def test_dynamic_init(self):
     sampler = WeightedSampler(reader=get_dynamic_window_reader(),
                               window_sizes=DYNAMIC_MOD_DATA,
                               batch_size=2,
                               windows_per_image=10,
                               queue_length=10)
     with self.cached_session() as sess:
         sampler.set_num_threads(2)
         out = sess.run(sampler.pop_batch_op())
         self.assertAllClose(out['image'].shape[1:], (8, 2, 256, 2))
 def test_2d_init(self):
     sampler = WeightedSampler(reader=get_2d_reader(),
                               window_sizes=MOD_2D_DATA,
                               batch_size=2,
                               windows_per_image=10,
                               queue_length=10)
     with self.cached_session() as sess:
         sampler.set_num_threads(2)
         out = sess.run(sampler.pop_batch_op())
         self.assertAllClose(out['image'].shape, (2, 10, 9, 1))
     sampler.close_all()
Exemplo n.º 3
0
             border=(20, 20, 20),
             mode='constant'))
_, img, _ = reader(idx=0)

#Create samplers with window_size
weighted_sampler = WeightedSampler(reader, window_sizes=(48, 48, 48))

balanced_sampler = BalancedSampler(reader, window_sizes=(48, 48, 48))

uniform_sampler = UniformSampler(reader, window_sizes=(48, 48, 48))

#Generate N samples for each type
N = 30
import tensorflow as tf
# adding the tensorflow tensors
next_window = weighted_sampler.pop_batch_op()
# run the tensors
with tf.Session() as sess:
    weighted_sampler.run_threads(sess)  #initialise the iterator
    w_coords = []
    for _ in range(N):
        windows = sess.run(next_window)
        #print(windows.keys(), windows['MR_location'], windows['MR'].shape)
        w_coords.append(windows['MR_location'])

next_window = balanced_sampler.pop_batch_op()
# run the tensors
with tf.Session() as sess:
    balanced_sampler.run_threads(sess)  #initialise the iterator
    b_coords = []
    for _ in range(N):