def test_trainers_logisticregressionbinaryclassifier(self): # import pdb; pdb.set_trace() # args training_data = "$training_data" quiet = False label_column = "labelColumn" predictor_model = "$predictor_model" # call node = trainers_logisticregressionbinaryclassifier( training_data=training_data, quiet=quiet, label_column=label_column, predictor_model=predictor_model) # check assert isinstance(node, EntryPoint) assert node.inputs["TrainingData"] == training_data assert node.inputs["Quiet"] == quiet assert node.inputs["LabelColumn"] == label_column assert node.input_variables == {training_data} assert node.output_variables == {predictor_model}
def test_logistic_regression_graph(self): # import pdb; pdb.set_trace() # args data = "$input_data" features = ["xint1"] output_data = "$training_data" model = "$transform_model" # call feature_node = transforms_featurecombiner(data=data, features=features, output_data=output_data, model=model) # args training_data = "$training_data" quiet = False label_column = "ylogical" predictor_model = "$predictor_model" # call lr_node = trainers_logisticregressionbinaryclassifier( # , FeatureColumn = "Features" training_data=training_data, quiet=quiet, label_column=label_column, predictor_model=predictor_model) # args transform_model = "$transform_model" predictor_model = "$predictor_model" model = "$output_model" # call combine_node = transforms_twoheterogeneousmodelcombiner( transform_model=transform_model, predictor_model=predictor_model, model=model) # compose graph # graph_sub = Graph(feature_node, lr_node, combine_node) # print(graph_sub) all_nodes = [feature_node, lr_node, combine_node] graph = Graph(dict(input_data=""), dict(output_model=""), False, *all_nodes) # print(graph) graph.run(X=None, dryrun=True)