Exemplo n.º 1
0
def build_network(logger):
    """Builds the network including setting of simulation and neuron
    parameters, creation of neurons and connections

    Requires an instance of Logger as argument

    """

    tic = time.time()  # start timer on construction

    # unpack a few variables for convenience
    NE = brunel_params['NE']
    NI = brunel_params['NI']
    model_params = brunel_params['model_params']
    stdp_params = brunel_params['stdp_params']

    # set global kernel parameters
    nest.SetKernelStatus({
        'total_num_virtual_procs': params['nvp'],
        'resolution': params['dt'],
        'overwrite_files': True})

    nest.SetDefaults('iaf_psc_alpha', model_params)

    nest.message(M_INFO, 'build_network', 'Creating excitatory population.')
    E_neurons = nest.Create('iaf_psc_alpha', NE)

    nest.message(M_INFO, 'build_network', 'Creating inhibitory population.')
    I_neurons = nest.Create('iaf_psc_alpha', NI)

    if brunel_params['randomize_Vm']:
        nest.message(M_INFO, 'build_network',
                     'Randomzing membrane potentials.')

        random_vm = nest.random.normal(brunel_params['mean_potential'],
                                       brunel_params['sigma_potential'])
        nest.GetLocalNodeCollection(E_neurons).V_m = random_vm
        nest.GetLocalNodeCollection(I_neurons).V_m = random_vm

    # number of incoming excitatory connections
    CE = int(1. * NE / params['scale'])
    # number of incomining inhibitory connections
    CI = int(1. * NI / params['scale'])

    nest.message(M_INFO, 'build_network',
                 'Creating excitatory stimulus generator.')

    # Convert synapse weight from mV to pA
    conversion_factor = convert_synapse_weight(
        model_params['tau_m'], model_params['tau_syn_ex'], model_params['C_m'])
    JE_pA = conversion_factor * brunel_params['JE']

    nu_thresh = model_params['V_th'] / (
        CE * model_params['tau_m'] / model_params['C_m'] *
        JE_pA * np.exp(1.) * tau_syn)
    nu_ext = nu_thresh * brunel_params['eta']

    E_stimulus = nest.Create('poisson_generator', 1, {
                             'rate': nu_ext * CE * 1000.})

    nest.message(M_INFO, 'build_network',
                 'Creating excitatory spike recorder.')

    if params['record_spikes']:
        recorder_label = os.path.join(
            brunel_params['filestem'],
            'alpha_' + str(stdp_params['alpha']) + '_spikes')
        E_recorder = nest.Create('spike_recorder', params={
            'record_to': 'ascii',
            'label': recorder_label
        })

    BuildNodeTime = time.time() - tic

    logger.log(str(BuildNodeTime) + ' # build_time_nodes')
    logger.log(str(memory_thisjob()) + ' # virt_mem_after_nodes')

    tic = time.time()

    nest.SetDefaults('static_synapse_hpc', {'delay': brunel_params['delay']})
    nest.CopyModel('static_synapse_hpc', 'syn_std')
    nest.CopyModel('static_synapse_hpc', 'syn_ex',
                   {'weight': JE_pA})
    nest.CopyModel('static_synapse_hpc', 'syn_in',
                   {'weight': brunel_params['g'] * JE_pA})

    stdp_params['weight'] = JE_pA
    nest.SetDefaults('stdp_pl_synapse_hom_hpc', stdp_params)

    nest.message(M_INFO, 'build_network', 'Connecting stimulus generators.')

    # Connect Poisson generator to neuron

    nest.Connect(E_stimulus, E_neurons, {'rule': 'all_to_all'},
                 {'synapse_model': 'syn_ex'})
    nest.Connect(E_stimulus, I_neurons, {'rule': 'all_to_all'},
                 {'synapse_model': 'syn_ex'})

    nest.message(M_INFO, 'build_network',
                 'Connecting excitatory -> excitatory population.')

    nest.Connect(E_neurons, E_neurons,
                 {'rule': 'fixed_indegree', 'indegree': CE,
                  'allow_autapses': False, 'allow_multapses': True},
                 {'synapse_model': 'stdp_pl_synapse_hom_hpc'})

    nest.message(M_INFO, 'build_network',
                 'Connecting inhibitory -> excitatory population.')

    nest.Connect(I_neurons, E_neurons,
                 {'rule': 'fixed_indegree', 'indegree': CI,
                  'allow_autapses': False, 'allow_multapses': True},
                 {'synapse_model': 'syn_in'})

    nest.message(M_INFO, 'build_network',
                 'Connecting excitatory -> inhibitory population.')

    nest.Connect(E_neurons, I_neurons,
                 {'rule': 'fixed_indegree', 'indegree': CE,
                  'allow_autapses': False, 'allow_multapses': True},
                 {'synapse_model': 'syn_ex'})

    nest.message(M_INFO, 'build_network',
                 'Connecting inhibitory -> inhibitory population.')

    nest.Connect(I_neurons, I_neurons,
                 {'rule': 'fixed_indegree', 'indegree': CI,
                  'allow_autapses': False, 'allow_multapses': True},
                 {'synapse_model': 'syn_in'})

    if params['record_spikes']:
        if params['nvp'] != 1:
            local_neurons = nest.GetLocalNodeCollection(E_neurons)
            # GetLocalNodeCollection returns a stepped composite NodeCollection, which
            # cannot be sliced. In order to allow slicing it later on, we're creating a
            # new regular NodeCollection from the plain node IDs.
            local_neurons = nest.NodeCollection(local_neurons.tolist())
        else:
            local_neurons = E_neurons

        if len(local_neurons) < brunel_params['Nrec']:
            nest.message(
                M_ERROR, 'build_network',
                """Spikes can only be recorded from local neurons, but the
                number of local neurons is smaller than the number of neurons
                spikes should be recorded from. Aborting the simulation!""")
            exit(1)

        nest.message(M_INFO, 'build_network', 'Connecting spike recorders.')
        nest.Connect(local_neurons[:brunel_params['Nrec']], E_recorder,
                     'all_to_all', 'static_synapse_hpc')

    # read out time used for building
    BuildEdgeTime = time.time() - tic

    logger.log(str(BuildEdgeTime) + ' # build_edge_time')
    logger.log(str(memory_thisjob()) + ' # virt_mem_after_edges')

    return E_recorder if params['record_spikes'] else None
Exemplo n.º 2
0
def build_network(logger):
    '''Builds the network including setting of simulation and neuron
    parameters, creation of neurons and connections

    Requires an instance of Logger as argument

    '''

    tic = time.time()  # start timer on construction

    # unpack a few variables for convenience
    NE = brunel_params['NE']
    NI = brunel_params['NI']
    model_params = brunel_params['model_params']
    stdp_params = brunel_params['stdp_params']

    # set global kernel parameters
    nest.SetKernelStatus({
        'total_num_virtual_procs': params['nvp'],
        'resolution': params['dt'],
        'overwrite_files': True})

    nest.SetDefaults('iaf_psc_alpha', model_params)

    nest.message(M_INFO, 'build_network', 'Creating excitatory population.')
    E_neurons = nest.Create('iaf_psc_alpha', NE)

    nest.message(M_INFO, 'build_network', 'Creating inhibitory population.')
    I_neurons = nest.Create('iaf_psc_alpha', NI)

    if brunel_params['randomize_Vm']:
        nest.message(M_INFO, 'build_network',
                     'Randomzing membrane potentials.')

        seed = nest.GetKernelStatus(
            'rng_seeds')[-1] + 1 + nest.GetStatus([0], 'vp')[0]
        rng = np.random.RandomState(seed=seed)

        for node in get_local_nodes(E_neurons):
            nest.SetStatus([node],
                           {'V_m': rng.normal(
                               brunel_params['mean_potential'],
                               brunel_params['sigma_potential'])})

        for node in get_local_nodes(I_neurons):
            nest.SetStatus([node],
                           {'V_m': rng.normal(
                               brunel_params['mean_potential'],
                               brunel_params['sigma_potential'])})

    # number of incoming excitatory connections
    CE = int(1. * NE / params['scale'])
    # number of incomining inhibitory connections
    CI = int(1. * NI / params['scale'])

    nest.message(M_INFO, 'build_network',
                 'Creating excitatory stimulus generator.')

    # Convert synapse weight from mV to pA
    conversion_factor = convert_synapse_weight(
        model_params['tau_m'], model_params['tau_syn_ex'], model_params['C_m'])
    JE_pA = conversion_factor * brunel_params['JE']

    nu_thresh = model_params['V_th'] / (
        CE * model_params['tau_m'] / model_params['C_m'] *
        JE_pA * np.exp(1.) * tau_syn)
    nu_ext = nu_thresh * brunel_params['eta']

    E_stimulus = nest.Create('poisson_generator', 1, {
                             'rate': nu_ext * CE * 1000.})

    nest.message(M_INFO, 'build_network',
                 'Creating excitatory spike detector.')

    if params['record_spikes']:
        detector_label = os.path.join(
            brunel_params['filestem'],
            'alpha_' + str(stdp_params['alpha']) + '_spikes')
        E_detector = nest.Create('spike_detector', 1, {
            'withtime': True, 'to_file': True, 'label': detector_label})

    BuildNodeTime = time.time() - tic

    logger.log(str(BuildNodeTime) + ' # build_time_nodes')
    logger.log(str(memory_thisjob()) + ' # virt_mem_after_nodes')

    tic = time.time()

    nest.SetDefaults('static_synapse_hpc', {'delay': brunel_params['delay']})
    nest.CopyModel('static_synapse_hpc', 'syn_std')
    nest.CopyModel('static_synapse_hpc', 'syn_ex',
                   {'weight': JE_pA})
    nest.CopyModel('static_synapse_hpc', 'syn_in',
                   {'weight': brunel_params['g'] * JE_pA})

    stdp_params['weight'] = JE_pA
    nest.SetDefaults('stdp_pl_synapse_hom_hpc', stdp_params)

    nest.message(M_INFO, 'build_network', 'Connecting stimulus generators.')

    # Connect Poisson generator to neuron

    nest.Connect(E_stimulus, E_neurons, {'rule': 'all_to_all'},
                 {'model': 'syn_ex'})
    nest.Connect(E_stimulus, I_neurons, {'rule': 'all_to_all'},
                 {'model': 'syn_ex'})

    nest.message(M_INFO, 'build_network',
                 'Connecting excitatory -> excitatory population.')

    nest.Connect(E_neurons, E_neurons,
                 {'rule': 'fixed_indegree', 'indegree': CE,
                     'autapses': False, 'multapses': True},
                 {'model': 'stdp_pl_synapse_hom_hpc'})

    nest.message(M_INFO, 'build_network',
                 'Connecting inhibitory -> excitatory population.')

    nest.Connect(I_neurons, E_neurons,
                 {'rule': 'fixed_indegree', 'indegree': CI,
                     'autapses': False, 'multapses': True},
                 {'model': 'syn_in'})

    nest.message(M_INFO, 'build_network',
                 'Connecting excitatory -> inhibitory population.')

    nest.Connect(E_neurons, I_neurons,
                 {'rule': 'fixed_indegree', 'indegree': CE,
                     'autapses': False, 'multapses': True},
                 {'model': 'syn_ex'})

    nest.message(M_INFO, 'build_network',
                 'Connecting inhibitory -> inhibitory population.')

    nest.Connect(I_neurons, I_neurons,
                 {'rule': 'fixed_indegree', 'indegree': CI,
                     'autapses': False, 'multapses': True},
                 {'model': 'syn_in'})

    if params['record_spikes']:
        local_neurons = list(get_local_nodes(E_neurons))

        if len(local_neurons) < brunel_params['Nrec']:
            nest.message(
                M_ERROR, 'build_network',
                '''Spikes can only be recorded from local neurons, but the
                number of local neurons is smaller than the number of neurons
                spikes should be recorded from. Aborting the simulation!''')
            exit(1)

        nest.message(M_INFO, 'build_network', 'Connecting spike detectors.')
        nest.Connect(local_neurons[:brunel_params['Nrec']], E_detector,
                     'all_to_all', 'static_synapse_hpc')

    # read out time used for building
    BuildEdgeTime = time.time() - tic

    logger.log(str(BuildEdgeTime) + ' # build_edge_time')
    logger.log(str(memory_thisjob()) + ' # virt_mem_after_edges')

    return E_detector if params['record_spikes'] else None
def BuildNetwork(logger):
    tic = time.time()  # start timer on construction

    # set global kernel parameters
    nest.SetKernelStatus({
        'total_num_virtual_procs': params['nvp'],
        'resolution': params['dt']
    })

    master_seed = 101
    n_vp = nest.GetKernelStatus(['total_num_virtual_procs'])[0]

    nest.ll_api.sli_run(
        '0 << /grng rngdict/MT19937 :: 101 CreateRNG >> SetStatus')

    rng_seeds = list(
        range(master_seed + 1 + n_vp, master_seed + 1 + (2 * n_vp)))
    grng_seed = master_seed + n_vp
    kernel_dict = {'grng_seed': grng_seed, 'rng_seeds': rng_seeds}
    nest.SetKernelStatus(kernel_dict)

    nest.SetDefaults('iaf_psc_alpha', brunel_params['model_params'])

    # ------------------------- Build nodes ------------------------------------

    nest.message(M_INFO, 'build_network', 'Creating populations.')

    population_list = []
    for _ in range(brunel_params['num_pop']):
        pop = nest.Create('iaf_psc_alpha', brunel_params['num_neurons'])
        population_list.append([pop[0], pop[-1]])
        logger_params['num_nodes'] += len(pop)

    BuildNodeTime = time.time() - tic

    logger.log('{} # build_time_nodes'.format(BuildNodeTime))
    logger.log('{} # virt_mem_after_nodes'.format(memory_thisjob()))

    #-------------------------- Connection -------------------------------------

    tic = time.time()  # start timer for selecting targets

    nest.message(M_INFO, 'build_network', 'Finding target populations.')

    targets = [
        random.sample(population_list, brunel_params['num_pop_connections'])
        for _ in range(brunel_params['num_pop'])
    ]

    FindTargetsTime = time.time() - tic

    logger.log('{} # find_targets_time'.format(FindTargetsTime))

    tic = time.time()  # Start timer for connection time

    conn_degree = 50  # number of connections per neuron
    conn_dict = {'autapses': False, 'multapses': True}

    if params['rule'] == 'in':
        conn_dict.update({'rule': 'fixed_indegree', 'indegree': conn_degree})
    elif params['rule'] == 'out':
        conn_dict.update({'rule': 'fixed_outdegree', 'outdegree': conn_degree})
    elif params['rule'] == 'tot':
        conn_dict.update({
            'rule': 'fixed_total_number',
            'N': conn_degree * brunel_params['num_neurons']
        })
    elif params['rule'] == 'bern':
        conn_dict.update({
            'rule': 'pairwise_bernoulli',
            'p': conn_degree / brunel_params['num_neurons']
        })
    elif params['rule'] == 'all':
        conn_dict.update({'rule': 'all_to_all'})

    # Create custom synapse types with appropriate values for our connections
    nest.SetDefaults('static_synapse_hpc', {'delay': brunel_params['delay']})

    if params['plastic']:
        brunel_params['stdp_params'].update({'weight': 1.})
        nest.CopyModel('stdp_pl_synapse_hom_hpc', 'syn_ex_ex',
                       brunel_params['stdp_params'])
    else:
        nest.CopyModel('static_synapse_hpc', 'syn_ex_ex', {'weight': 1.})

    nest.message(M_INFO, 'build_network', 'Connecting populations.')

    if params['d_min'] != params['d_max']:
        delays = {'distribution': 'uniform', 'low': d_min, 'high': d_max}
    else:
        delays = params['d_min']

    for source, target_vec in zip(population_list, targets):
        for target in target_vec:
            nest.Connect(list(range(source[0], source[1] + 1)),
                         list(range(target[0], target[1] + 1)), conn_dict,
                         {'model': 'syn_ex_ex'})

    # read out time used for building
    BuildEdgeTime = time.time() - tic

    logger.log('{} # build_edge_time'.format(BuildEdgeTime))
    logger.log('{} # virt_mem_after_edges'.format(memory_thisjob()))
Exemplo n.º 4
0
def build_network(logger):
    '''Builds the network including setting of simulation and neuron
    parameters, creation of neurons and connections

    Requires an instance of Logger as argument

    '''

    tic = time.time()  # start timer on construction

    # unpack a few variables for convenience
    NE = brunel_params['NE']
    NI = brunel_params['NI']
    model_params = brunel_params['model_params']
    stdp_params = brunel_params['stdp_params']

    # set global kernel parameters
    nest.SetKernelStatus({
        'total_num_virtual_procs': params['nvp'],
        'resolution': params['dt'],
        'overwrite_files': True
    })

    nest.SetDefaults('iaf_psc_alpha', model_params)

    nest.message(M_INFO, 'build_network', 'Creating excitatory population.')
    E_neurons = nest.Create('iaf_psc_alpha', NE)

    nest.message(M_INFO, 'build_network', 'Creating inhibitory population.')
    I_neurons = nest.Create('iaf_psc_alpha', NI)

    if brunel_params['randomize_Vm']:
        nest.message(M_INFO, 'build_network',
                     'Randomzing membrane potentials.')

        seed = nest.GetKernelStatus('rng_seeds')[-1] + 1 + nest.GetStatus(
            [0], 'vp')[0]
        rng = np.random.RandomState(seed=seed)

        for node in get_local_nodes(E_neurons):
            nest.SetStatus(
                [node], {
                    'V_m':
                    rng.normal(brunel_params['mean_potential'],
                               brunel_params['sigma_potential'])
                })

        for node in get_local_nodes(I_neurons):
            nest.SetStatus(
                [node], {
                    'V_m':
                    rng.normal(brunel_params['mean_potential'],
                               brunel_params['sigma_potential'])
                })

    # number of incoming excitatory connections
    CE = int(1. * NE / params['scale'])
    # number of incomining inhibitory connections
    CI = int(1. * NI / params['scale'])

    nest.message(M_INFO, 'build_network',
                 'Creating excitatory stimulus generator.')

    # Convert synapse weight from mV to pA
    conversion_factor = convert_synapse_weight(model_params['tau_m'],
                                               model_params['tau_syn_ex'],
                                               model_params['C_m'])
    JE_pA = conversion_factor * brunel_params['JE']

    nu_thresh = model_params['V_th'] / (CE * model_params['tau_m'] /
                                        model_params['C_m'] * JE_pA *
                                        np.exp(1.) * tau_syn)
    nu_ext = nu_thresh * brunel_params['eta']

    E_stimulus = nest.Create('poisson_generator', 1,
                             {'rate': nu_ext * CE * 1000.})

    nest.message(M_INFO, 'build_network',
                 'Creating excitatory spike detector.')

    if params['record_spikes']:
        detector_label = os.path.join(
            brunel_params['filestem'],
            'alpha_' + str(stdp_params['alpha']) + '_spikes')
        E_detector = nest.Create('spike_detector', 1, {
            'withtime': True,
            'to_file': True,
            'label': detector_label
        })

    BuildNodeTime = time.time() - tic

    logger.log(str(BuildNodeTime) + ' # build_time_nodes')
    logger.log(str(memory_thisjob()) + ' # virt_mem_after_nodes')

    tic = time.time()

    nest.SetDefaults('static_synapse_hpc', {'delay': brunel_params['delay']})
    nest.CopyModel('static_synapse_hpc', 'syn_std')
    nest.CopyModel('static_synapse_hpc', 'syn_ex', {'weight': JE_pA})
    nest.CopyModel('static_synapse_hpc', 'syn_in',
                   {'weight': brunel_params['g'] * JE_pA})

    stdp_params['weight'] = JE_pA
    nest.SetDefaults('stdp_pl_synapse_hom_hpc', stdp_params)

    nest.message(M_INFO, 'build_network', 'Connecting stimulus generators.')

    # Connect Poisson generator to neuron

    nest.Connect(E_stimulus, E_neurons, {'rule': 'all_to_all'},
                 {'model': 'syn_ex'})
    nest.Connect(E_stimulus, I_neurons, {'rule': 'all_to_all'},
                 {'model': 'syn_ex'})

    nest.message(M_INFO, 'build_network',
                 'Connecting excitatory -> excitatory population.')

    nest.Connect(
        E_neurons, E_neurons, {
            'rule': 'fixed_indegree',
            'indegree': CE,
            'autapses': False,
            'multapses': True
        }, {'model': 'stdp_pl_synapse_hom_hpc'})

    nest.message(M_INFO, 'build_network',
                 'Connecting inhibitory -> excitatory population.')

    nest.Connect(
        I_neurons, E_neurons, {
            'rule': 'fixed_indegree',
            'indegree': CI,
            'autapses': False,
            'multapses': True
        }, {'model': 'syn_in'})

    nest.message(M_INFO, 'build_network',
                 'Connecting excitatory -> inhibitory population.')

    nest.Connect(
        E_neurons, I_neurons, {
            'rule': 'fixed_indegree',
            'indegree': CE,
            'autapses': False,
            'multapses': True
        }, {'model': 'syn_ex'})

    nest.message(M_INFO, 'build_network',
                 'Connecting inhibitory -> inhibitory population.')

    nest.Connect(
        I_neurons, I_neurons, {
            'rule': 'fixed_indegree',
            'indegree': CI,
            'autapses': False,
            'multapses': True
        }, {'model': 'syn_in'})

    if params['record_spikes']:
        local_neurons = list(get_local_nodes(E_neurons))

        if len(local_neurons) < brunel_params['Nrec']:
            nest.message(
                M_ERROR, 'build_network',
                '''Spikes can only be recorded from local neurons, but the
                number of local neurons is smaller than the number of neurons
                spikes should be recorded from. Aborting the simulation!''')
            exit(1)

        nest.message(M_INFO, 'build_network', 'Connecting spike detectors.')
        nest.Connect(local_neurons[:brunel_params['Nrec']], E_detector,
                     'all_to_all', 'static_synapse_hpc')

    # read out time used for building
    BuildEdgeTime = time.time() - tic

    logger.log(str(BuildEdgeTime) + ' # build_edge_time')
    logger.log(str(memory_thisjob()) + ' # virt_mem_after_edges')

    return E_detector if params['record_spikes'] else None