Exemplo n.º 1
0
class SARSALambdaContinuous(TD):
    """
    Continuous version of SARSA(lambda) algorithm.

    """
    def __init__(self, approximator, policy, mdp_info, params, features):
        self.Q = Regressor(approximator, **params['approximator_params'])
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = params['algorithm_params']['lambda']

        super(SARSALambdaContinuous, self).__init__(self.Q, policy, mdp_info,
                                                    params, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        q_current = self.Q.predict(phi_state, action)

        alpha = self.alpha(state, action)

        self.e = self.mdp_info.gamma * self._lambda * self.e + self.Q.diff(
            phi_state, action)

        self._next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self._next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - q_current

        theta = self.Q.get_weights()
        theta += alpha * delta * self.e
        self.Q.set_weights(theta)

    def episode_start(self):
        self.e = np.zeros(self.Q.weights_size)
Exemplo n.º 2
0
class SARSALambdaContinuous(TD):
    """
    Continuous version of SARSA(lambda) algorithm.

    """
    def __init__(self,
                 approximator,
                 policy,
                 mdp_info,
                 learning_rate,
                 lambda_coeff,
                 features,
                 approximator_params=None):
        """
        Constructor.

        Args:
            lambda_coeff (float): eligibility trace coefficient.

        """
        self._approximator_params = dict() if approximator_params is None else \
            approximator_params

        self.Q = Regressor(approximator, **self._approximator_params)
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = lambda_coeff

        super().__init__(self.Q, policy, mdp_info, learning_rate, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        q_current = self.Q.predict(phi_state, action)

        alpha = self.alpha(state, action)

        self.e = self.mdp_info.gamma * self._lambda * self.e + self.Q.diff(
            phi_state, action)

        self.next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self.next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - q_current

        theta = self.Q.get_weights()
        theta += alpha * delta * self.e
        self.Q.set_weights(theta)

    def episode_start(self):
        self.e = np.zeros(self.Q.weights_size)

        super().episode_start()
Exemplo n.º 3
0
class SARSALambdaContinuous(TD):
    """
    Continuous version of SARSA(lambda) algorithm.

    """
    def __init__(self, approximator, policy, mdp_info, learning_rate,
                 lambda_coeff, features, approximator_params=None):
        """
        Constructor.

        Args:
            lambda_coeff (float): eligibility trace coefficient.

        """
        self._approximator_params = dict() if approximator_params is None else \
            approximator_params

        self.Q = Regressor(approximator, **self._approximator_params)
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = lambda_coeff

        super(SARSALambdaContinuous, self).__init__(self.Q, policy, mdp_info,
                                                    learning_rate, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        q_current = self.Q.predict(phi_state, action)

        alpha = self.alpha(state, action)

        self.e = self.mdp_info.gamma * self._lambda * self.e + self.Q.diff(
            phi_state, action)

        self.next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self.next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - q_current

        theta = self.Q.get_weights()
        theta += alpha * delta * self.e
        self.Q.set_weights(theta)

    def episode_start(self):
        self.e = np.zeros(self.Q.weights_size)
Exemplo n.º 4
0
import numpy as np
from matplotlib import pyplot as plt

from mushroom.approximators import Regressor
from mushroom.approximators.parametric import LinearApproximator


x = np.arange(10).reshape(-1, 1)

intercept = 10
noise = np.random.randn(10, 1) * 1
y = 2 * x + intercept + noise

phi = np.concatenate((np.ones(10).reshape(-1, 1), x), axis=1)

regressor = Regressor(LinearApproximator,
                      input_shape=(2,),
                      output_shape=(1,))

regressor.fit(phi, y)

print('Weights: ' + str(regressor.get_weights()))
print('Gradient: ' + str(regressor.diff(np.array([[5.]]))))

plt.scatter(x, y)
plt.plot(x, regressor.predict(phi))
plt.show()
Exemplo n.º 5
0
import numpy as np
from matplotlib import pyplot as plt

from mushroom.approximators import Regressor
from mushroom.approximators.parametric import LinearApproximator

x = np.arange(10).reshape(-1, 1)

intercept = 10
noise = np.random.randn(10, 1) * 1
y = 2 * x + intercept + noise

phi = np.concatenate((np.ones(10).reshape(-1, 1), x), axis=1)

regressor = Regressor(LinearApproximator,
                      input_shape=(2, ),
                      output_shape=(1, ))

regressor.fit(phi, y)

print('Weights: ' + str(regressor.get_weights()))
print('Gradient: ' + str(regressor.diff(np.array([[5.]]))))

plt.scatter(x, y)
plt.plot(x, regressor.predict(phi))
plt.show()