def default_reweighting_schema( absolute_tolerance=UNDEFINED, relative_tolerance=UNDEFINED, n_effective_samples=50, ): """Returns the default calculation schema to use when estimating this property by reweighting existing data. Parameters ---------- absolute_tolerance: pint.Quantity, optional The absolute tolerance to estimate the property to within. relative_tolerance: float The tolerance (as a fraction of the properties reported uncertainty) to estimate the property to within. n_effective_samples: int The minimum number of effective samples to require when reweighting the cached simulation data. Returns ------- ReweightingSchema The schema to follow when estimating this property. """ assert absolute_tolerance == UNDEFINED or relative_tolerance == UNDEFINED calculation_schema = ReweightingSchema() calculation_schema.absolute_tolerance = absolute_tolerance calculation_schema.relative_tolerance = relative_tolerance data_replicator_id = "data_replicator" # Set up a protocol to extract the dielectric constant from the stored data. extract_dielectric = ExtractAverageDielectric( f"calc_dielectric_$({data_replicator_id})") # For the dielectric constant, we employ a slightly more advanced reweighting # protocol set up for calculating fluctuation properties. reweight_dielectric = ReweightDielectricConstant("reweight_dielectric") reweight_dielectric.reference_dipole_moments = ProtocolPath( "uncorrelated_values", extract_dielectric.id) reweight_dielectric.reference_volumes = ProtocolPath( "uncorrelated_volumes", extract_dielectric.id) reweight_dielectric.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global") reweight_dielectric.bootstrap_uncertainties = True reweight_dielectric.bootstrap_iterations = 200 reweight_dielectric.required_effective_samples = n_effective_samples protocols, data_replicator = generate_base_reweighting_protocols( extract_dielectric, reweight_dielectric, data_replicator_id) # Make sure input is taken from the correct protocol outputs. extract_dielectric.system_path = ProtocolPath( "system_path", protocols.build_reference_system.id) extract_dielectric.thermodynamic_state = ProtocolPath( "thermodynamic_state", protocols.unpack_stored_data.id) # Set up the gradient calculations coordinate_path = ProtocolPath("output_coordinate_path", protocols.concatenate_trajectories.id) trajectory_path = ProtocolPath("output_trajectory_path", protocols.concatenate_trajectories.id) statistics_path = ProtocolPath("statistics_file_path", protocols.reduced_target_potential.id) reweight_dielectric_template = copy.deepcopy(reweight_dielectric) ( gradient_group, gradient_replicator, gradient_source, ) = generate_gradient_protocol_group( reweight_dielectric_template, ProtocolPath("force_field_path", "global"), coordinate_path, trajectory_path, statistics_path, replicator_id="grad", effective_sample_indices=ProtocolPath("effective_sample_indices", reweight_dielectric.id), ) schema = WorkflowSchema() schema.protocol_schemas = [ *(x.schema for x in protocols), gradient_group.schema, ] schema.protocol_replicators = [data_replicator, gradient_replicator] schema.gradients_sources = [gradient_source] schema.final_value_source = ProtocolPath("value", protocols.mbar_protocol.id) calculation_schema.workflow_schema = schema return calculation_schema
def default_simulation_schema(absolute_tolerance=UNDEFINED, relative_tolerance=UNDEFINED, n_molecules=1000): """Returns the default calculation schema to use when estimating this class of property from direct simulations. Parameters ---------- absolute_tolerance: pint.Quantity, optional The absolute tolerance to estimate the property to within. relative_tolerance: float The tolerance (as a fraction of the properties reported uncertainty) to estimate the property to within. n_molecules: int The number of molecules to use in the simulation. Returns ------- SimulationSchema The schema to follow when estimating this property. """ assert absolute_tolerance == UNDEFINED or relative_tolerance == UNDEFINED calculation_schema = SimulationSchema() calculation_schema.absolute_tolerance = absolute_tolerance calculation_schema.relative_tolerance = relative_tolerance # Define the protocol which will extract the average dielectric constant # from the results of a simulation. extract_dielectric = ExtractAverageDielectric("extract_dielectric") extract_dielectric.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global") # Define the protocols which will run the simulation itself. use_target_uncertainty = (absolute_tolerance != UNDEFINED or relative_tolerance != UNDEFINED) protocols, value_source, output_to_store = generate_base_simulation_protocols( extract_dielectric, use_target_uncertainty, n_molecules=n_molecules, ) # Make sure the input of the analysis protcol is properly hooked up. extract_dielectric.system_path = ProtocolPath( "system_path", protocols.assign_parameters.id) # Dielectric constants typically take longer to converge, so we need to # reflect this in the maximum number of convergence iterations. protocols.converge_uncertainty.max_iterations = 400 # Set up the gradient calculations. For dielectric constants, we need to use # a slightly specialised reweighting protocol which we set up here. coordinate_source = ProtocolPath("output_coordinate_file", protocols.equilibration_simulation.id) trajectory_source = ProtocolPath( "trajectory_file_path", protocols.converge_uncertainty.id, protocols.production_simulation.id, ) statistics_source = ProtocolPath( "statistics_file_path", protocols.converge_uncertainty.id, protocols.production_simulation.id, ) gradient_mbar_protocol = ReweightDielectricConstant("gradient_mbar") gradient_mbar_protocol.reference_dipole_moments = [ ProtocolPath( "dipole_moments", protocols.converge_uncertainty.id, extract_dielectric.id, ) ] gradient_mbar_protocol.reference_volumes = [ ProtocolPath("volumes", protocols.converge_uncertainty.id, extract_dielectric.id) ] gradient_mbar_protocol.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global") gradient_mbar_protocol.reference_reduced_potentials = statistics_source ( gradient_group, gradient_replicator, gradient_source, ) = generate_gradient_protocol_group( gradient_mbar_protocol, ProtocolPath("force_field_path", "global"), coordinate_source, trajectory_source, statistics_source, ) # Build the workflow schema. schema = WorkflowSchema() schema.protocol_schemas = [ protocols.build_coordinates.schema, protocols.assign_parameters.schema, protocols.energy_minimisation.schema, protocols.equilibration_simulation.schema, protocols.converge_uncertainty.schema, protocols.extract_uncorrelated_trajectory.schema, protocols.extract_uncorrelated_statistics.schema, gradient_group.schema, ] schema.protocol_replicators = [gradient_replicator] schema.outputs_to_store = {"full_system": output_to_store} schema.gradients_sources = [gradient_source] schema.final_value_source = value_source calculation_schema.workflow_schema = schema return calculation_schema