Exemplo n.º 1
0
def processTrackCoverage(filename, step, trackCoverageFileName, geo):
    shp = SSDM.createCoverageSHP(trackCoverageFileName)
    reader = pyall.ALLReader(filename)
    # create the coverage polygon
    createTrackCoverage(reader, shp, step, geo)
    print("Trackcoverage created for: %s" % (filename))
    reader.close()
    return shp
Exemplo n.º 2
0
def processTrackLine(filename, step, trackLineFileName, geo):
    shp = SSDM.createSurveyTracklineSHP(trackLineFileName)
    reader = pyall.ALLReader(filename)
    # create the track polyline
    totalDistanceRun = createTrackLine(reader, shp, step, geo)
    print("Trackplot created for: %s, Length: %.3f" %
          (filename, totalDistanceRun))
    reader.close()
    return shp
Exemplo n.º 3
0
def processTrackPoint(filename, step, trackPointFileName, geo):
    # dirname, basename = os.path.split(filename)
    # trackPointFileName = tempfile.NamedTemporaryFile(prefix=basename, dir=dirname)
    shp = SSDM.createPointShapeFile(trackPointFileName)
    reader = pyall.ALLReader(filename)
    # create the track point with a point recoard and metadata per ping
    createTrackPoint(reader, shp, step, geo)
    print("Trackpoint created for: %s" % (filename))
    reader.close()
    return shp
Exemplo n.º 4
0
def loadNavigation(fileName):
    '''loads all the navigation into lists'''
    navigation = []
    r = pyall.ALLReader(fileName)
    while r.moreData():
        TypeOfDatagram, datagram = r.readDatagram()
        if (TypeOfDatagram == 'P'):
            datagram.read()
            navigation.append(
                [datagram.Time, datagram.Latitude, datagram.Longitude])
    r.close()
    return navigation
Exemplo n.º 5
0
def computeXYResolution(fileName):
    '''compute the approximate across and alongtrack resolution so we can make a nearly isometric Image'''
    '''we compute the across track by taking the average Dx value between beams'''
    '''we compute the alongtracks by computing the linear length between all nav updates and dividing this by the number of pings'''
    xResolution = 1
    YResolution = 1
    prevLong = 0
    prevLat = 0
    r = pyall.ALLReader(fileName)
    recCount = 0
    acrossMeans = np.array([])
    alongIntervals = np.array([])
    leftExtents = np.array([])
    rightExtents = np.array([])
    beamCount = 0
    distanceTravelled = 0.0
    navigation = []
    selectedPositioningSystem = None

    while r.moreData():
        TypeOfDatagram, datagram = r.readDatagram()
        if (TypeOfDatagram == 'P'):
            datagram.read()
            if (selectedPositioningSystem == None):
                selectedPositioningSystem = datagram.Descriptor
            if (selectedPositioningSystem == datagram.Descriptor):
                if prevLat == 0:
                    prevLat = datagram.Latitude
                    prevLong = datagram.Longitude
                range, bearing1, bearing2 = geodetic.calculateRangeBearingFromGeographicals(
                    prevLong, prevLat, datagram.Longitude, datagram.Latitude)
                # print (range,bearing1)
                distanceTravelled += range
                navigation.append([
                    recCount,
                    r.currentRecordDateTime(), datagram.Latitude,
                    datagram.Longitude
                ])
                prevLat = datagram.Latitude
                prevLong = datagram.Longitude
        if (TypeOfDatagram == 'X') or (TypeOfDatagram == 'D'):
            datagram.read()
            if datagram.NBeams > 1:
                datagram.AcrossTrackDistance = [
                    x for x in datagram.AcrossTrackDistance if x != 0.0
                ]
                if (len(datagram.AcrossTrackDistance) > 0):
                    acrossMeans = np.append(
                        acrossMeans,
                        np.average(
                            abs(
                                np.diff(
                                    np.asarray(
                                        datagram.AcrossTrackDistance)))))
                    leftExtents = np.append(leftExtents,
                                            min(datagram.AcrossTrackDistance))
                    rightExtents = np.append(rightExtents,
                                             max(datagram.AcrossTrackDistance))
                    recCount = recCount + 1
                    beamCount = max(beamCount, len(datagram.Depth))

    r.close()
    if recCount == 0:
        return 0, 0, 0, 0, 0, []
    xResolution = np.average(acrossMeans)
    # distanceTravelled = 235
    yResolution = distanceTravelled / recCount
    return xResolution, yResolution, beamCount, np.min(leftExtents), np.max(
        rightExtents), distanceTravelled, navigation
Exemplo n.º 6
0
def createWaterfall(filename,
                    colors,
                    beamCount,
                    shadeScale=1,
                    zoom=1.0,
                    annotate=True,
                    xResolution=1,
                    yResolution=1,
                    rotate=False,
                    gray=False,
                    leftExtent=-100,
                    rightExtent=100,
                    distanceTravelled=0,
                    navigation=[]):
    print("Processing file: ", filename)

    r = pyall.ALLReader(filename)
    totalrecords = r.getRecordCount()
    start_time = time.time()  # time the process
    recCount = 0
    waterfall = []
    minDepth = 9999.0
    maxDepth = -minDepth
    outputResolution = beamCount * zoom
    isoStretchFactor = (yResolution / xResolution) * zoom
    print("xRes %.2f yRes %.2f isoStretchFactor %.2f outputResolution %.2f" %
          (xResolution, yResolution, isoStretchFactor, outputResolution))
    while r.moreData():
        TypeOfDatagram, datagram = r.readDatagram()
        if (TypeOfDatagram == 0):
            continue
        if (TypeOfDatagram == 'X') or (TypeOfDatagram == 'D'):
            datagram.read()
            if datagram.NBeams == 0:
                continue

            # if datagram.SerialNumber == 275:
            for d in range(len(datagram.Depth)):
                datagram.Depth[
                    d] = datagram.Depth[d] + datagram.TransducerDepth

            # we need to remember the actual data extents so we can set the color palette mappings to the same limits.
            minDepth = min(minDepth, min(datagram.Depth))
            maxDepth = max(maxDepth, max(datagram.Depth))

            waterfall.insert(0, np.asarray(datagram.Depth))

            # we need to stretch the data to make it isometric, so lets use numpy interp routing to do that for Us
            # datagram.AcrossTrackDistance.reverse()
            xp = np.array(
                datagram.AcrossTrackDistance
            )  #the x distance for the beams of a ping.  we could possibly use the real values here instead todo
            # datagram.Depth.reverse()
            fp = np.array(datagram.Depth)  #the depth list as a numpy array
            # fp = geodetic.medfilt(fp,31)
            x = np.linspace(
                leftExtent, rightExtent, outputResolution
            )  #the required samples needs to be about the same as the original number of samples, spread across the across track range
            # newDepths = np.interp(x, xp, fp, left=0.0, right=0.0)

            # run a median filter to remove crazy noise
            # newDepths = geodetic.medfilt(newDepths,7)
            # waterfall.insert(0, np.asarray(newDepths))

        recCount += 1
        if r.currentRecordDateTime().timestamp() % 30 == 0:
            percentageRead = (recCount / totalrecords)
            update_progress("Decoding .all file", percentageRead)
    update_progress("Decoding .all file", 1)
    r.close()

    # we have all data loaded, so now lets make a waterfall image...
    #---------------------------------------------------------------
    print("Correcting for vessel speed...")
    # we now need to interpolate in the along track direction so we have apprximate isometry
    npGrid = np.array(waterfall)

    stretchedGrid = np.empty((0, int(len(npGrid) * isoStretchFactor)))
    for column in npGrid.T:
        y = np.linspace(0, len(column),
                        len(column) * isoStretchFactor)  #the required samples
        yp = np.arange(len(column))
        w2 = np.interp(y, yp, column, left=0.0, right=0.0)
        # w2 = geodetic.medfilt(w2,7)

        stretchedGrid = np.append(stretchedGrid, [w2], axis=0)
    npGrid = stretchedGrid
    npGrid = np.ma.masked_values(npGrid, 0.0)

    if gray:
        print("Hillshading...")
        #Create hillshade a little brighter and invert so hills look like hills
        colorMap = None
        npGrid = npGrid.T * shadeScale * -1.0
        hs = sr.calcHillshade(npGrid, 1, 45, 30)
        img = Image.fromarray(hs).convert('RGBA')
    else:
        print("Color mapping...")
        npGrid = npGrid.T
        # calculate color height map
        cmrgb = cm.colors.ListedColormap(colors, name='from_list', N=None)
        colorMap = cm.ScalarMappable(cmap=cmrgb)
        colorMap.set_clim(vmin=minDepth, vmax=maxDepth)
        colorArray = colorMap.to_rgba(npGrid, alpha=None, bytes=True)
        colorImage = Image.frombuffer(
            'RGBA', (colorArray.shape[1], colorArray.shape[0]), colorArray,
            'raw', 'RGBA', 0, 1)
        #Create hillshade a little darker as we are blending it. we do not need to invert as we are subtracting the shade from the color image
        npGrid = npGrid * shadeScale
        hs = sr.calcHillshade(npGrid, 1, 45, 5)
        img = Image.fromarray(hs).convert('RGBA')

        # now blend the two images
        img = ImageChops.subtract(colorImage, img).convert('RGB')

    if annotate:
        #rotate the image if the user requests this.  It is a little better for viewing in a browser
        annotateWaterfall(img, navigation, isoStretchFactor)
        meanDepth = np.average(waterfall)
        waterfallPixelSize = (abs(rightExtent) + abs(rightExtent)) / img.width
        # print ("Mean Depth %.2f" % meanDepth)
        imgLegend = createLegend(filename, img.width,
                                 (abs(leftExtent) + abs(rightExtent)),
                                 distanceTravelled, waterfallPixelSize,
                                 minDepth, maxDepth, meanDepth, colorMap)
        img = spliceImages(img, imgLegend)

    if rotate:
        img = img.rotate(-90, expand=True)
    img.save(os.path.splitext(filename)[0] + '.png')
    print("Saved to: ", os.path.splitext(filename)[0] + '.png')
Exemplo n.º 7
0
def createWaterfall(filename,
                    colorScale,
                    beamCount,
                    zoom=1.0,
                    clip=0,
                    invert=True,
                    annotate=True,
                    xResolution=1,
                    yResolution=1,
                    rotate=False,
                    leftExtent=-100,
                    rightExtent=100,
                    distanceTravelled=0,
                    navigation=[]):
    print("Processing file: ", filename)

    r = pyall.ALLReader(filename)
    totalrecords = r.getRecordCount()
    start_time = time.time()  # time the process
    recCount = 0
    waterfall = []
    currentBathyDatagram = None
    minBS = 9999.0
    maxBS = -minBS
    outputResolution = beamCount * zoom
    isoStretchFactor = (yResolution / xResolution) * zoom
    print("xRes %.2f yRes %.2f isoStretchFactor %.2f" %
          (xResolution, yResolution, isoStretchFactor))
    while r.moreData():
        TypeOfDatagram, datagram = r.readDatagram()
        # if (TypeOfDatagram == 0):
        #     continue
        if (TypeOfDatagram == 'X') or (TypeOfDatagram == 'D'):
            datagram.read()
            currentBathyDatagram = datagram

        if (TypeOfDatagram == 'Y'):
            datagram.read()
            if currentBathyDatagram is None:
                continue

            if currentBathyDatagram.NBeams == 0:
                continue

            for i, b in enumerate(datagram.beams):
                # currentBathyDatagram.Reflectivity[i] = statistics.mean(b.samples)
                currentBathyDatagram.Reflectivity[i] = max(b.samples)
                # currentBathyDatagram.Reflectivity[i] = b.samples[b.centreSampleNumber-1]

            # we need to remember the actual data extents so we can set the color palette mappings to the same limits.
            minBS = min(minBS, min(currentBathyDatagram.Reflectivity))
            maxBS = max(maxBS, max(currentBathyDatagram.Reflectivity))

            # print ("MinBS %.3f MaxBS %.3f" % (minBS, maxBS))
            # waterfall.insert(0, np.abs( np.asarray(datagram.Reflectivity)))

            # we need to stretch the data to make it isometric, so lets use numpy interp routing to do that for Us
            # datagram.AcrossTrackDistance.reverse()
            xp = np.array(
                currentBathyDatagram.AcrossTrackDistance
            )  #the x distance for the beams of a ping.  we could possibly use the real values here instead todo
            # datagram.Backscatter.reverse()
            fp = np.abs(np.array(currentBathyDatagram.Reflectivity)
                        )  #the Backscatter list as a numpy array
            # fp = geodetic.medfilt(fp,31)
            x = np.linspace(
                leftExtent, rightExtent, outputResolution
            )  #the required samples needs to be about the same as the original number of samples, spread across the across track range
            newBackscatters = np.interp(x, xp, fp, left=0.0, right=0.0)

            # run a median filter to remove crazy noise
            # newBackscatters = geodetic.medfilt(newBackscatters,3)
            waterfall.insert(0, np.asarray(newBackscatters))

        recCount += 1
        if r.currentRecordDateTime().timestamp() % 30 == 0:
            percentageRead = (recCount / totalrecords)
            update_progress("Decoding .all file", percentageRead)
    update_progress("Decoding .all file", 1)
    r.close()

    # we have all data loaded, so now lets make a waterfall image...
    #---------------------------------------------------------------
    print("Correcting for vessel speed...")
    # we now need to interpolate in the along track direction so we have apprximate isometry
    npGrid = np.array(waterfall)

    stretchedGrid = np.empty((0, int(len(npGrid) * isoStretchFactor)))
    for column in npGrid.T:
        y = np.linspace(0, len(column),
                        len(column) * isoStretchFactor)  #the required samples
        yp = np.arange(len(column))
        w2 = np.interp(y, yp, column, left=0.0, right=0.0)
        # w2 = geodetic.medfilt(w2,7)

        stretchedGrid = np.append(stretchedGrid, [w2], axis=0)
    npGrid = stretchedGrid
    # npGrid = np.ma.masked_values(npGrid, 0.0)

    if colorScale.lower() == "graylog":
        print("Converting to Image with graylog scale...")
        img = samplesToGrayImageLogarithmic(npGrid, invert, clip)
    elif colorScale.lower() == "gray":
        print("Converting to Image with gray scale...")
        img = samplesToGrayImage(npGrid, invert, clip)

    if annotate:
        #rotate the image if the user requests this.  It is a little better for viewing in a browser
        annotateWaterfall(img, navigation, isoStretchFactor)
        meanBackscatter = np.average(waterfall)
        waterfallPixelSize = (abs(rightExtent) + abs(rightExtent)) / img.width
        # print ("Mean Backscatter %.2f" % meanBackscatter)
        imgLegend = createLegend(filename, img.width,
                                 (abs(leftExtent) + abs(rightExtent)),
                                 distanceTravelled, waterfallPixelSize, minBS,
                                 maxBS, meanBackscatter, colorMap)
        img = spliceImages(img, imgLegend)

    if rotate:
        img = img.rotate(-90, expand=True)
    img.save(os.path.splitext(filename)[0] + '.png')
    print("Saved to: ", os.path.splitext(filename)[0] + '.png')
def main():
    parser = argparse.ArgumentParser(
        description=
        'Read Kongsberg ALL file and create a caris hvf vessel config file.')
    parser.add_argument(
        '-i',
        dest='inputFile',
        action='store',
        help=
        '-i <ALLfilename> : input ALL filename to image. It can also be a wildcard, e.g. *.all'
    )

    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)

    args = parser.parse_args()
    # we need to remember the previous record so we only create uniq values, not duplicates
    prevNav1Params = {}
    prevPitchParams = ""
    prevRollParams = ""
    prevHeaveParams = ""
    prevGyroParams = ""
    prevWaterlineParams = ""
    prevDepthParams = ""

    fileCounter = 0
    print("processing with settings: ", args)
    root = createHVFRoot(datetime.now())

    for filename in glob(args.inputFile):
        r = pyall.ALLReader(filename)
        start_time = time.time()  # time  the process
        InstallationRecordCount = 0
        while r.moreData():
            # read a datagram.  If we support it, return the datagram type and aclass for that datagram
            # The user then needs to call the read() method for the class to undertake a fileread and binary decode.  This keeps the read super quick.
            TypeOfDatagram, datagram = r.readDatagram()

            if TypeOfDatagram == 'I':
                datagram.read()
                # print (datagram.installationParameters)

                root, prevNav1Params = createNavSensor(
                    root, r.currentRecordDateTime(),
                    datagram.installationParameters, prevNav1Params)
                root, prevGyroParams = createGyroSensor(
                    root, r.currentRecordDateTime(),
                    datagram.installationParameters, prevGyroParams)
                root, prevHeaveParams = createHeaveSensor(
                    root, r.currentRecordDateTime(),
                    datagram.installationParameters, prevHeaveParams)
                root, prevPitchParams = createPitchSensor(
                    root, r.currentRecordDateTime(),
                    datagram.installationParameters, prevPitchParams)
                root, prevRollParams = createRollSensor(
                    root, r.currentRecordDateTime(),
                    datagram.installationParameters, prevRollParams)
                root, prevWaterlineParams = createWaterlineSensor(
                    root, r.currentRecordDateTime(),
                    datagram.installationParameters, prevWaterlineParams)
                root, prevDepthParams = createDepthSensor(
                    root, r.currentRecordDateTime(),
                    datagram.installationParameters, prevDepthParams,
                    datagram.EMModel, datagram.SerialNumber)

                InstallationRecordCount = InstallationRecordCount + 1
        update_progress(
            "Processed file: %s InstallationRecords: %d" %
            (filename, InstallationRecordCount),
            (fileCounter / len(args.inputFile)))
        fileCounter += 1

    f = open('file.hvf', 'w')
    f.write(prettify(root))
    f.close()
    update_progress(
        "Processed all files. InstallationRecords: %d" %
        (InstallationRecordCount), 1)
Exemplo n.º 9
0
def convert(fileName):
    recCount = 0

    r = pyall.ALLReader(fileName)
    eprint("loading navigation...")
    navigation = r.loadNavigation()
    # eprint("done.")

    arr = np.array(navigation)
    times = arr[:, 0]
    latitudes = arr[:, 1]
    longitudes = arr[:, 2]

    start_time = time.time()  # time the process

    while r.moreData():
        TypeOfDatagram, datagram = r.readDatagram()
        if (TypeOfDatagram == 'X') or (TypeOfDatagram == 'D'):
            datagram.read()
            recDate = r.currentRecordDateTime()

            if datagram.NBeams > 1:
                # interpolate so we know where the ping is located
                lat = np.interp(pyall.to_timestamp(recDate),
                                times,
                                latitudes,
                                left=None,
                                right=None)
                lon = np.interp(pyall.to_timestamp(recDate),
                                times,
                                longitudes,
                                left=None,
                                right=None)
                latRad = math.radians(lat)
                lonRad = math.radians(lon)

                # needed for an optimised algorithm
                localradius = calculateradiusFromLatitude(lat)

                # for each beam in the ping, compute the real world position
                for i in range(len(datagram.Depth)):
                    #native python version are faster than numpy
                    # given the Dx,Dy soundings, compute a range, bearing so we can correccttly map out the soundings
                    brg = 90 - ((180 / math.pi) *
                                math.atan2(datagram.AlongTrackDistance[i],
                                           datagram.AcrossTrackDistance[i]))
                    rng = math.sqrt((datagram.AcrossTrackDistance[i]**2) +
                                    (datagram.AlongTrackDistance[i]**2))

                    # x,y = positionFromRngBrg4(lat, lon, rng, brg + datagram.Heading)

                    x, y = destinationPoint(lat, lon, rng,
                                            brg + datagram.Heading,
                                            localradius)

                    # a faster algorithm
                    # x, y = positionFromRngBrg2(localradius, latRad, lonRad, rng, brg + datagram.Heading)
                    # based on the transducer position, range and bearing to the sounding, compute the sounding position.
                    # x,y,h = geodetic.calculateGeographicalPositionFromRangeBearing(lat, lon, brg + datagram.Heading, rng)

                    # print ("%.10f, %.10f" % (x1 - x, y1 - y))
                    print("%.10f, %.10f, %.3f" %
                          (x, y, datagram.Depth[i] + datagram.TransducerDepth))
            recCount = recCount + 1

    r.close()
    eprint("Duration %.3fs" % (time.time() - start_time))  # time the process

    return navigation
Exemplo n.º 10
0
def process(args):

    # if its a file, handle it nicely.
    if os.path.isfile(args.inputFolder):
        matches = [args.inputFolder]
        missionname = os.path.basename(
            os.path.dirname(os.path.normpath(args.inputFolder)))
        args.opath = os.path.join(
            os.path.dirname(os.path.normpath(args.inputFolder)), "GIS")
    else:
        matches = fileutils.findFiles(True, args.inputFolder, "*.all")
        missionname = os.path.basename(
            args.inputFolder)  #this folder should be the MISSION NAME
        args.opath = os.path.join(args.inputFolder, "GIS")

    # trackPointFileName = os.path.join(args.opath, args.odir,  missionname + "_DGPSHiPAPData_TrackPoint.shp")
    # trackPointFileName  = fileutils.addFileNameAppendage(trackPointFileName, args.odix)
    # trackPointFileName = fileutils.createOutputFileName(trackPointFileName)

    # matches = fileutils.findFiles(True, args.inputFolder, "*.all")

    if len(args.outputFile) == 0:
        fname, ext = os.path.splitext(os.path.expanduser(matches[0]))
        args.outputFile = fname
        # args.outputFile = "Track"
    if len(args.opath) == 0:
        args.opath = os.path.dirname(os.path.abspath(args.outputFile))

    # trackLineFileName = os.path.join(os.path.dirname(os.path.abspath(args.outputFile)), fname + "_MBESLine.shp")
    trackLineFileName = os.path.join(args.opath, args.odir,
                                     missionname + "Survey_TrackLines.shp")
    trackLineFileName = addFileNameAppendage(trackLineFileName, args.odix)
    trackLineFileName = fileutils.createOutputFileName(trackLineFileName)

    # trackPointFileName = os.path.join(os.path.dirname(os.path.abspath(args.outputFile)), fname + "_MBESPoint.shp")
    trackPointFileName = os.path.join(args.opath, args.odir,
                                      missionname + "Survey_TrackPoint.shp")
    trackPointFileName = addFileNameAppendage(trackPointFileName, args.odix)
    trackPointFileName = fileutils.createOutputFileName(trackPointFileName)

    # trackCoverageFileName = os.path.join(os.path.dirname(os.path.abspath(args.outputFile)), fname + "_trackCoverage.shp")
    trackCoverageFileName = os.path.join(
        args.opath, args.odir, missionname + "Survey_TrackCoverage.shp")
    trackCoverageFileName = addFileNameAppendage(trackCoverageFileName,
                                                 args.odix)
    trackCoverageFileName = fileutils.createOutputFileName(
        trackCoverageFileName)

    #load the python proj projection object library if the user has requested it
    geo = geodetic.geodesy(args.epsg)

    # if int(args.epsg) == 4326:
    # 	args.epsg = "0"
    # if len(args.epsg) > 0:
    # 	projection = geodetic.loadProj(args.epsg)
    # else:
    # 	projection = None

    # if projection == None:
    # 	args.epsg = 4326

    # open the output files once only.
    # create the destination shape files
    TPshp = None
    TLshp = None
    TCshp = None

    if args.trackall:
        args.trackpoint = True
        args.trackline = True
        args.trackcoverage = True

    if args.trackpoint:
        TPshp = SSDM.createPointShapeFile(trackPointFileName)
    if args.trackline:
        TLshp = SSDM.createSurveyTracklineSHP(trackLineFileName)
    if args.trackcoverage:
        TCshp = SSDM.createCoverageSHP(trackCoverageFileName)

    for filename in matches:
        reader = pyall.ALLReader(filename)
        if args.trackpoint:
            print("Processing Track point:", filename)
            # TPshp = processTrackPoint(filename, float(args.step),trackPointFileName, geo)
            createTrackPoint(reader, TPshp, float(args.step), geo)
        if args.trackline:
            print("Processing Track line:", filename)
            # TLshp = processTrackLine(filename, float(args.step), trackLineFileName, geo)
            totalDistanceRun = createTrackLine(reader, TLshp, float(args.step),
                                               geo)
            # print ("%s Trackplot Length: %.3f" % (filename, totalDistanceRun))
        if args.trackcoverage:
            print("Processing Track coverage:", filename)
            # TCshp = processTrackCoverage(filename, float(args.step), trackCoverageFileName, geo)
            createTrackCoverage(reader, TCshp, float(args.step), geo)

    # 	update_progress("Processed: %s (%d/%d)" % (filename, fileCounter, len(matches)), (fileCounter/len(matches)))
    # 	fileCounter +=1

    #now we can write out the results to a shape file...
    # update_progress("Process Complete: ", (fileCounter/len(matches)))
    if args.trackpoint:
        print("Saving track point: %s" % trackPointFileName)
        TPshp.save(trackPointFileName)
        # now write out a prj file so the data has a spatial Reference
        filename = trackPointFileName.replace('.shp', '.prj')
        geodetic.writePRJ(filename, args.epsg)
        if args.dgn:
            dgnwrite.convert2DGN(trackPointFileName)
    if args.trackline:
        print("Saving track line: %s" % trackLineFileName)
        TLshp.save(trackLineFileName)
        # now write out a prj file so the data has a spatial Reference
        filename = trackLineFileName.replace('.shp', '.prj')
        geodetic.writePRJ(filename, args.epsg)
        if args.dgn:
            dgnwrite.convert2DGN(trackLineFileName)
    if args.trackcoverage:
        print("Saving coverage polygon: %s" % trackCoverageFileName)
        TCshp.save(trackCoverageFileName)
        # now write out a prj file so the data has a spatial Reference
        filename = trackCoverageFileName.replace('.shp', '.prj')
        geodetic.writePRJ(filename, args.epsg)
        if args.dgn:
            dgnwrite.convert2DGN(trackCoverageFileName)
Exemplo n.º 11
0
 def __init__(self, file_path):
     Scan.__init__(self, file_path)
     self.reader = open(self.file_path, 'rb')
     self.all_reader = pyall.ALLReader(self.file_path)