Exemplo n.º 1
0
    def default_reweighting_schema(
        absolute_tolerance=UNDEFINED,
        relative_tolerance=UNDEFINED,
        n_effective_samples=50,
    ):
        """Returns the default calculation schema to use when estimating
        this property by reweighting existing data.

        Parameters
        ----------
        absolute_tolerance: pint.Quantity, optional
            The absolute tolerance to estimate the property to within.
        relative_tolerance: float
            The tolerance (as a fraction of the properties reported
            uncertainty) to estimate the property to within.
        n_effective_samples: int
            The minimum number of effective samples to require when
            reweighting the cached simulation data.

        Returns
        -------
        ReweightingSchema
            The schema to follow when estimating this property.
        """
        assert absolute_tolerance == UNDEFINED or relative_tolerance == UNDEFINED

        calculation_schema = ReweightingSchema()
        calculation_schema.absolute_tolerance = absolute_tolerance
        calculation_schema.relative_tolerance = relative_tolerance

        data_replicator_id = "data_replicator"

        # Set up a protocol to extract the dielectric constant from the stored data.
        extract_dielectric = ExtractAverageDielectric(
            f"calc_dielectric_$({data_replicator_id})")

        # For the dielectric constant, we employ a slightly more advanced reweighting
        # protocol set up for calculating fluctuation properties.
        reweight_dielectric = ReweightDielectricConstant("reweight_dielectric")
        reweight_dielectric.reference_dipole_moments = ProtocolPath(
            "uncorrelated_values", extract_dielectric.id)
        reweight_dielectric.reference_volumes = ProtocolPath(
            "uncorrelated_volumes", extract_dielectric.id)
        reweight_dielectric.thermodynamic_state = ProtocolPath(
            "thermodynamic_state", "global")
        reweight_dielectric.bootstrap_uncertainties = True
        reweight_dielectric.bootstrap_iterations = 200
        reweight_dielectric.required_effective_samples = n_effective_samples

        protocols, data_replicator = generate_base_reweighting_protocols(
            extract_dielectric, reweight_dielectric, data_replicator_id)

        # Make sure input is taken from the correct protocol outputs.
        extract_dielectric.system_path = ProtocolPath(
            "system_path", protocols.build_reference_system.id)
        extract_dielectric.thermodynamic_state = ProtocolPath(
            "thermodynamic_state", protocols.unpack_stored_data.id)

        # Set up the gradient calculations
        coordinate_path = ProtocolPath("output_coordinate_path",
                                       protocols.concatenate_trajectories.id)
        trajectory_path = ProtocolPath("output_trajectory_path",
                                       protocols.concatenate_trajectories.id)
        statistics_path = ProtocolPath("statistics_file_path",
                                       protocols.reduced_target_potential.id)

        reweight_dielectric_template = copy.deepcopy(reweight_dielectric)

        (
            gradient_group,
            gradient_replicator,
            gradient_source,
        ) = generate_gradient_protocol_group(
            reweight_dielectric_template,
            ProtocolPath("force_field_path", "global"),
            coordinate_path,
            trajectory_path,
            statistics_path,
            replicator_id="grad",
            effective_sample_indices=ProtocolPath("effective_sample_indices",
                                                  reweight_dielectric.id),
        )

        schema = WorkflowSchema()
        schema.protocol_schemas = [
            *(x.schema for x in protocols),
            gradient_group.schema,
        ]
        schema.protocol_replicators = [data_replicator, gradient_replicator]
        schema.gradients_sources = [gradient_source]
        schema.final_value_source = ProtocolPath("value",
                                                 protocols.mbar_protocol.id)

        calculation_schema.workflow_schema = schema
        return calculation_schema
Exemplo n.º 2
0
    def default_simulation_schema(absolute_tolerance=UNDEFINED,
                                  relative_tolerance=UNDEFINED,
                                  n_molecules=1000):
        """Returns the default calculation schema to use when estimating
        this class of property from direct simulations.

        Parameters
        ----------
        absolute_tolerance: pint.Quantity, optional
            The absolute tolerance to estimate the property to within.
        relative_tolerance: float
            The tolerance (as a fraction of the properties reported
            uncertainty) to estimate the property to within.
        n_molecules: int
            The number of molecules to use in the simulation.

        Returns
        -------
        SimulationSchema
            The schema to follow when estimating this property.
        """
        assert absolute_tolerance == UNDEFINED or relative_tolerance == UNDEFINED

        calculation_schema = SimulationSchema()
        calculation_schema.absolute_tolerance = absolute_tolerance
        calculation_schema.relative_tolerance = relative_tolerance

        # Define the protocol which will extract the average dielectric constant
        # from the results of a simulation.
        extract_dielectric = ExtractAverageDielectric("extract_dielectric")
        extract_dielectric.thermodynamic_state = ProtocolPath(
            "thermodynamic_state", "global")

        # Define the protocols which will run the simulation itself.
        use_target_uncertainty = (absolute_tolerance != UNDEFINED
                                  or relative_tolerance != UNDEFINED)

        protocols, value_source, output_to_store = generate_base_simulation_protocols(
            extract_dielectric,
            use_target_uncertainty,
            n_molecules=n_molecules,
        )

        # Make sure the input of the analysis protcol is properly hooked up.
        extract_dielectric.system_path = ProtocolPath(
            "system_path", protocols.assign_parameters.id)

        # Dielectric constants typically take longer to converge, so we need to
        # reflect this in the maximum number of convergence iterations.
        protocols.converge_uncertainty.max_iterations = 400

        # Set up the gradient calculations. For dielectric constants, we need to use
        # a slightly specialised reweighting protocol which we set up here.
        coordinate_source = ProtocolPath("output_coordinate_file",
                                         protocols.equilibration_simulation.id)
        trajectory_source = ProtocolPath(
            "trajectory_file_path",
            protocols.converge_uncertainty.id,
            protocols.production_simulation.id,
        )
        statistics_source = ProtocolPath(
            "statistics_file_path",
            protocols.converge_uncertainty.id,
            protocols.production_simulation.id,
        )

        gradient_mbar_protocol = ReweightDielectricConstant("gradient_mbar")
        gradient_mbar_protocol.reference_dipole_moments = [
            ProtocolPath(
                "dipole_moments",
                protocols.converge_uncertainty.id,
                extract_dielectric.id,
            )
        ]
        gradient_mbar_protocol.reference_volumes = [
            ProtocolPath("volumes", protocols.converge_uncertainty.id,
                         extract_dielectric.id)
        ]
        gradient_mbar_protocol.thermodynamic_state = ProtocolPath(
            "thermodynamic_state", "global")
        gradient_mbar_protocol.reference_reduced_potentials = statistics_source

        (
            gradient_group,
            gradient_replicator,
            gradient_source,
        ) = generate_gradient_protocol_group(
            gradient_mbar_protocol,
            ProtocolPath("force_field_path", "global"),
            coordinate_source,
            trajectory_source,
            statistics_source,
        )

        # Build the workflow schema.
        schema = WorkflowSchema()

        schema.protocol_schemas = [
            protocols.build_coordinates.schema,
            protocols.assign_parameters.schema,
            protocols.energy_minimisation.schema,
            protocols.equilibration_simulation.schema,
            protocols.converge_uncertainty.schema,
            protocols.extract_uncorrelated_trajectory.schema,
            protocols.extract_uncorrelated_statistics.schema,
            gradient_group.schema,
        ]

        schema.protocol_replicators = [gradient_replicator]

        schema.outputs_to_store = {"full_system": output_to_store}

        schema.gradients_sources = [gradient_source]
        schema.final_value_source = value_source

        calculation_schema.workflow_schema = schema
        return calculation_schema