def test_dynamic_init(self): sampler = WeightedSampler(reader=get_dynamic_window_reader(), window_sizes=DYNAMIC_MOD_DATA, batch_size=2, windows_per_image=10, queue_length=10) with self.cached_session() as sess: sampler.set_num_threads(2) out = sess.run(sampler.pop_batch_op()) self.assertAllClose(out['image'].shape[1:], (8, 2, 256, 2))
def test_2d_init(self): sampler = WeightedSampler(reader=get_2d_reader(), window_sizes=MOD_2D_DATA, batch_size=2, windows_per_image=10, queue_length=10) with self.cached_session() as sess: sampler.set_num_threads(2) out = sess.run(sampler.pop_batch_op()) self.assertAllClose(out['image'].shape, (2, 10, 9, 1)) sampler.close_all()
border=(20, 20, 20), mode='constant')) _, img, _ = reader(idx=0) #Create samplers with window_size weighted_sampler = WeightedSampler(reader, window_sizes=(48, 48, 48)) balanced_sampler = BalancedSampler(reader, window_sizes=(48, 48, 48)) uniform_sampler = UniformSampler(reader, window_sizes=(48, 48, 48)) #Generate N samples for each type N = 30 import tensorflow as tf # adding the tensorflow tensors next_window = weighted_sampler.pop_batch_op() # run the tensors with tf.Session() as sess: weighted_sampler.run_threads(sess) #initialise the iterator w_coords = [] for _ in range(N): windows = sess.run(next_window) #print(windows.keys(), windows['MR_location'], windows['MR'].shape) w_coords.append(windows['MR_location']) next_window = balanced_sampler.pop_batch_op() # run the tensors with tf.Session() as sess: balanced_sampler.run_threads(sess) #initialise the iterator b_coords = [] for _ in range(N):