Exemplo n.º 1
0
class SARSALambdaContinuous(TD):
    """
    Continuous version of SARSA(lambda) algorithm.

    """
    def __init__(self, approximator, policy, mdp_info, params, features):
        self.Q = Regressor(approximator, **params['approximator_params'])
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = params['algorithm_params']['lambda']

        super(SARSALambdaContinuous, self).__init__(self.Q, policy, mdp_info,
                                                    params, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        q_current = self.Q.predict(phi_state, action)

        alpha = self.alpha(state, action)

        self.e = self.mdp_info.gamma * self._lambda * self.e + self.Q.diff(
            phi_state, action)

        self._next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self._next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - q_current

        theta = self.Q.get_weights()
        theta += alpha * delta * self.e
        self.Q.set_weights(theta)

    def episode_start(self):
        self.e = np.zeros(self.Q.weights_size)
Exemplo n.º 2
0
class TrueOnlineSARSALambda(TD):
    """
    True Online SARSA(lambda) with linear function approximation.
    "True Online TD(lambda)". Seijen H. V. et al.. 2014.

    """
    def __init__(self, policy, mdp_info, learning_rate, lambda_coeff,
                 features, approximator_params=None):
        """
        Constructor.

        Args:
            lambda_coeff (float): eligibility trace coefficient.

        """
        self._approximator_params = dict() if approximator_params is None else \
            approximator_params

        self.Q = Regressor(LinearApproximator, **self._approximator_params)
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = lambda_coeff
        self._q_old = None

        super(TrueOnlineSARSALambda, self).__init__(self.Q, policy, mdp_info,
                                                    learning_rate, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        phi_state_action = get_action_features(phi_state, action,
                                               self.mdp_info.action_space.n)
        q_current = self.Q.predict(phi_state, action)

        if self._q_old is None:
            self._q_old = q_current

        alpha = self.alpha(state, action)

        e_phi = self.e.dot(phi_state_action)
        self.e = self.mdp_info.gamma * self._lambda * self.e + alpha * (
            1. - self.mdp_info.gamma * self._lambda * e_phi) * phi_state_action

        self.next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self.next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - self._q_old

        theta = self.Q.get_weights()
        theta += delta * self.e + alpha * (
            self._q_old - q_current) * phi_state_action
        self.Q.set_weights(theta)

        self._q_old = q_next

    def episode_start(self):
        self._q_old = None
        self.e = np.zeros(self.Q.weights_size)
Exemplo n.º 3
0
class SARSALambdaContinuous(TD):
    """
    Continuous version of SARSA(lambda) algorithm.

    """
    def __init__(self,
                 approximator,
                 policy,
                 mdp_info,
                 learning_rate,
                 lambda_coeff,
                 features,
                 approximator_params=None):
        """
        Constructor.

        Args:
            lambda_coeff (float): eligibility trace coefficient.

        """
        self._approximator_params = dict() if approximator_params is None else \
            approximator_params

        self.Q = Regressor(approximator, **self._approximator_params)
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = lambda_coeff

        super().__init__(self.Q, policy, mdp_info, learning_rate, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        q_current = self.Q.predict(phi_state, action)

        alpha = self.alpha(state, action)

        self.e = self.mdp_info.gamma * self._lambda * self.e + self.Q.diff(
            phi_state, action)

        self.next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self.next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - q_current

        theta = self.Q.get_weights()
        theta += alpha * delta * self.e
        self.Q.set_weights(theta)

    def episode_start(self):
        self.e = np.zeros(self.Q.weights_size)

        super().episode_start()
Exemplo n.º 4
0
class TrueOnlineSARSALambda(TD):
    """
    True Online SARSA(lambda) with linear function approximation.
    "True Online TD(lambda)". Seijen H. V. et al.. 2014.

    """
    def __init__(self, policy, mdp_info, params, features):
        self.Q = Regressor(LinearApproximator, **params['approximator_params'])
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = params['algorithm_params']['lambda']
        self._q_old = None

        super(TrueOnlineSARSALambda, self).__init__(self.Q, policy, mdp_info,
                                                    params, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        phi_state_action = get_action_features(phi_state, action,
                                               self.mdp_info.action_space.n)
        q_current = self.Q.predict(phi_state, action)

        if self._q_old is None:
            self._q_old = q_current

        alpha = self.alpha(state, action)

        e_phi = self.e.dot(phi_state_action)
        self.e = self.mdp_info.gamma * self._lambda * self.e + alpha * (
            1. - self.mdp_info.gamma * self._lambda * e_phi) * phi_state_action

        self._next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self._next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - self._q_old

        theta = self.Q.get_weights()
        theta += delta * self.e + alpha * (self._q_old -
                                           q_current) * phi_state_action
        self.Q.set_weights(theta)

        self._q_old = q_next

    def episode_start(self):
        self._q_old = None
        self.e = np.zeros(self.Q.weights_size)
Exemplo n.º 5
0
class SARSALambdaContinuous(TD):
    """
    Continuous version of SARSA(lambda) algorithm.

    """
    def __init__(self, approximator, policy, mdp_info, learning_rate,
                 lambda_coeff, features, approximator_params=None):
        """
        Constructor.

        Args:
            lambda_coeff (float): eligibility trace coefficient.

        """
        self._approximator_params = dict() if approximator_params is None else \
            approximator_params

        self.Q = Regressor(approximator, **self._approximator_params)
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = lambda_coeff

        super(SARSALambdaContinuous, self).__init__(self.Q, policy, mdp_info,
                                                    learning_rate, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        q_current = self.Q.predict(phi_state, action)

        alpha = self.alpha(state, action)

        self.e = self.mdp_info.gamma * self._lambda * self.e + self.Q.diff(
            phi_state, action)

        self.next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self.next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - q_current

        theta = self.Q.get_weights()
        theta += alpha * delta * self.e
        self.Q.set_weights(theta)

    def episode_start(self):
        self.e = np.zeros(self.Q.weights_size)
Exemplo n.º 6
0
class TrueOnlineSARSALambda(TD):
    """
    True Online SARSA(lambda) with linear function approximation.
    "True Online TD(lambda)". Seijen H. V. et al.. 2014.

    """
    def __init__(self,
                 policy,
                 mdp_info,
                 learning_rate,
                 lambda_coeff,
                 features,
                 approximator_params=None):
        """
        Constructor.

        Args:
            lambda_coeff (float): eligibility trace coefficient.

        """
        self._approximator_params = dict() if approximator_params is None else \
            approximator_params

        self.Q = Regressor(LinearApproximator, **self._approximator_params)
        self.e = np.zeros(self.Q.weights_size)
        self._lambda = lambda_coeff
        self._q_old = None

        super().__init__(self.Q, policy, mdp_info, learning_rate, features)

    def _update(self, state, action, reward, next_state, absorbing):
        phi_state = self.phi(state)
        phi_state_action = get_action_features(phi_state, action,
                                               self.mdp_info.action_space.n)
        q_current = self.Q.predict(phi_state, action)

        if self._q_old is None:
            self._q_old = q_current

        alpha = self.alpha(state, action)

        e_phi = self.e.dot(phi_state_action)
        self.e = self.mdp_info.gamma * self._lambda * self.e + alpha * (
            1. - self.mdp_info.gamma * self._lambda * e_phi) * phi_state_action

        self.next_action = self.draw_action(next_state)
        phi_next_state = self.phi(next_state)
        q_next = self.Q.predict(phi_next_state,
                                self.next_action) if not absorbing else 0.

        delta = reward + self.mdp_info.gamma * q_next - self._q_old

        theta = self.Q.get_weights()
        theta += delta * self.e + alpha * (self._q_old -
                                           q_current) * phi_state_action
        self.Q.set_weights(theta)

        self._q_old = q_next

    def episode_start(self):
        self._q_old = None
        self.e = np.zeros(self.Q.weights_size)

        super().episode_start()
Exemplo n.º 7
0
class DDPG(Agent):
    """
    Deep Deterministic Policy Gradient algorithm.
    "Continuous Control with Deep Reinforcement Learning".
    Lillicrap T. P. et al.. 2016.

    """
    def __init__(self, actor_approximator, critic_approximator, policy_class,
                 mdp_info, batch_size, initial_replay_size, max_replay_size,
                 tau, actor_params, critic_params, policy_params,
                 actor_fit_params=None, critic_fit_params=None):
        """
        Constructor.

        Args:
            actor_approximator (object): the approximator to use for the actor;
            critic_approximator (object): the approximator to use for the
                critic;
            policy_class (Policy): class of the policy;
            batch_size (int): the number of samples in a batch;
            initial_replay_size (int): the number of samples to collect before
                starting the learning;
            max_replay_size (int): the maximum number of samples in the replay
                memory;
            tau (float): value of coefficient for soft updates;
            actor_params (dict): parameters of the actor approximator to
                build;
            critic_params (dict): parameters of the critic approximator to
                build;
            policy_params (dict): parameters of the policy to build;
            actor_fit_params (dict, None): parameters of the fitting algorithm
                of the actor approximator;
            critic_fit_params (dict, None): parameters of the fitting algorithm
                of the critic approximator;

        """
        self._actor_fit_params = dict() if actor_fit_params is None else actor_fit_params
        self._critic_fit_params = dict() if critic_fit_params is None else critic_fit_params

        self._batch_size = batch_size
        self._tau = tau

        self._replay_memory = ReplayMemory(initial_replay_size, max_replay_size)

        target_critic_params = deepcopy(critic_params)
        self._critic_approximator = Regressor(critic_approximator,
                                              **critic_params)
        self._target_critic_approximator = Regressor(critic_approximator,
                                                     **target_critic_params)

        if 'loss' not in actor_params:
            actor_params['loss'] = ActorLoss(self._critic_approximator)

        target_actor_params = deepcopy(actor_params)
        self._actor_approximator = Regressor(actor_approximator,
                                             **actor_params)
        self._target_actor_approximator = Regressor(actor_approximator,
                                                    **target_actor_params)

        self._target_actor_approximator.model.set_weights(
            self._actor_approximator.model.get_weights())
        self._target_critic_approximator.model.set_weights(
            self._critic_approximator.model.get_weights())

        policy = policy_class(self._actor_approximator, **policy_params)
        super().__init__(policy, mdp_info)

    def fit(self, dataset):
        self._replay_memory.add(dataset)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _ =\
                self._replay_memory.get(self._batch_size)

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next

            self._critic_approximator.fit(state, action, q,
                                          **self._critic_fit_params)
            self._actor_approximator.fit(state, state,
                                         **self._actor_fit_params)

            self._update_target()

    def _update_target(self):
        """
        Update the target networks.

        """
        critic_weights = self._tau * self._critic_approximator.model.get_weights()
        critic_weights += (1 - self._tau) * self._target_critic_approximator.get_weights()
        self._target_critic_approximator.set_weights(critic_weights)

        actor_weights = self._tau * self._actor_approximator.model.get_weights()
        actor_weights += (1 - self._tau) * self._target_actor_approximator.get_weights()
        self._target_actor_approximator.set_weights(actor_weights)

    def _next_q(self, next_state, absorbing):
        """
        Args:
            next_state (np.ndarray): the states where next action has to be
                evaluated;
            absorbing (np.ndarray): the absorbing flag for the states in
                ``next_state``.

        Returns:
            Action-values returned by the critic for ``next_state`` and the
            action returned by the actor.

        """
        a = self._target_actor_approximator(next_state)
        q = self._target_critic_approximator.predict(next_state, a)
        q *= 1 - absorbing

        return q
Exemplo n.º 8
0
import numpy as np
from matplotlib import pyplot as plt

from mushroom.approximators import Regressor
from mushroom.approximators.parametric import LinearApproximator


x = np.arange(10).reshape(-1, 1)

intercept = 10
noise = np.random.randn(10, 1) * 1
y = 2 * x + intercept + noise

phi = np.concatenate((np.ones(10).reshape(-1, 1), x), axis=1)

regressor = Regressor(LinearApproximator,
                      input_shape=(2,),
                      output_shape=(1,))

regressor.fit(phi, y)

print('Weights: ' + str(regressor.get_weights()))
print('Gradient: ' + str(regressor.diff(np.array([[5.]]))))

plt.scatter(x, y)
plt.plot(x, regressor.predict(phi))
plt.show()
Exemplo n.º 9
0
import numpy as np
from matplotlib import pyplot as plt

from mushroom.approximators import Regressor
from mushroom.approximators.parametric import LinearApproximator

x = np.arange(10).reshape(-1, 1)

intercept = 10
noise = np.random.randn(10, 1) * 1
y = 2 * x + intercept + noise

phi = np.concatenate((np.ones(10).reshape(-1, 1), x), axis=1)

regressor = Regressor(LinearApproximator,
                      input_shape=(2, ),
                      output_shape=(1, ))

regressor.fit(phi, y)

print('Weights: ' + str(regressor.get_weights()))
print('Gradient: ' + str(regressor.diff(np.array([[5.]]))))

plt.scatter(x, y)
plt.plot(x, regressor.predict(phi))
plt.show()
Exemplo n.º 10
0
class DDPG(ReparametrizationAC):
    """
    Deep Deterministic Policy Gradient algorithm.
    "Continuous Control with Deep Reinforcement Learning".
    Lillicrap T. P. et al.. 2016.

    """
    def __init__(self, mdp_info, policy_class, policy_params,
                 batch_size, initial_replay_size, max_replay_size,
                 tau, critic_params, actor_params, actor_optimizer,
                 policy_delay=1, critic_fit_params=None):
        """
        Constructor.

        Args:
            policy_class (Policy): class of the policy;
            policy_params (dict): parameters of the policy to build;
            batch_size (int): the number of samples in a batch;
            initial_replay_size (int): the number of samples to collect before
                starting the learning;
            max_replay_size (int): the maximum number of samples in the replay
                memory;
            tau (float): value of coefficient for soft updates;
            actor_params (dict): parameters of the actor approximator to
                build;
            critic_params (dict): parameters of the critic approximator to
                build;
            actor_optimizer (dict): parameters to specify the actor optimizer
                algorithm;
            policy_delay (int, 1): the number of updates of the critic after
                which an actor update is implemented;
            critic_fit_params (dict, None): parameters of the fitting algorithm
                of the critic approximator;

        """

        self._critic_fit_params = dict() if critic_fit_params is None else critic_fit_params

        self._batch_size = batch_size
        self._tau = tau
        self._policy_delay = policy_delay
        self._fit_count = 0

        self._replay_memory = ReplayMemory(initial_replay_size, max_replay_size)

        target_critic_params = deepcopy(critic_params)
        self._critic_approximator = Regressor(TorchApproximator,
                                              **critic_params)
        self._target_critic_approximator = Regressor(TorchApproximator,
                                                     **target_critic_params)

        target_actor_params = deepcopy(actor_params)
        self._actor_approximator = Regressor(TorchApproximator,
                                             **actor_params)
        self._target_actor_approximator = Regressor(TorchApproximator,
                                                    **target_actor_params)

        self._init_target()

        policy = policy_class(self._actor_approximator, **policy_params)

        policy_parameters = self._actor_approximator.model.network.parameters()
        super().__init__(policy, mdp_info, actor_optimizer, policy_parameters)

    def fit(self, dataset):
        self._replay_memory.add(dataset)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _ =\
                self._replay_memory.get(self._batch_size)

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next

            self._critic_approximator.fit(state, action, q,
                                          **self._critic_fit_params)

            if self._fit_count % self._policy_delay == 0:
                loss = self._loss(state)
                self._optimize_actor_parameters(loss)

            self._update_target()

            self._fit_count += 1

    def _loss(self, state):
        action = self._actor_approximator(state, output_tensor=True)
        q = self._critic_approximator(state, action, output_tensor=True)

        return -q.mean()

    def _init_target(self):
        """
        Init weights for target approximators

        """
        self._target_actor_approximator.set_weights(
            self._actor_approximator.get_weights())
        self._target_critic_approximator.set_weights(
            self._critic_approximator.get_weights())

    def _update_target(self):
        """
        Update the target networks.

        """
        critic_weights = self._tau * self._critic_approximator.get_weights()
        critic_weights += (1 - self._tau) * self._target_critic_approximator.get_weights()
        self._target_critic_approximator.set_weights(critic_weights)

        actor_weights = self._tau * self._actor_approximator.get_weights()
        actor_weights += (1 - self._tau) * self._target_actor_approximator.get_weights()
        self._target_actor_approximator.set_weights(actor_weights)

    def _next_q(self, next_state, absorbing):
        """
        Args:
            next_state (np.ndarray): the states where next action has to be
                evaluated;
            absorbing (np.ndarray): the absorbing flag for the states in
                ``next_state``.

        Returns:
            Action-values returned by the critic for ``next_state`` and the
            action returned by the actor.

        """
        a = self._target_actor_approximator(next_state)

        q = self._target_critic_approximator.predict(next_state, a)
        q *= 1 - absorbing

        return q
Exemplo n.º 11
0
class SAC(ReparametrizationAC):
    """
    Soft Actor-Critic algorithm.
    "Soft Actor-Critic Algorithms and Applications".
    Haarnoja T. et al.. 2019.

    """
    def __init__(self, mdp_info,
                 batch_size, initial_replay_size, max_replay_size,
                 warmup_transitions, tau, lr_alpha,
                 actor_mu_params, actor_sigma_params,
                 actor_optimizer, critic_params,
                 target_entropy=None, critic_fit_params=None):
        """
        Constructor.

        Args:
            batch_size (int): the number of samples in a batch;
            initial_replay_size (int): the number of samples to collect before
                starting the learning;
            max_replay_size (int): the maximum number of samples in the replay
                memory;
            warmup_transitions (int): number of samples to accumulate in the
                replay memory to start the policy fitting;
            tau (float): value of coefficient for soft updates;
            lr_alpha (float): Learning rate for the entropy coefficient;
            actor_mu_params (dict): parameters of the actor mean approximator
                to build;
            actor_sigma_params (dict): parameters of the actor sigma approximator
                to build;
            actor_optimizer (dict): parameters to specify the actor
                optimizer algorithm;
            critic_params (dict): parameters of the critic approximator to
                build;
            target_entropy (float, None): target entropy for the policy, if None
                a default value is computed ;
            critic_fit_params (dict, None): parameters of the fitting algorithm
                of the critic approximator.

        """
        self._critic_fit_params = dict() if critic_fit_params is None else critic_fit_params

        self._batch_size = batch_size
        self._warmup_transitions = warmup_transitions
        self._tau = tau

        if target_entropy is None:
            self._target_entropy = -np.prod(mdp_info.action_space.shape).astype(np.float32)
        else:
            self._target_entropy = target_entropy

        self._replay_memory = ReplayMemory(initial_replay_size, max_replay_size)

        if 'n_models' in critic_params.keys():
            assert critic_params['n_models'] == 2
        else:
            critic_params['n_models'] = 2

        if 'prediction' in critic_params.keys():
            assert critic_params['prediction'] == 'min'
        else:
            critic_params['prediction'] = 'min'

        target_critic_params = deepcopy(critic_params)
        self._critic_approximator = Regressor(TorchApproximator,
                                              **critic_params)
        self._target_critic_approximator = Regressor(TorchApproximator,
                                                     **target_critic_params)

        self._log_alpha = torch.tensor(0., requires_grad=True, dtype=torch.float32)
        self._alpha_optim = optim.Adam([self._log_alpha], lr=lr_alpha)

        actor_mu_approximator = Regressor(TorchApproximator,
                                          **actor_mu_params)
        actor_sigma_approximator = Regressor(TorchApproximator,
                                             **actor_sigma_params)

        policy = SACPolicy(actor_mu_approximator,
                           actor_sigma_approximator,
                           mdp_info.action_space.low,
                           mdp_info.action_space.high)

        self._init_target()

        policy_parameters = chain(actor_mu_approximator.model.network.parameters(),
                                  actor_sigma_approximator.model.network.parameters())
        super().__init__(policy, mdp_info, actor_optimizer, policy_parameters)

    def fit(self, dataset):
        self._replay_memory.add(dataset)
        if self._replay_memory.initialized:
            state, action, reward, next_state, absorbing, _ = \
                self._replay_memory.get(self._batch_size)

            if self._replay_memory.size > self._warmup_transitions:
                action_new, log_prob = self.policy.compute_action_and_log_prob_t(state)
                loss = self._loss(state, action_new, log_prob)
                self._optimize_actor_parameters(loss)
                self._update_alpha(log_prob.detach())

            q_next = self._next_q(next_state, absorbing)
            q = reward + self.mdp_info.gamma * q_next

            self._critic_approximator.fit(state, action, q,
                                          **self._critic_fit_params)

            self._update_target()

    def _init_target(self):
        """
        Init weights for target approximators.

        """
        for i in range(len(self._critic_approximator)):
            self._target_critic_approximator.model[i].set_weights(
                self._critic_approximator.model[i].get_weights())

    def _loss(self, state, action_new, log_prob):
        q_0 = self._critic_approximator(state, action_new,
                                        output_tensor=True, idx=0)
        q_1 = self._critic_approximator(state, action_new,
                                        output_tensor=True, idx=1)

        q = torch.min(q_0, q_1)

        return (self._alpha * log_prob - q).mean()

    def _update_alpha(self, log_prob):
        alpha_loss = - (self._log_alpha * (log_prob + self._target_entropy)).mean()
        self._alpha_optim.zero_grad()
        alpha_loss.backward()
        self._alpha_optim.step()

    def _update_target(self):
        """
        Update the target networks.

        """
        for i in range(len(self._target_critic_approximator)):
            critic_weights_i = self._tau * self._critic_approximator.model[i].get_weights()
            critic_weights_i += (1 - self._tau) * self._target_critic_approximator.model[i].get_weights()
            self._target_critic_approximator.model[i].set_weights(critic_weights_i)

    def _next_q(self, next_state, absorbing):
        """
        Args:
            next_state (np.ndarray): the states where next action has to be
                evaluated;
            absorbing (np.ndarray): the absorbing flag for the states in
                ``next_state``.

        Returns:
            Action-values returned by the critic for ``next_state`` and the
            action returned by the actor.

        """
        a, log_prob_next = self.policy.compute_action_and_log_prob(next_state)

        q = self._target_critic_approximator.predict(next_state, a) - self._alpha_np * log_prob_next
        q *= 1 - absorbing

        return q

    @property
    def _alpha(self):
        return self._log_alpha.exp()

    @property
    def _alpha_np(self):
        return self._alpha.detach().cpu().numpy()