def test_upsample_1000(self): img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = (rand() - 0.5)*ny col_shift = (rand() - 0.5)*nx img1 = mm.circshift(img0, (row_shift, col_shift)) val, row, col = mm.register(img0, img1, upsample=105) self.assertAlmostEqual(row, row_shift, places=2) self.assertAlmostEqual(col, col_shift, places=2)
def test_upsample_1000(self): img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = (rand() - 0.5) * ny col_shift = (rand() - 0.5) * nx img1 = mm.circshift(img0, (row_shift, col_shift)) val, row, col = mm.register(img0, img1, upsample=105) self.assertAlmostEqual(row, row_shift, places=2) self.assertAlmostEqual(col, col_shift, places=2)
def test_normalization(self): img0 = zeros([30, 30]) img0[0, 0] = 2.0 img0[0, 1] = 4.0 ny, nx = img0.shape row_shift = 3 col_shift = 5 img1 = zeros([30, 30]) img1[3, 3] = 2.0 img1[3, 4] = 4.0 v, y, x = mm.register(img0, img1) self.assertAlmostEqual(v, 1, places=8) v, y, x = mm.register(img0, 0.5*img1) self.assertAlmostEqual(v, 1, places=8) v, y, x = mm.register(img0, img1, upsample=4) self.assertAlmostEqual(v, 1, places=8) v, y, x = mm.register(img0, 0.5*img1, upsample=4) self.assertAlmostEqual(v, 1, places=8)
def test_normalization(self): img0 = zeros([30, 30]) img0[0, 0] = 2.0 img0[0, 1] = 4.0 ny, nx = img0.shape row_shift = 3 col_shift = 5 img1 = zeros([30, 30]) img1[3, 3] = 2.0 img1[3, 4] = 4.0 v, y, x = mm.register(img0, img1) self.assertAlmostEqual(v, 1, places=8) v, y, x = mm.register(img0, 0.5 * img1) self.assertAlmostEqual(v, 1, places=8) v, y, x = mm.register(img0, img1, upsample=4) self.assertAlmostEqual(v, 1, places=8) v, y, x = mm.register(img0, 0.5 * img1, upsample=4) self.assertAlmostEqual(v, 1, places=8)
def test_upsample_1(self): """Test algorithm without subpixel registration.""" img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = randint(-ny/2, ny/2) col_shift = randint(-nx/2, nx/2) row_shift = 10 col_shift = 27 img1 = mm.circshift(img0, (row_shift, col_shift)) img1 = abs(img1) if PLOTTING: subplot(211) imshow(img0) title('original') subplot(212) imshow(img1) title('shifted by {}x{}'.format(row_shift, col_shift)) show() val, row, col = mm.register(img0, img1) self.assertEqual(row, row_shift) self.assertEqual(col, col_shift)
def test_upsample_1(self): """Test algorithm without subpixel registration.""" img0 = scipy.misc.lena() ny, nx = img0.shape row_shift = randint(-ny / 2, ny / 2) col_shift = randint(-nx / 2, nx / 2) row_shift = 10 col_shift = 27 img1 = mm.circshift(img0, (row_shift, col_shift)) img1 = abs(img1) if PLOTTING: subplot(211) imshow(img0) title('original') subplot(212) imshow(img1) title('shifted by {}x{}'.format(row_shift, col_shift)) show() val, row, col = mm.register(img0, img1) self.assertEqual(row, row_shift) self.assertEqual(col, col_shift)