Exemplo n.º 1
0
 def test_trainers_logisticregressionbinaryclassifier(self):
     # import pdb; pdb.set_trace()
     # args
     training_data = "$training_data"
     quiet = False
     label_column = "labelColumn"
     predictor_model = "$predictor_model"
     # call
     node = trainers_logisticregressionbinaryclassifier(
         training_data=training_data,
         quiet=quiet,
         label_column=label_column,
         predictor_model=predictor_model)
     # check
     assert isinstance(node, EntryPoint)
     assert node.inputs["TrainingData"] == training_data
     assert node.inputs["Quiet"] == quiet
     assert node.inputs["LabelColumn"] == label_column
     assert node.input_variables == {training_data}
     assert node.output_variables == {predictor_model}
Exemplo n.º 2
0
 def test_logistic_regression_graph(self):
     # import pdb; pdb.set_trace()
     # args
     data = "$input_data"
     features = ["xint1"]
     output_data = "$training_data"
     model = "$transform_model"
     # call
     feature_node = transforms_featurecombiner(data=data,
                                               features=features,
                                               output_data=output_data,
                                               model=model)
     # args
     training_data = "$training_data"
     quiet = False
     label_column = "ylogical"
     predictor_model = "$predictor_model"
     # call
     lr_node = trainers_logisticregressionbinaryclassifier(
         # , FeatureColumn = "Features"
         training_data=training_data,
         quiet=quiet,
         label_column=label_column,
         predictor_model=predictor_model)
     # args
     transform_model = "$transform_model"
     predictor_model = "$predictor_model"
     model = "$output_model"
     # call
     combine_node = transforms_twoheterogeneousmodelcombiner(
         transform_model=transform_model,
         predictor_model=predictor_model,
         model=model)
     # compose graph
     # graph_sub = Graph(feature_node, lr_node, combine_node)
     # print(graph_sub)
     all_nodes = [feature_node, lr_node, combine_node]
     graph = Graph(dict(input_data=""), dict(output_model=""), False,
                   *all_nodes)
     # print(graph)
     graph.run(X=None, dryrun=True)