Exemplo n.º 1
0
Arquivo: config.py Projeto: ymrou/MSMS
  def __init__(self):

    # Template cut
    self.win_len  = 45       # cut window length
    self.t_blank  = 15       # time before P in the cut window
    self.min_sta  = 4        # min sta num for a template events
    self.chn_dict = {'ZSY':['HHE','HHN','HHZ'], 
                     'YN': ['HHE','HHN','HHZ'],
                     'XLS':['HHE','HHN','HHZ']}
    self.get_data_dict = dps.Data(None).get_data_dict

    # MFT params
    self.temp_win_trig = [1., 9.] # win fr trig temp cut, rel p
    self.temp_win_p = [0.5,1.5]   # win for p temp cut, rel p 
    self.temp_win_s = [0, 2.]     # win for s temp cut, rel s
    self.trig_thres = 0.25        # cc thres for det & mask
    self.mask_len = 1.            # win len for cc mask
    self.det_gap = 5.             # gap sec for detection
    self.ppk_win_p = [1., 1.]     # win for p pick
    self.ppk_win_s = [2., 2.]     # win for s pick

    # data process
    self.resp_dict = {'ZSY': 3.02e8,
                      'YN': 1.67785e9,
                      'XLS': 1/1.6e-9}  # instrumental gain (cnt/m/s)
    self.samp_rate = 50
    self.freq_band = ['bandpass', [1., 40.]]
    self.picker = pickers.Trad_PS(self.samp_rate)
    self.num_workers = 5
Exemplo n.º 2
0
Arquivo: config.py Projeto: ymrou/PAD
    def __init__(self):

        # 1. picker params
        pick_win = [10., 1.]  # pick win for STA/LTA
        trig_thres = 15.  # threshold to trig picker (by energy)
        pick_thres = 0.96  # threshold for picking
        p_win = [1., 1.]  # win len for P picking
        s_win = [0, 15.]  # win len for S picking
        pca_win = 1.  # win len for PCA filter
        pca_rng = [0, 2.5]  # time range to apply PCA filter
        fd_thres = 2.5  # min value of dominant frequency
        amp_win = 5.  # time win to get S amplitude
        det_gap = 5.  # time gap between detections
        freq_band = ['highpass', 1]  # frequency band for ppk

        # 2. assoc params
        ot_dev = 3.  # time deviation for ot assoc
        ttp_dev = 2.  # time deviation for ttp assoc
        assoc_num = 4  # num of stations to assoc

        # 3. loc params
        side_width = 0.2  # ratio of sides relative to sta range
        xy_grid = 0.02  # lateral grid width, in degree
        # sta info
        sta_file = '/data2/ZSY_SAC/header/station_ZSY.dat'
        resp_dict = {
            'ZSY': 3.02e8,
            'YN': 1.67785e9,
            'XLS': 1 / 1.6e-9,
        }  # instrumental gain (cnt/m/s)

        # 4. define func
        dp = dps.Data(resp_dict)
        self.get_data_dict = dp.get_data_dict
        self.get_picks = dp.get_picks
        self.read_data = dp.read_data
        sta_dict = dp.get_sta_dict(sta_file)
        self.picker = pickers.Trad_PS(\
                        trig_thres = trig_thres,
                        s_win = s_win)
        self.associator = associators.TS_Assoc(\
                            sta_dict,
                            assoc_num = assoc_num,
                            ot_dev = ot_dev,
                            ttp_dev = ttp_dev)
Exemplo n.º 3
0
    def __init__(self):

        # 1. picker params
        self.pick_win = [10., 1.]  # pick win for STA/LTA
        self.trig_thres = 15.  # threshold to trig picker (by energy)
        self.pick_thres = 0.96  # threshold for picking
        self.p_win = [1., 1.]  # win len for P picking
        self.s_win = [0, 15.]  # win len for S picking
        self.pca_win = 1.  # # win len for PCA filter
        self.pca_rng = [0, 2.5]  # time range to apply PCA filter
        self.fd_thres = 2.5  # min value of dominant frequency
        self.amp_win = 5.  # time win to get S amplitude
        self.det_gap = 5.  # time gap between detections
        self.freq_band = ['highpass', 1]  # frequency band for ppk

        # 2. assoc params
        self.ot_dev = 3.  # time deviation for ot assoc
        self.ttp_dev = 2.  # time deviation for ttp assoc
        self.assoc_num = 4  # num of stations to assoc

        # 3. loc params
        self.side_width = 0.2  # ratio of sides relative to sta range
        self.xy_grid = 0.02  # lateral grid width, in degree
        self.resp_dict = {
            'ZSY': 3.02e8,
            'YN': 1.67785e9,
            'XLS': 1 / 1.6e-9,
            'G70': 1 / 1.6e-9,
            'G4Z': 1 / 1.6e-9,
            'G4V': 1 / 1.6e-9,
            'REF': 1 / 1.6e-9
        }  # instrumental response (cnt/m/s)

        # 4. define func
        self.get_data = dp.get_data
        sta_dict = dp.get_sta('/data3/XLS_SAC/header/station_XLS.dat')
        self.picker = pickers.Trad_PS(\
                        trig_thres = self.trig_thres,
                        s_win = self.s_win)
        self.associator = associators.TS_Assoc(\
                            sta_dict, self.resp_dict,
                            assoc_num = self.assoc_num,
                            ot_dev = self.ot_dev,
                            ttp_dev = self.ttp_dev)
Exemplo n.º 4
0
    parser.add_argument('--out_pha',
                        type=str,
                        default='./output/zsy/aug_zsy.pha')
    args = parser.parse_args()

    # MFT params
    cfg = config.Config()
    decim_rate = cfg.decim_rate
    freq_band = cfg.freq_band
    samp_rate = 100. / decim_rate
    win_trig = cfg.win_trig
    win_p = cfg.win_p
    win_s = cfg.win_s
    trig_thres = cfg.trig_thres
    mask_len = int(samp_rate * cfg.mask_len)
    picker = pickers.Trad_PS()

    # i/o file
    out_ctlg = open(args.out_ctlg, 'w')
    out_pha = open(args.out_pha, 'w')
    temp_dict = get_temp_dict(args.temp_pha, args.temp_root)

    # get time range
    start_date = UTCDateTime(args.time_range.split(',')[0])
    end_date = UTCDateTime(args.time_range.split(',')[1])
    print('Run MFT (gpu version)')
    print('time range: {} to {}'.format(start_date, end_date))

    # for all days
    num_day = (end_date.date - start_date.date).days
    for day_idx in range(num_day):
Exemplo n.º 5
0
def main(args):

    # i/o file
    if os.path.exists(args.out_ctlg):
        os.unlink(args.out_ctlg)
        os.unlink(args.out_pha)
    out_ctlg = open(args.out_ctlg, 'a')
    out_pha = open(args.out_pha, 'a')
    sta_dict = data_pipeline.get_sta_dict(args.sta_file)
    cfg = config.Config()

    # define algorithm
    picker = pickers.Trad_PS(trig_thres=cfg.trig_thres)
    associator = associators.Simple_Assoc(assoc_num=cfg.assoc_num,
                                          ot_dev=cfg.ot_dev)
    locator = locators.Simple_Loc(sta_dict, cfg.resp_dict)

    # get time range
    start_date = UTCDateTime(args.time_range.split(',')[0])
    end_date = UTCDateTime(args.time_range.split(',')[1])
    print('Making catalog')
    print('time range: {} to {}'.format(start_date, end_date))

    # for all days
    num_day = (end_date.date - start_date.date).days
    for day_idx in range(num_day):

        # get data paths
        datetime = start_date + day_idx * 86400
        data_dict = data_pipeline.get_xj(args.data_dir, datetime)
        if data_dict == {}: continue

        # 1. waveform --> phase picks
        # pick all sta
        for i, sta in enumerate(data_dict):
            # read data
            if len(data_dict[sta]) < 3: continue
            stream = read(data_dict[sta][0])
            stream += read(data_dict[sta][1])
            stream += read(data_dict[sta][2])

            # phase picking
            picksi = picker.pick(stream)
            if i == 0: picks = picksi
            else: picks = np.append(picks, picksi)

        # 2. associate: picks --> events
        event_picks = associator.pick2event(picks)
        # write pahse file
        associator.write(event_picks, out_pha)

        # 3. locate evnets
        for event_pick in event_picks:
            event_loc = locator.locate(event_pick)
            # 4. estimate magnitude
            event_loc_mag = locator.calc_mag(event_pick, event_loc)
            # write catalog
            locator.write(event_loc_mag, out_ctlg)

    # finish making catalog
    out_pha.close()
    out_ctlg.close()
Exemplo n.º 6
0
def main(args):

    # i/o files
    data_dir = args.data_dir
    org_ctlg = args.org_ctlg
    f = open(org_ctlg)
    events = f.readlines()
    f.close()
    out_root = args.out_root
    temp_root = os.path.join(out_root, args.temp_root)
    if not os.path.exists(temp_root): os.makedirs(temp_root)
    ctlg_path = os.path.join(out_root, args.out_ctlg)
    pha_path = os.path.join(out_root, args.out_pha)
    out_ctlg = open(ctlg_path, 'w')
    out_pha = open(pha_path, 'w')
    # make sta dir
    sta_file = args.sta_file
    sta_dict = dp.get_sta_dict(sta_file)

    # params
    cfg = config.Config()
    max_dist = cfg.max_dist  # km
    win_len = cfg.win_len  # sec
    min_sta = cfg.min_sta  # min number of sta
    t_blank = cfg.t_blank  # sec before tp (cut win)
    dt_p = cfg.dt_s
    dt_s = cfg.dt_s
    p_thres = cfg.p_thres
    s_thres = cfg.s_thres
    fd_thres = cfg.fd_thres
    picker = pickers.Trad_PS(trig_thres=p_thres, fd_thres=fd_thres)

    # for all events
    event_picks = []
    for i, event in enumerate(events):

        # event info
        ot, lat, lon, dep, mag = event.split(',')
        event_dir = os.path.join(temp_root, ot)
        if not os.path.exists(event_dir): os.mkdir(event_dir)
        ot = UTCDateTime(ot)
        lat = float(lat)
        lon = float(lon)
        dep = float(dep)
        data_dict = dp.get_xj(data_dir, ot)
        event_picks.append([event, event_dir, []])
        print('-' * 40)
        print('checking {}th event'.format(i))

        for sta in data_dict:
            # select all stations
            sta_line = sta_dict[sta_dict['station'] == sta]
            sta_lat = float(sta_line['latitude'])
            sta_lon = float(sta_line['longitude'])
            sta_ele = float(sta_line['elevation'])
            dist0 = 111 * np.sqrt((sta_lat - lat)**2 + (sta_lon - lon)**2)
            if dist0 > max_dist: continue

            # theoretical arrival time
            dist1 = np.sqrt(dist0**2 + (dep + 2.5)**2)
            ttp, tts = calc_tt(dist1)  # travel time
            tp0 = ot + ttp  # arrival time
            ts0 = ot + tts
            b = tp0 - UTCDateTime(ot.date) - t_blank
            # cut event
            out_paths = []
            for data in data_dict[sta]:
                data = os.path.split(data)[-1]
                net, chn = data.split('.')[0], data.split('.')[-2]
                out_paths.append(
                    os.path.join(event_dir, '%s.%s.%s' % (net, sta, chn)))
            if len(data_dict[sta]) != 3: continue
            sac.cut(data_dict[sta][0], b, b + win_len, out_paths[0])
            sac.cut(data_dict[sta][1], b, b + win_len, out_paths[1])
            sac.cut(data_dict[sta][2], b, b + win_len, out_paths[2])
            # read event data
            st = read(out_paths[0])
            st += read(out_paths[1])
            st += read(out_paths[2])

            # run picker
            picks = picker.pick(st)
            if len(picks) == 0:
                for fname in out_paths:
                    os.unlink(fname)
                continue
            tp = picks['p_arr'][0]
            ts = picks['s_arr'][-1]
            p_snr = picks['p_snr'][0]
            s_snr = picks['s_snr'][-1]

            # write head
            t0 = tp - tp0 + t_blank
            t1 = ts - tp0 + t_blank
            sac.ch_event(out_paths[0], lon, lat, dep, 1, [t0, t1])
            sac.ch_event(out_paths[1], lon, lat, dep, 1, [t0, t1])
            sac.ch_event(out_paths[2], lon, lat, dep, 1, [t0, t1])

            # select
            if s_snr>s_thres\
            and abs(tp-tp0)<dt_p\
            and abs(ts-ts0)<dt_s:
                event_picks[-1][-1].append('{},{},{},{:.1f},{:.1f}\n'\
                    .format(sta, tp, ts, p_snr, s_snr))
            else:
                for fname in out_paths:
                    os.unlink(fname)

    # select all event picks
    for event_pick in event_picks:
        print('select {}'.format(event_pick[0][:-1]))
        event = event_pick[0]
        event_dir = event_pick[1]
        picks = event_pick[2]
        if len(picks) < min_sta:
            if os.path.exists(event_dir):
                shutil.rmtree(event_dir)
            continue
        out_ctlg.write(event)
        out_pha.write(event)
        for pick in picks:
            out_pha.write(pick)

    out_ctlg.close()
    out_pha.close()