.plot(all_start_points[3],
                         [0.75] * len(all_start_points[3]),
                         'o',
                         color='b',
                         mec='k',
                         ms=13,
                         mew=1,
                         alpha=0,
                         zorder=3)

    tooltip1 = plugins.PointHTMLTooltip(points1[0],
                                        htmllabels[1],
                                        voffset=10,
                                        hoffset=10,
                                        css=point_tooltip_css)
    tooltip2 = plugins.PointHTMLTooltip(points2[0],
                                        htmllabels[2],
                                        voffset=10,
                                        hoffset=10,
                                        css=point_tooltip_css)
    tooltip3 = plugins.PointHTMLTooltip(points3[0],
                                        htmllabels[3],
                                        voffset=10,
                                        hoffset=10,
                                        css=point_tooltip_css)

    ax_f3.axes.get_yaxis().set_ticks([])
    ax_f2.axes.get_yaxis().set_ticks([])
    ax_f1.axes.get_yaxis().set_ticks([])

    returnstr = "Position,Sequence,Frame 1,Frame 2, Frame 3,RNA-Seq\n"
    for i in range(0, len(seq)):
        f1_count = 0
        f2_count = 0
        f3_count = 0
        rna_count = 0
        if i + 1 in frame_counts[0]:
            f1_count = frame_counts[0][i + 1]
        elif i + 1 in frame_counts[1]:
            f2_count = frame_counts[1][i + 1]
        elif i + 1 in frame_counts[2]:
            f3_count = frame_counts[2][i + 1]
        if i + 1 in all_rna_reads:
            rna_count = all_rna_reads[i + 1]
        returnstr += "{},{},{},{},{},{}\n".format(i + 1, seq[i], f1_count,
                                                  f2_count, f3_count,
                                                  rna_count)

    if seqhili == ['']:
        plugins.connect(fig, ilp, tooltip1, tooltip2, tooltip3,
                        plugins.TopToolbar(yoffset=100),
                        plugins.DownloadProfile(returnstr=returnstr),
                        plugins.DownloadPNG(returnstr=title_str))
    else:
        plugins.connect(fig, ilp, tooltip1, tooltip2, tooltip3, signaltooltip1,
                        signaltooltip2, signaltooltip3,
                        plugins.TopToolbar(yoffset=100),
                        plugins.DownloadProfile(returnstr=returnstr),
                        plugins.DownloadPNG(returnstr=title_str))

    ax_main.set_axis_bgcolor(background_col)
    # This changes the size of the tick markers, works on both firefox and chrome.
    ax_main.tick_params('both', labelsize=marker_size)
    ax_main.xaxis.set_major_locator(plt.MaxNLocator(3))
    ax_main.yaxis.set_major_locator(plt.MaxNLocator(3))
    ax_main.grid(True, color="white", linewidth=30, linestyle="solid")
    #Without this style tag the markers sizes will appear correct on browser but be original size when downloaded via png
    graph = "<style>.mpld3-xaxis {{font-size: {0}px;}} .mpld3-yaxis {{font-size: {0}px;}}</style>".format(
        marker_size)
    graph += "<div style='padding-left: 55px;padding-top: 22px;'> <a href='https://trips.ucc.ie/short/{0}' target='_blank' ><button class='button centerbutton' type='submit'><b>Direct link to this plot</b></button></a> </div>".format(
        short_code)
    graph += mpld3.fig_to_html(fig)
    return graph