Exemplo n.º 1
0
def get_T63_landseamask(shift_lon, mask_antarctica=True, area='land'):
    """
    get JSBACH T63 land sea mask
    the LS mask is read from the JSBACH init file

    area : str
        ['land','ocean']: When 'land', then the mask returned
        is True on land pixels, for ocean it is vice versa.
        In any other case, you get a valid field everywhere (globally)

    mask_antarctica : bool
        if True, then the mask is FALSE over Antarctica (<60S)
    """
    ls_file = get_data_pool_directory() \
        + 'variables/land/land_sea_mask/jsbach_T63_GR15_4tiles_1992.nc'
    ls_mask = Data(ls_file, 'slm', read=True, label='T63 land-sea mask',
                   lat_name='lat', lon_name='lon', shift_lon=shift_lon)
    if area == 'land':
        msk = ls_mask.data > 0.
    elif area == 'ocean':
        msk = ls_mask.data == 0.
    else:
        msk = np.ones(ls_mask.data.shape).astype('bool')

    ls_mask.data[~msk] = 0.
    ls_mask.data[msk] = 1.
    ls_mask.data = ls_mask.data.astype('bool')
    if mask_antarctica:
        ls_mask.data[ls_mask.lat < -60.] = False

    return ls_mask
Exemplo n.º 2
0
 def setUp(self):
     D = Data(None, None)
     D.data = np.random.random((10, 20))
     lon = np.arange(-10.,10.)  # -10 ... 9
     lat = np.arange(-60., 50., 2.)  # -60 ... 48
     D.lon, D.lat = np.meshgrid(lon, lat)
     self.x = D
Exemplo n.º 3
0
    def test_read_binary_subset_int(self):
        # INT16 = H
        fname = tempfile.mktemp()
        f = open(fname, 'w')
        ref = (self.x*10).astype('int16')
        f.write(ref)
        f.close()

        D = Data(None, None)
        f = open(fname, 'r')
        ny, nx = self.x.shape
        nt = 1

        # test 1: read entire file
        file_content = D._read_binary_subset2D(f, 2, ny=ny, nx=nx, xbeg=0, xend=nx, ybeg=0, yend=ny)
        d = np.reshape(np.asarray(struct.unpack('H'*ny*nx*nt, file_content)), (ny, nx))
        self.assertTrue(np.all(d-ref == 0.))

        # test 2: read subset with 1-values only
        ny1 = self.ymax - self.ymin
        nx1 = self.xmax - self.xmin
        nt1 = 1

        file_content = D._read_binary_subset2D(f, 2, ny=ny, nx=nx, xbeg=self.xmin, xend=self.xmax, ybeg=self.ymin, yend=self.ymax)
        d1 = np.reshape(np.asarray(struct.unpack('H'*ny1*nx1*nt1, file_content)), (ny1, nx1))
        self.assertTrue(np.all(d1 - ref[self.ymin:self.ymax, self.xmin:self.xmax] == 0.))
Exemplo n.º 4
0
    def test_read_binary_subset_Data_int(self):
        # binary data from subset in Data object

        # write binary test data
        fname = tempfile.mktemp()
        f = open(fname, 'w')

        tmp = (np.random.random(self.x.shape) * 100.).astype('int16')
        f.write(tmp)
        f.close()

        D = Data(None, None)
        D.filename = fname
        ny, nx = self.x.shape

        latmin = self.lat[self.ymin]
        latmax = self.lat[self.ymax]
        lonmin = self.lon[self.xmin]
        lonmax = self.lon[self.xmax]

        D._read_binary_file(nt=1,
                            dtype='int16',
                            latmin=latmin,
                            latmax=latmax,
                            lonmin=lonmin,
                            lonmax=lonmax,
                            lat=self.lat,
                            lon=self.lon)
        self.assertTrue(
            np.all(
                D.data -
                tmp[self.ymin:self.ymax + 1, self.xmin:self.xmax + 1] == 0.))
Exemplo n.º 5
0
def test_mean_model():

    #The following code provides a routine that allows to validate the MeanModel() class
    print ('Jetzt gehts los')
    # generate some sample data ---
    x = Data(None, None)
    x.data = np.random.random((10,20,30))
    x.label='nothing'

    y = x.mulc(0.3)
    z = x.mulc(0.5)
    m = x.add(y).add(z).divc(3.)
    r = m.div(x)  # gives 0.6 as reference solution

    # generate Model instances and store Data objects as 'variables' ---
    dic_variables = ['var1', 'var2']
    X = Model(None, dic_variables, name='x', intervals='season')
    X.variables = {'var1': x, 'var2': x}
    Y = Model(None, dic_variables, name='y', intervals='season')
    Y.variables = {'var1': y, 'var2': y}
    Z = Model(None, dic_variables, name='z', intervals='season')
    Z.variables={'var1': z, 'var2': z}

    #... now try multimodel ensemble
    M=MeanModel(dic_variables,intervals='season')
    M.add_member(X)
    M.add_member(Y)
    M.add_member(Z)
    M.ensmean()  # calculate ensemble mean
    # print M.variables['var2'].div(x).data #should give 0.6
    npt.assert_equal(np.all(np.abs(1. - M.variables['var2'].div(x).data/0.6) < 0.00000001), True)
Exemplo n.º 6
0
 def setUp(self):
     D = Data(None, None)
     tmp = np.random.random((55, 20))
     D.data = np.ma.array(tmp, mask=tmp != tmp)
     lon = np.arange(-10., 10.)  # -10 ... 9
     lat = np.arange(-60., 50., 2.)  # -60 ... 48
     LON, LAT = np.meshgrid(lon, lat)
     D.lon = np.ma.array(LON, mask=LON != LON)
     D.lat = np.ma.array(LAT, mask=LAT != LAT)
     self.x = D
Exemplo n.º 7
0
 def setUp(self):
     D = Data(None, None)
     tmp = np.random.random((55, 20))
     D.data = np.ma.array(tmp, mask=tmp!=tmp)
     lon = np.arange(-10.,10.)  # -10 ... 9
     lat = np.arange(-60., 50., 2.)  # -60 ... 48
     LON, LAT = np.meshgrid(lon, lat)
     D.lon = np.ma.array(LON, mask=LON!=LON)
     D.lat = np.ma.array(LAT, mask=LAT!=LAT)
     self.x = D
Exemplo n.º 8
0
    def test_read_full_binary_file_double(self):
        # write binary test data
        fname = tempfile.mktemp()
        f = open(fname, 'w')
        f.write(self.x)
        f.close()

        D = Data(None, None)
        D.filename = fname
        ny, nx = self.x.shape
        D._read_binary_file(ny=ny, nx=nx, nt=1, dtype='double')
        self.assertTrue(np.all(D.data - self.x == 0.))
Exemplo n.º 9
0
    def test_read_full_binary_file_double(self):
        # write binary test data
        fname = tempfile.mktemp()
        f = open(fname, 'w')
        f.write(self.x)
        f.close()

        D = Data(None, None)
        D.filename = fname
        ny, nx = self.x.shape
        D._read_binary_file(ny=ny, nx=nx, nt=1, dtype='double')
        self.assertTrue(np.all(D.data-self.x == 0.))
Exemplo n.º 10
0
    def get_rainfall_data(self, interval='season'):
        """
        get rainfall data for JSBACH
        returns Data object
        """

        if interval == 'season':
            pass
        else:
            raise ValueError('Invalid value for interval: %s' % interval)

        #/// PREPROCESSING: seasonal means ///
        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        filename1 = self.data_dir + self.experiment + '_echam6_BOT_mm_1980_sel.nc'
        tmp = pyCDO(filename1, s_start_time, s_stop_time).seldate()
        tmp1 = pyCDO(tmp, s_start_time, s_stop_time).seasmean()
        filename = pyCDO(tmp1, s_start_time, s_stop_time).yseasmean()

        #/// READ DATA ///

        #1) land / sea mask
        ls_mask = get_T63_landseamask(self.shift_lon)

        #2) precipitation data
        try:
            v = 'var4'
            rain = Data(filename,
                        v,
                        read=True,
                        scale_factor=86400.,
                        label='MPI-ESM ' + self.experiment,
                        unit='mm/day',
                        lat_name='lat',
                        lon_name='lon',
                        shift_lon=self.shift_lon,
                        mask=ls_mask.data.data)
        except:
            v = 'var142'
            rain = Data(filename,
                        v,
                        read=True,
                        scale_factor=86400.,
                        label='MPI-ESM ' + self.experiment,
                        unit='mm/day',
                        lat_name='lat',
                        lon_name='lon',
                        shift_lon=self.shift_lon,
                        mask=ls_mask.data.data)

        return rain
Exemplo n.º 11
0
    def setUp(self):
        #init Data object for testing
        n=4 #slows down significantly! constraint is percentile  test
        x = sc.randn(n)*100. #generate dummy data
        self.D = Data(None,None)
        d=np.ones((n,1,2))
        self.D.data = d
        self.D.data[:,0,0]=x
        self.D.data = np.ma.array(self.D.data,mask=self.D.data != self.D.data)
        self.D.verbose = True
        self.D.unit = 'myunit'

        self.D.time = np.arange(n) + pl.datestr2num('2001-01-01') - 1
Exemplo n.º 12
0
    def test_rasterize_init(self):
        x = Data(None, None)
        x._init_sample_object(ny=1, nx=272)
        x.lon = np.random.random(272) * 10. + 5.  # 5 ... 15
        x.lat = np.random.random(272) * 20. + 0.  # 0 ... 20

        lon = np.random.random((10, 20))
        lat = np.random.random((30, 20))

        with self.assertRaises(ValueError):
            x._rasterize(lon, lat, radius=0.1)
        lon = np.random.random((10, 20))
        lat = np.random.random((10, 20))

        with self.assertRaises(ValueError):
            x._rasterize(lon, lat, radius=None)
Exemplo n.º 13
0
    def get_tree_fraction(self, interval='season'):
        """
        todo implement this for data from a real run !!!
        """

        if interval != 'season':
            raise ValueError(
                'Other temporal sampling than SEASON not supported yet for JSBACH BOT files, sorry'
            )

        ls_mask = get_T63_landseamask(self.shift_lon)

        filename = '/home/m300028/shared/dev/svn/trstools-0.0.1/lib/python/pyCMBS/framework/external/vegetation_benchmarking/VEGETATION_COVER_BENCHMARKING/example/historical_r1i1p1-LR_1850-2005_forest_shrub.nc'
        v = 'var12'
        tree = Data(filename,
                    v,
                    read=True,
                    label='MPI-ESM tree fraction ' + self.experiment,
                    unit='-',
                    lat_name='lat',
                    lon_name='lon',
                    shift_lon=self.shift_lon,
                    mask=ls_mask.data.data,
                    start_time=pl.num2date(pl.datestr2num('2001-01-01')),
                    stop_time=pl.num2date(pl.datestr2num('2001-12-31')))

        return tree
Exemplo n.º 14
0
    def get_albedo_data(self, interval='season'):
        """
        get albedo data for JSBACH

        returns Data object
        """

        if interval != 'season':
            raise ValueError(
                'Other temporal sampling than SEASON not supported yet for JSBACH BOT files, sorry'
            )

        v = 'var176'

        filename = self.data_dir + 'data/model1/' + self.experiment + '_echam6_BOT_mm_1979-2006_albedo_yseasmean.nc'
        ls_mask = get_T63_landseamask(self.shift_lon)

        albedo = Data(filename,
                      v,
                      read=True,
                      label='MPI-ESM albedo ' + self.experiment,
                      unit='-',
                      lat_name='lat',
                      lon_name='lon',
                      shift_lon=self.shift_lon,
                      mask=ls_mask.data.data)

        return albedo
Exemplo n.º 15
0
    def setUp(self):
        n=1000  # slows down significantly! constraint is percentile  test
        x = sc.randn(n)*100.  # generate dummy data
        self.D = Data(None, None)
        d=np.ones((n, 1, 1))
        self.D.data = d
        self.D.data[:,0,0]=x
        self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
        self.D.verbose = True
        self.D.unit = 'myunit'
        self.D.label = 'testlabel'
        self.D.filename = 'testinputfilename.nc'
        self.D.varname = 'testvarname'
        self.D.long_name = 'This is the longname'
        self.D.time = np.arange(n) + pl.datestr2num('2001-01-01')
        self.D.time_str = "days since 0001-01-01 00:00:00"
        self.D.calendar = 'gregorian'
        self.D.oldtime=False

        # generate dummy Model object
        data_dir = './test/'
        varmethods = {'albedo':'get_albedo()', 'sis': 'get_sis()'}
        self.model = models.Model(data_dir, varmethods, name='testmodel', intervals='monthly')

        sis = self.D.copy()
        sis.mulc(5., copy=False)
        sis.label='sisdummy'

        alb = self.D.copy()
        alb.label='albedodummy'

        # add some dummy data variable
        self.model.variables = {'albedo':alb, 'sis':sis}
Exemplo n.º 16
0
    def get_temperature_2m(self, interval=None):
        """
        return data object of
        a) seasonal means for air temperature
        b) global mean timeseries for TAS at original temporal resolution
        """
        print 'Needs revision to support CMIP RAWDATA!!'
        assert False

        if interval != 'season':
            raise ValueError('Other data than seasonal not supported at the moment for CMIP5 data and temperature!')

        #original data
        filename1 = self.data_dir + 'tas/' + self.model + '/' + 'tas_Amon_' + self.model + '_' + self.experiment + '_ensmean.nc'

        force_calc = False

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        tmp = pyCDO(filename1, s_start_time, s_stop_time, force=force_calc).seldate()
        tmp1 = pyCDO(tmp, s_start_time, s_stop_time).seasmean()
        filename = pyCDO(tmp1, s_start_time, s_stop_time).yseasmean()

        if not os.path.exists(filename):
            print 'WARNING: Temperature file not found: ', filename
            return None

        tas = Data(filename, 'tas', read=True, label=self._unique_name, unit='K', lat_name='lat', lon_name='lon', shift_lon=False)

        tasall = Data(filename1, 'tas', read=True, label=self._unique_name, unit='K', lat_name='lat', lon_name='lon', shift_lon=False)
        if tasall.time_cycle != 12:
            raise ValueError('Timecycle of 12 expected here!')

        tasmean = tasall.fldmean()
        retval = (tasall.time, tasmean, tasall)
        del tasall

        tas.data = np.ma.array(tas.data, mask=tas.data < 0.)

        return tas, retval
Exemplo n.º 17
0
    def test_read_binary_subset_int(self):
        # INT16 = H
        fname = tempfile.mktemp()
        f = open(fname, 'w')
        ref = (self.x * 10).astype('int16')
        f.write(ref)
        f.close()

        D = Data(None, None)
        f = open(fname, 'r')
        ny, nx = self.x.shape
        nt = 1

        # test 1: read entire file
        file_content = D._read_binary_subset2D(f,
                                               2,
                                               ny=ny,
                                               nx=nx,
                                               xbeg=0,
                                               xend=nx,
                                               ybeg=0,
                                               yend=ny)
        d = np.reshape(
            np.asarray(struct.unpack('H' * ny * nx * nt, file_content)),
            (ny, nx))
        self.assertTrue(np.all(d - ref == 0.))

        # test 2: read subset with 1-values only
        ny1 = self.ymax - self.ymin
        nx1 = self.xmax - self.xmin
        nt1 = 1

        file_content = D._read_binary_subset2D(f,
                                               2,
                                               ny=ny,
                                               nx=nx,
                                               xbeg=self.xmin,
                                               xend=self.xmax,
                                               ybeg=self.ymin,
                                               yend=self.ymax)
        d1 = np.reshape(
            np.asarray(struct.unpack('H' * ny1 * nx1 * nt1, file_content)),
            (ny1, nx1))
        self.assertTrue(
            np.all(d1 - ref[self.ymin:self.ymax, self.xmin:self.xmax] == 0.))
Exemplo n.º 18
0
 def test_SingleMap_add_cyclic(self):
     file = '/home/m300028/shared/data/SEP/variables/land/Ta_2m/cru_ts_3_00.1901.2006.tmp_miss_t63.nc'
     ofile = 'world.png'
     if os.path.exists(ofile):
         os.remove(ofile)
     d = Data(file, 'tmp', read=True)
     map_plot(d, use_basemap=True, savegraphicfile=ofile)
     if os.path.exists(ofile):
         os.remove(ofile)
Exemplo n.º 19
0
    def setUp(self):
        self.D = Data(None, None)
        self.D._init_sample_object(nt=1000, ny=1, nx=1)

        # generate dummy Model object
        data_dir = '.' + os.sep + 'test' + os.sep
        varmethods = {'albedo':'get_albedo()', 'sis': 'get_sis()'}
        self.model = models.Model(data_dir, varmethods, name='testmodel', intervals='monthly')

        sis = self.D.copy()
        sis.mulc(5., copy=False)
        sis.label='sisdummy'

        alb = self.D.copy()
        alb.label='albedodummy'

        # add some dummy data variable
        self.model.variables = {'albedo':alb, 'sis':sis}
Exemplo n.º 20
0
 def setUp(self):
     # init Data object for testing
     n = 100  # slows down significantly! constraint is percentile  test
     x = sc.randn(n) * 100.  # generate dummy data
     self.D = Data(None, None)
     d = np.ones((n, 1, 1))
     self.D.data = d
     self.D.data[:, 0, 0] = x
     self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
     self.D.verbose = True
     self.D.unit = 'myunit'
     self.D.label = 'testlabel'
     self.D.filename = 'testinputfilename.nc'
     self.D.varname = 'testvarname'
     self.D.long_name = 'This is the longname'
     self.D.time = np.arange(n) + pl.datestr2num('2001-01-01') - 1
     self.D.time_str = "days since 0001-01-01 00:00:00"
     self.D.calendar = 'gregorian'
     self.D.cell_area = np.ones_like(self.D.data[0, :, :])
Exemplo n.º 21
0
    def test_rasterize_init(self):
        x = Data(None, None)
        x._init_sample_object(ny=1, nx=272)
        x.lon = np.random.random(272)*10. + 5.  # 5 ... 15
        x.lat = np.random.random(272)*20. + 0.  # 0 ... 20

        lon = np.random.random((10,20))
        lat = np.random.random((30,20))

        with self.assertRaises(ValueError):
            x._rasterize(lon, lat, radius=0.1)
        lon = np.random.random((10,20))
        lat = np.random.random((10,20))

        with self.assertRaises(ValueError):
            x._rasterize(lon, lat, radius=None)
Exemplo n.º 22
0
    def __init__(self, filename, gridfile, varname, read=False, **kwargs):
        """
        Parameters
        ----------

        filename : str
            filename of data file

        gridfile : str
            filename of grid definition file

        varname : str
            name of variable to handle

        read : bool
            specify if data should be read immediately
        """
        Data.__init__(self, filename, varname, **kwargs)
        self.gridfile = gridfile
        self.gridtype = 'unstructured'
Exemplo n.º 23
0
    def __init__(self, filename, gridfile, varname, read=False, **kwargs):
        """
        Parameters
        ----------

        filename : str
            filename of data file

        gridfile : str
            filename of grid definition file

        varname : str
            name of variable to handle

        read : bool
            specify if data should be read immediately
        """
        Data.__init__(self, filename, varname, **kwargs)
        self.gridfile = gridfile
        self.gridtype = 'unstructured'
Exemplo n.º 24
0
    def setUp(self):
        self.nx = 20
        self.ny = 10
        self.tempfile = tempfile.mktemp(suffix='.nc')
        self.gfile1 = tempfile.mktemp(suffix='.nc')
        self.gfile2 = tempfile.mktemp(suffix='.nc')
        self.gfile3 = tempfile.mktemp(suffix='.nc')
        self.x = Data(None, None)
        self.x._init_sample_object(nt=10, ny=self.ny, nx=self.nx)
        self.x.save(self.tempfile, varname='myvar')

        # generate some arbitrary geometry file
        F = NetCDFHandler()
        F.open_file(self.gfile1, 'w')
        F.create_dimension('ny', size=self.ny)
        F.create_dimension('nx', size=self.nx)
        F.create_variable('lat', 'd', ('ny', 'nx'))
        F.create_variable('lon', 'd', ('ny', 'nx'))
        F.assign_value('lat', np.ones((self.ny, self.nx)) * 5.)
        F.assign_value('lon', np.ones((self.ny, self.nx)) * 3.)
        F.close()

        F = NetCDFHandler()
        F.open_file(self.gfile2, 'w')
        F.create_dimension('ny', size=self.ny)
        F.create_dimension('nx', size=self.nx)
        F.create_variable('latitude', 'd', ('ny', 'nx'))
        F.create_variable('longitude', 'd', ('ny', 'nx'))
        F.assign_value('latitude', np.ones((self.ny, self.nx)) * 7.)
        F.assign_value('longitude', np.ones((self.ny, self.nx)) * 8.)
        F.close()

        F = NetCDFHandler()
        F.open_file(self.gfile3, 'w')
        F.create_dimension('ny', size=self.ny * 2)
        F.create_dimension('nx', size=self.nx * 3)
        F.create_variable('latitude', 'd', ('ny', 'nx'))
        F.create_variable('longitude', 'd', ('ny', 'nx'))
        F.assign_value('latitude', np.ones((self.ny * 2, self.nx * 3)) * 7.)
        F.assign_value('longitude', np.ones((self.ny * 2, self.nx * 3)) * 8.)
        F.close()
Exemplo n.º 25
0
def main():

    plt.close('all')

    shp_file = '/Users/mpim/Desktop/ben/TP/TibeatanPlateau'  # specify name of shapefile; note that it should be done WITHOUT the file extension

    # set a array as masked array: x.data = np.ma.array(arr, mask=arr!=arr)
    #set the region for masking
    r = RegionBboxLatLon(777, 70., 105., 25., 40., label='testregion')
    r.mask = None

    #Read files
    filename_Landevl = '/Users/mpim/Desktop/ben/chen_sebs_wgs84_n_0.13x0.13.nc'  #'/data/share/mpiles/TRS/m300157/land_eval/LandFluxEVAL.merged.89-05.monthly.diagnostic.nc'
    Landevl = Data(filename_Landevl, 'ETmon', read=True)  #'lat','lon', ET_mean

    #get aoi
    Landevl.get_aoi_lat_lon(r)
    Landevl.cut_bounding_box()

    # read regions from shapefile
    # This gives an object which contains all regions stored in the shapefile

    RS = RegionShape(shp_file)

    # just print the region keys for illustration
    for k in RS.regions.keys():
        print k

    # if you now want to generate a particular mask we can do that
    # in the following example we mask the airt temperature for the
    # Tibetean plateau

    # and then mask it
    r_tibet = RS.regions[1]  # gives a Region object

    # mask with region

    Landevl.mask_region(r_tibet)
    Landevl.save('/Users/mpim/Desktop/ben/chen_sebs_recut2.nc')

    plt.show()
Exemplo n.º 26
0
def test_mean_model():

    #The following code provides a routine that allows to validate the MeanModel() class
    print('Jetzt gehts los')
    # generate some sample data ---
    x = Data(None, None)
    x.data = np.random.random((10, 20, 30))
    x.label = 'nothing'

    y = x.mulc(0.3)
    z = x.mulc(0.5)
    m = x.add(y).add(z).divc(3.)
    r = m.div(x)  # gives 0.6 as reference solution

    # generate Model instances and store Data objects as 'variables' ---
    dic_variables = ['var1', 'var2']
    X = Model(None, dic_variables, name='x', intervals='season')
    X.variables = {'var1': x, 'var2': x}
    Y = Model(None, dic_variables, name='y', intervals='season')
    Y.variables = {'var1': y, 'var2': y}
    Z = Model(None, dic_variables, name='z', intervals='season')
    Z.variables = {'var1': z, 'var2': z}

    #... now try multimodel ensemble
    M = MeanModel(dic_variables, intervals='season')
    M.add_member(X)
    M.add_member(Y)
    M.add_member(Z)
    M.ensmean()  # calculate ensemble mean
    # print M.variables['var2'].div(x).data #should give 0.6
    npt.assert_equal(
        np.all(
            np.abs(1. - M.variables['var2'].div(x).data / 0.6) < 0.00000001),
        True)
Exemplo n.º 27
0
    def test_read_coordinates(self):
        # read data normal
        x1 = Data(self.tempfile, 'myvar', read=True)
        self.assertEqual(x1.nx, self.nx)
        self.assertEqual(x1.ny, self.ny)

        # read data with separate geometry file 'lat', 'lon' names
        x2 = Data(self.tempfile, 'myvar', read=True, geometry_file=self.gfile1)
        self.assertTrue(np.all(x2.lat == 5.))
        self.assertTrue(np.all(x2.lon == 3.))

        # read data with separate geometry file 'latitude', 'longitude' names
        x3 = Data(self.tempfile, 'myvar', read=True, geometry_file=self.gfile2)
        self.assertTrue(np.all(x3.lat == 7.))
        self.assertTrue(np.all(x3.lon == 8.))

        # read data with separate geometry file 'lat', 'lon' names, invalid geometry
        with self.assertRaises(ValueError):
            x4 = Data(self.tempfile,
                      'myvar',
                      read=True,
                      geometry_file=self.gfile3)
Exemplo n.º 28
0
    def test_rasterize_data(self):
        """
        testdataset

        +---+---+---+
        |1.2|2.3|   |
        +---+---+---+
        |   |   |0.7|
        +---+---+---+
        |   |5.2|   |
        +---+---+---+
        """
        x = Data(None, None)
        x._init_sample_object(ny=1, nx=272)

        x.lon = np.asarray([2.25, 2.45, 1.8, 3.6])
        x.lat = np.asarray([11.9, 10.1, 10.2, 11.3])
        x.data = np.asarray([5.2, 2.3, 1.2, 0.7])

        # target grid
        lon = np.asarray([1.5, 2.5, 3.5])
        lat = np.asarray([10., 11., 12.])
        LON, LAT = np.meshgrid(lon, lat)

        # rasterize data

        # no valid data
        res = x._rasterize(LON, LAT, radius=0.000001, return_object=True)
        self.assertEqual(res.data.mask.sum(), np.prod(LON.shape))

        with self.assertRaises(ValueError):
            res = x._rasterize(LON, LAT, radius=0.000001, return_object=False)

        # check valid results
        res = x._rasterize(LON, LAT, radius=0.5, return_object=True)
        self.assertEqual(res.data[0, 0], 1.2)
        self.assertEqual(res.data[0, 1], 2.3)
        self.assertEqual(res.data[1, 2], 0.7)
        self.assertEqual(res.ny * res.nx - res.data.mask.sum(), 4)
Exemplo n.º 29
0
    def test_read_binary_subset_Data_int(self):
        # binary data from subset in Data object

        # write binary test data
        fname = tempfile.mktemp()
        f = open(fname, 'w')

        tmp = (np.random.random(self.x.shape)*100.).astype('int16')
        f.write(tmp)
        f.close()

        D = Data(None, None)
        D.filename = fname
        ny, nx = self.x.shape

        latmin = self.lat[self.ymin]
        latmax = self.lat[self.ymax]
        lonmin = self.lon[self.xmin]
        lonmax = self.lon[self.xmax]

        D._read_binary_file(nt=1, dtype='int16', latmin=latmin, latmax=latmax, lonmin=lonmin, lonmax=lonmax, lat=self.lat, lon=self.lon)
        self.assertTrue(np.all(D.data-tmp[self.ymin:self.ymax+1,self.xmin:self.xmax+1] == 0.))
Exemplo n.º 30
0
def get_sample_file(name='air', return_object=True):
    """
    returns Data object of example file including or the filename
    with the full path. If the file is not existing yet,
    then it will be downloaded.

    Parameters
    ----------
    name : str
        specifies which type of sample file should be returned
        ['air','rain']
    return_object : bool
        return Data object if True, otherwise the filename is returned
    """

    files = {
        'air': {
            'name': 'air.mon.mean.nc',
            'url':
            'ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/air.mon.mean.nc',
            'variable': 'air'
        },
        'rain': {
            'name': 'pr_wtr.eatm.mon.mean.nc',
            'url':
            'ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/pr_wtr.eatm.mon.mean.nc',
            'variable': 'pr_wtr'
        }
    }

    if name not in files.keys():
        raise ValueError('Invalid sample file')

    fname = get_example_data_directory() + files[name]['name']

    # download data if not existing yet
    if not os.path.exists(fname):
        tdir = get_example_data_directory()
        url = files[name]['url']
        _download_file(url, tdir)
        if not os.path.exists(fname):
            print fname
            raise ValueError('Download failed!')

    # ... here everything should be fine
    if return_object:
        return Data(fname, files[name]['variable'], read=True)
    else:
        return fname
Exemplo n.º 31
0
    def get_surface_shortwave_radiation_down(self, interval='season'):
        """
        get surface shortwave incoming radiation data for JSBACH

        returns Data object
        """

        if interval != 'season':
            raise ValueError(
                'Other temporal sampling than SEASON not supported yet for JSBACH BOT files, sorry'
            )

        v = 'var176'

        y1 = '1979-01-01'
        y2 = '2006-12-31'
        rawfilename = self.data_dir + 'data/model/' + self.experiment + '_echam6_BOT_mm_1979-2006_srads.nc'

        if not os.path.exists(rawfilename):
            return None

        #--- read data
        cdo = pyCDO(rawfilename, y1, y2)
        if interval == 'season':
            seasfile = cdo.seasmean()
            del cdo
            print 'seasfile: ', seasfile
            cdo = pyCDO(seasfile, y1, y2)
            filename = cdo.yseasmean()
        else:
            raise ValueError('Invalid interval option %s ' % interval)

        #--- read land-sea mask
        ls_mask = get_T63_landseamask(self.shift_lon)

        #--- read SIS data
        sis = Data(
            filename,
            v,
            read=True,
            label='MPI-ESM SIS ' + self.experiment,
            unit='-',
            lat_name='lat',
            lon_name='lon',
            #shift_lon=shift_lon,
            mask=ls_mask.data.data)

        return sis
Exemplo n.º 32
0
    def test_rasterize_data(self):
        """
        testdataset

        +---+---+---+
        |1.2|2.3|   |
        +---+---+---+
        |   |   |0.7|
        +---+---+---+
        |   |5.2|   |
        +---+---+---+
        """
        x = Data(None, None)
        x._init_sample_object(ny=1, nx=272)

        x.lon = np.asarray([2.25, 2.45, 1.8, 3.6])
        x.lat = np.asarray([11.9, 10.1, 10.2, 11.3])
        x.data = np.asarray([5.2, 2.3, 1.2, 0.7])

        # target grid
        lon = np.asarray([1.5, 2.5, 3.5])
        lat = np.asarray([10., 11., 12.])
        LON, LAT = np.meshgrid(lon, lat)

        # rasterize data

        # no valid data
        res = x._rasterize(LON, LAT, radius=0.000001, return_object=True)
        self.assertEqual(res.data.mask.sum(), np.prod(LON.shape))

        with self.assertRaises(ValueError):
            res = x._rasterize(LON, LAT, radius=0.000001, return_object=False)

        # check valid results
        res = x._rasterize(LON, LAT, radius=0.5, return_object=True)
        self.assertEqual(res.data[0,0], 1.2)
        self.assertEqual(res.data[0,1], 2.3)
        self.assertEqual(res.data[1,2], 0.7)
        self.assertEqual(res.ny*res.nx - res.data.mask.sum(), 4)
Exemplo n.º 33
0
    def setUp(self):
        self.D = Data(None, None)
        self.D._init_sample_object(nt=1000, ny=1, nx=1)

        # generate dummy Model object
        data_dir = './test/'
        varmethods = {'albedo':'get_albedo()', 'sis': 'get_sis()'}
        self.model = models.Model(data_dir, varmethods, name='testmodel', intervals='monthly')

        sis = self.D.copy()
        sis.mulc(5., copy=False)
        sis.label='sisdummy'

        alb = self.D.copy()
        alb.label='albedodummy'

        # add some dummy data variable
        self.model.variables = {'albedo':alb, 'sis':sis}
Exemplo n.º 34
0
 def setUp(self):
     # init Data object for testing
     n=100  # slows down significantly! constraint is percentile  test
     x = sc.randn(n)*100.  # generate dummy data
     self.D = Data(None, None)
     d=np.ones((n, 1, 1))
     self.D.data = d
     self.D.data[:,0,0]=x
     self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
     self.D.verbose = True
     self.D.unit = 'myunit'
     self.D.label = 'testlabel'
     self.D.filename = 'testinputfilename.nc'
     self.D.varname = 'testvarname'
     self.D.long_name = 'This is the longname'
     self.D.time = np.arange(n) + pl.datestr2num('2001-01-01') - 1
     self.D.time_str = "days since 0001-01-01 00:00:00"
     self.D.calendar = 'gregorian'
     self.D.cell_area = np.ones_like(self.D.data[0,:,:])
Exemplo n.º 35
0
    def setUp(self):
        self.nx = 20
        self.ny = 10
        self.tempfile = tempfile.mktemp(suffix='.nc')
        self.gfile1 = tempfile.mktemp(suffix='.nc')
        self.gfile2 = tempfile.mktemp(suffix='.nc')
        self.gfile3 = tempfile.mktemp(suffix='.nc')
        self.x = Data(None, None)
        self.x._init_sample_object(nt=10, ny=self.ny, nx=self.nx)
        self.x.save(self.tempfile, varname='myvar')

        # generate some arbitrary geometry file
        F = NetCDFHandler()
        F.open_file(self.gfile1, 'w')
        F.create_dimension('ny', size=self.ny)
        F.create_dimension('nx', size=self.nx)
        F.create_variable('lat', 'd', ('ny', 'nx'))
        F.create_variable('lon', 'd', ('ny', 'nx'))
        F.assign_value('lat', np.ones((self.ny,self.nx)) * 5.)
        F.assign_value('lon', np.ones((self.ny,self.nx)) * 3.)
        F.close()

        F = NetCDFHandler()
        F.open_file(self.gfile2, 'w')
        F.create_dimension('ny', size=self.ny)
        F.create_dimension('nx', size=self.nx)
        F.create_variable('latitude', 'd', ('ny', 'nx'))
        F.create_variable('longitude', 'd', ('ny', 'nx'))
        F.assign_value('latitude', np.ones((self.ny,self.nx)) * 7.)
        F.assign_value('longitude', np.ones((self.ny,self.nx)) * 8.)
        F.close()

        F = NetCDFHandler()
        F.open_file(self.gfile3, 'w')
        F.create_dimension('ny', size=self.ny*2)
        F.create_dimension('nx', size=self.nx*3)
        F.create_variable('latitude', 'd', ('ny', 'nx'))
        F.create_variable('longitude', 'd', ('ny', 'nx'))
        F.assign_value('latitude', np.ones((self.ny*2,self.nx*3)) * 7.)
        F.assign_value('longitude', np.ones((self.ny*2,self.nx*3)) * 8.)
        F.close()
Exemplo n.º 36
0
def get_T63_landseamask(shift_lon, mask_antarctica=True, area='land'):
    """
    get JSBACH T63 land sea mask
    the LS mask is read from the JSBACH init file

    area : str
        ['land','ocean']: When 'land', then the mask returned
        is True on land pixels, for ocean it is vice versa.
        In any other case, you get a valid field everywhere (globally)

    mask_antarctica : bool
        if True, then the mask is FALSE over Antarctica (<60S)
    """
    ls_file = get_data_pool_directory() \
        + 'data_sources/LSMASK/jsbach_T63_GR15_4tiles_1992.nc'
    ls_mask = Data(ls_file,
                   'slm',
                   read=True,
                   label='T63 land-sea mask',
                   lat_name='lat',
                   lon_name='lon',
                   shift_lon=shift_lon)
    if area == 'land':
        msk = ls_mask.data > 0.
    elif area == 'ocean':
        msk = ls_mask.data == 0.
    else:
        msk = np.ones(ls_mask.data.shape).astype('bool')

    ls_mask.data[~msk] = 0.
    ls_mask.data[msk] = 1.
    ls_mask.data = ls_mask.data.astype('bool')
    if mask_antarctica:
        ls_mask.data[ls_mask.lat < -60.] = False

    # ensure that also the mask attribute is set properly
    ls_mask._apply_mask(~msk)

    return ls_mask
Exemplo n.º 37
0
def xxxxtest_median_model():
    x = Data(None, None)
    x.label = 'nothing'
    d = np.random.random((100, 1, 1))
    x.data = np.ma.array(d, mask=d != d)

    # odd number and no masked values
    a = x.copy()
    a.data[:, 0, 0] = 1.
    b = x.copy()
    b.data[:, 0, 0] = 3.
    c = x.copy()
    c.data[:, 0, 0] = 2.
    d = x.copy()
    d.data[:, 0, 0] = 5.
    e = x.copy()
    e.data[:, 0, 0] = 4.

    m = MedianModel()
    m.add_member(a)
    m.add_member(b)
    m.add_member(c)
    m.add_member(d)
    m.add_member(e)
    m.ensmedian()

    # should give the value of 3. for all timesteps

    del m

    # even number and no masked values
    a = x.copy()
    a.data[:, 0, 0] = 1.
    b = x.copy()
    b.data[:, 0, 0] = 3.
    c = x.copy()
    c.data[:, 0, 0] = 2.
    d = x.copy()
    c.data[:, 0, 0] = 4.

    m = MedianModel()
    m.add_member(a)
    m.add_member(b)
    m.add_member(c)
    m.add_member(d)

    m.ensmedian()

    # should give the value of 2.5 for all timesteps
    del m
Exemplo n.º 38
0
"""

from pycmbs.region import RegionBboxLatLon
from pycmbs.examples import download
from pycmbs.data import Data
from pycmbs.mapping import map_plot

import matplotlib.pyplot as plt

# specify some region using bounding box
# here: 20deg W ... 30 DEG E, 40 DEG S ... 5 DEG N
r = RegionBboxLatLon(777, -20.0, 30.0, -40.0, 5.0, label="testregion")  # 777 is just the ID value

# read some data as Data object
filename = download.get_sample_file(name="air", return_object=False)
air = Data(filename, "air", read=True)

# generate some plot BEFORE the masking
map_plot(air, title="before", use_basemap=True)

# now mask the data ...
air.get_aoi_lat_lon(r)

# generate some plot AFTER the masking
map_plot(air, title="after", use_basemap=True)

# ... o.k., so far so good, but the dataset "air" still contains data for the entire domain.
# even if it is masked it will eat some of your memory. You can see this by plotting the size of the matrix
print(air.shape)

# wouldn't it be nice to just remove everything which is not needed?
Exemplo n.º 39
0
from pycmbs.data import Data
from pycmbs.utils import download
import matplotlib.pyplot as plt

plt.close('all')

# load some sample data

# filename = '<THEINPUTFILE>'
filename = download.get_sample_file(name='<VARNAME>', return_object=False)

thevar = '<VARNAME>'
if thevar == 'rain':
    thevar = 'pr_wtr'

x = Data(filename, thevar, read=True)
print 'Data dimensions: ', x.shape

# calculate global mean temperature timeseries
t = x.fldmean()

# plot results as a figure
f = plt.figure()
ax = f.add_subplot(111)
ax.plot(x.date, t, label='global mean')
ax.set_xlabel('Years')
ax.set_ylabel('Temperature [degC]')

# perhaps you also want to calculate some statistics like the temperature trend
from scipy import stats
import numpy as np
Exemplo n.º 40
0
"""
This is an example that should illustrate how you can scale
a dataset by the length of the month
"""

from pycmbs.examples import download
from pycmbs.data import Data
from pycmbs.mapping import map_plot
import matplotlib.pyplot as plt

plt.close('all')

# read some data as Data object
filename = download.get_sample_file(name='air', return_object=False)
air = Data(filename, 'air', read=True)

# this dataset has the following times
print air.date

# obviously the different months have different numbers of days.
# Let's say you want now to perform a proper averaging of the data
# taking into account the different lengths of the months
#
# the way how you would do it is like
# y = sum(w[i] * x[i])
# whereas w is a weighting factor for each timestep and 'x' is the input data

# how can you easily do that with the Data object?

# 1) calculate the weights ...
#     these are dependent on the number of days  which you get as ...
Exemplo n.º 41
0
def xxxxtest_median_model():
    x = Data(None, None)
    x.label = 'nothing'
    d = np.random.random((100, 1, 1))
    x.data = np.ma.array(d, mask= d!=d)

    # odd number and no masked values
    a = x.copy()
    a.data[:, 0, 0] = 1.
    b = x.copy()
    b.data[:, 0, 0] = 3.
    c = x.copy()
    c.data[:, 0, 0] = 2.
    d = x.copy()
    d.data[:, 0, 0] = 5.
    e = x.copy()
    e.data[:, 0, 0] = 4.

    m = MedianModel()
    m.add_member(a)
    m.add_member(b)
    m.add_member(c)
    m.add_member(d)
    m.add_member(e)
    m.ensmedian()

    # should give the value of 3. for all timesteps

    del m

    # even number and no masked values
    a = x.copy()
    a.data[:, 0, 0] = 1.
    b = x.copy()
    b.data[:, 0, 0] = 3.
    c = x.copy()
    c.data[:, 0, 0] = 2.
    d = x.copy()
    c.data[:, 0, 0] = 4.

    m = MedianModel()
    m.add_member(a)
    m.add_member(b)
    m.add_member(c)
    m.add_member(d)

    m.ensmedian()

    # should give the value of 2.5 for all timesteps
    del m
Exemplo n.º 42
0
"""
This file is part of pyCMBS. (c) 2012-2014
For COPYING and LICENSE details, please refer to the file
COPYRIGHT.md
"""

from pycmbs.data import Data
import numpy as np

fname = '../pycmbs/examples/example_data/air.mon.mean.nc'

d = Data(fname, 'air', read=True)
c = d.get_climatology(return_object=True)

print 'c raw: ', c.fldmean()
print c.date
print ''

# create some invalid data
d1 = d.copy()
t = d1.time * 1.
d1.time[20:] = t[0:-20]
d1.time[0:20] = t[-20:]

tmp = d1.data * 1.
d1.data[20:, :, :] = tmp[0:-20, :, :]
d1.data[0:20, :, :] = tmp[-20:, :, :]

c1 = d1.get_climatology(return_object=True, ensure_start_first=True)

print ''
Exemplo n.º 43
0
    def test_lomb_basic(self):

        def _sample_data(t, w, A, B):
            e = np.random.random(len(t))*0.
            y = A * np.cos(w*self.t + B)
            return y, e

        def _test_ratio(x,y, thres=0.05):
            r = np.abs(1. - x / y)
            print r, x/y
            self.assertTrue(r <= thres) # accuracy of ration by 5%

        # test with single frequency
        p_ref = 10.
        w = 2.*np.pi / p_ref
        y, e = _sample_data(self.t, w, 5., 0.1)

        P = np.arange(2., 20., 2.)  # target period [days]
        Ar, Br = lomb_scargle_periodogram(self.t, P, y+e, corr=False)

        _test_ratio(Ar[4], 5.)
        _test_ratio(Br[4], 0.1)

        Ar, Br, Rr, Pr = lomb_scargle_periodogram(self.t, P, y)
        _test_ratio(Ar[4], 5.)
        _test_ratio(Br[4], 0.1)
        #~ self.assertEqual(Rr[4], 1.)
        #~ self.assertEqual(Pr[4], 0.)

        # test for functions with overlapping frequencies
        p_ref1 = 365.
        p_ref2 = 365.
        w1 = 2.*np.pi / p_ref1
        w2 = 2.*np.pi / p_ref2
        y1, e1 = _sample_data(self.t, w1, 4., 0.1)
        y2, e2 = _sample_data(self.t, w2, 3.6, 0.1)

        P = np.arange(1., 366., 1.)  # target period [days]
        Ar, Br = lomb_scargle_periodogram(self.t, P, y1+e1+y2+e2, corr=False)

        _test_ratio(Ar[-1], 7.6)
        _test_ratio(Br[-1], 0.1)

        # overlapping frequencies 2
        p_ref1 = 100.
        p_ref2 = 200.
        w1 = 2.*np.pi / p_ref1
        w2 = 2.*np.pi / p_ref2
        y1, e1 = _sample_data(self.t, w1, 2., np.pi*0.3)  # don't choose pi for phase, as this will result in an optimization with negative amplitude and zero phase (= sin)
        y2, e2 = _sample_data(self.t, w2, 3., np.pi*0.5)
        P = np.arange(1., 366., 1.)  # target period [days]
        hlp = y1+e1+y2+e2
        Ar, Br = lomb_scargle_periodogram(self.t, P, hlp, corr=False)

        # sample data object
        D = Data(None, None)
        D._init_sample_object(nt=len(y), ny=1, nx=1)
        D.data[:,0,0] = np.ma.array(hlp, mask=hlp!=hlp)
        D.time = self.t

        D_dummy = Data(None, None)
        D_dummy._init_sample_object(nt=len(y), ny=1, nx=1)
        with self.assertRaises(ValueError):
            D_dummy.time_str = 'hours since 2001-01-01'  # only days currently supported!
            xx, yy = D_dummy.lomb_scargle_periodogram(P, return_object=False)

        AD, BD = D.lomb_scargle_periodogram(P, return_object=False, corr=False)
        AD1, BD1 = D.lomb_scargle_periodogram(P, return_object=True, corr=False)
        self.assertEqual(AD.shape, BD.shape)
        self.assertEqual(D.ny, AD.shape[1])
        self.assertEqual(D.nx, AD.shape[2])

        _test_ratio(Ar[99], 2.)
        _test_ratio(AD[99,0,0], 2.)
        _test_ratio(AD1.data[99, 0,0], 2.)

        _test_ratio(Ar[199], 3.)
        _test_ratio(AD[199,0,0], 3.)
        _test_ratio(AD1.data[199,0,0], 3.)

        _test_ratio(Br[99], np.pi*0.3)
        _test_ratio(BD[99,0,0], np.pi*0.3)
        _test_ratio(BD1.data[99,0,0], np.pi*0.3)

        _test_ratio(Br[199], np.pi*0.5)
        _test_ratio(BD[199,0,0], np.pi*0.5)
        _test_ratio(BD1.data[199,0,0], np.pi*0.5)

        # test for data with gaps
        # tests are not very robust yet as results depend on noise applied!
        p_ref1 = 100.
        p_ref2 = 200.
        w1 = 2.*np.pi / p_ref1
        w2 = 2.*np.pi / p_ref2
        y1, e1 = _sample_data(self.t, w1, 2., np.pi*0.3)  # don't choose pi for phase, as this will result in an optimization with negative amplitude and zero phase (= sin)
        y2, e2 = _sample_data(self.t, w2, 3., np.pi*0.5)
        P = np.arange(1., 366., 1.)  # target period [days]

        ran = np.random.random(len(self.t))
        msk = ran > 0.1
        tmsk = self.t[msk]
        yref = y1+e1+y2+e2
        ymsk = yref[msk]

        Ar, Br = lomb_scargle_periodogram(tmsk, P, ymsk, corr=False)
Exemplo n.º 44
0
# -*- coding: utf-8 -*-
"""
This file is part of pyCMBS.
(c) 2012- Alexander Loew
For COPYING and LICENSE details, please refer to the LICENSE files
"""
from pycmbs.data import Data
from pycmbs.plots import map_difference
import matplotlib.pyplot as plt

file_name = '../../../pycmbs/examples/example_data/air.mon.mean.nc'
A = Data(file_name,
         'air',
         lat_name='lat',
         lon_name='lon',
         read=True,
         label='air temperature')
B = A.copy()
B.mulc(2.3, copy=False)
a = A.get_climatology(return_object=True)
b = B.get_climatology(return_object=True)

# a quick plot as well as a projection plot
f1 = map_difference(a,
                    b,
                    show_stat=False,
                    vmin=-30.,
                    vmax=30.,
                    dmin=-60.,
                    dmax=60.)  # unprojected
plt.show()
Exemplo n.º 45
0
    def get_model_data_generic(self, interval='season', **kwargs):
        """
        unique parameters are:
            filename - file basename
            variable - name of the variable as the short_name in the netcdf file

            kwargs is a dictionary with keys for each model. Then a dictionary with properties follows

        """

        if not self.type in kwargs.keys():
            print ''
            print 'WARNING: it is not possible to get data using generic function, as method missing: ', self.type, kwargs.keys(
            )
            assert False

        locdict = kwargs[self.type]

        # read settings and details from the keyword arguments
        # no defaults; everything should be explicitely specified in either the config file or the dictionaries
        varname = locdict.pop('variable', None)
        #~ print self.type
        #~ print locdict.keys()
        assert varname is not None, 'ERROR: provide varname!'

        units = locdict.pop('unit', None)
        assert units is not None, 'ERROR: provide unit!'

        lat_name = locdict.pop('lat_name', 'lat')
        lon_name = locdict.pop('lon_name', 'lon')
        model_suffix = locdict.pop('model_suffix', None)
        model_prefix = locdict.pop('model_prefix', None)
        file_format = locdict.pop('file_format')
        scf = locdict.pop('scale_factor')
        valid_mask = locdict.pop('valid_mask')
        custom_path = locdict.pop('custom_path', None)
        thelevel = locdict.pop('level', None)

        target_grid = self._actplot_options['targetgrid']
        interpolation = self._actplot_options['interpolation']

        if custom_path is None:
            filename1 = self.get_raw_filename(
                varname,
                **kwargs)  # routine needs to be implemented by each subclass
        else:
            filename1 = custom_path + self.get_raw_filename(varname, **kwargs)

        if filename1 is None:
            print_log(WARNING, 'No valid model input data')
            return None

        force_calc = False

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        #/// PREPROCESSING ///
        cdo = Cdo()
        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        #1) select timeperiod and generate monthly mean file
        if target_grid == 't63grid':
            gridtok = 'T63'
        else:
            gridtok = 'SPECIAL_GRID'

        file_monthly = filename1[:
                                 -3] + '_' + s_start_time + '_' + s_stop_time + '_' + gridtok + '_monmean.nc'  # target filename
        file_monthly = get_temporary_directory() + os.path.basename(
            file_monthly)

        sys.stdout.write('\n *** Model file monthly: %s\n' % file_monthly)

        if not os.path.exists(filename1):
            print 'WARNING: File not existing: ' + filename1
            return None

        cdo.monmean(options='-f nc',
                    output=file_monthly,
                    input='-' + interpolation + ',' + target_grid +
                    ' -seldate,' + s_start_time + ',' + s_stop_time + ' ' +
                    filename1,
                    force=force_calc)

        sys.stdout.write('\n *** Reading model data... \n')
        sys.stdout.write('     Interval: ' + interval + '\n')

        #2) calculate monthly or seasonal climatology
        if interval == 'monthly':
            mdata_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            mdata_N_file = file_monthly[:-3] + '_ymonN.nc'
            mdata_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32',
                         output=mdata_clim_file,
                         input=file_monthly,
                         force=force_calc)
            cdo.ymonsum(options='-f nc -b 32',
                        output=mdata_sum_file,
                        input=file_monthly,
                        force=force_calc)
            cdo.ymonstd(options='-f nc -b 32',
                        output=mdata_clim_std_file,
                        input=file_monthly,
                        force=force_calc)
            cdo.div(options='-f nc',
                    output=mdata_N_file,
                    input=mdata_sum_file + ' ' + mdata_clim_file,
                    force=force_calc)  # number of samples
        elif interval == 'season':
            mdata_clim_file = file_monthly[:-3] + '_yseasmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_yseassum.nc'
            mdata_N_file = file_monthly[:-3] + '_yseasN.nc'
            mdata_clim_std_file = file_monthly[:-3] + '_yseasstd.nc'
            cdo.yseasmean(options='-f nc -b 32',
                          output=mdata_clim_file,
                          input=file_monthly,
                          force=force_calc)
            cdo.yseassum(options='-f nc -b 32',
                         output=mdata_sum_file,
                         input=file_monthly,
                         force=force_calc)
            cdo.yseasstd(options='-f nc -b 32',
                         output=mdata_clim_std_file,
                         input=file_monthly,
                         force=force_calc)
            cdo.div(options='-f nc -b 32',
                    output=mdata_N_file,
                    input=mdata_sum_file + ' ' + mdata_clim_file,
                    force=force_calc)  # number of samples
        else:
            raise ValueError(
                'Unknown temporal interval. Can not perform preprocessing!')

        if not os.path.exists(mdata_clim_file):
            return None

        #3) read data
        if interval == 'monthly':
            thetime_cylce = 12
        elif interval == 'season':
            thetime_cylce = 4
        else:
            print interval
            raise ValueError('Unsupported interval!')
        mdata = Data(mdata_clim_file,
                     varname,
                     read=True,
                     label=self._unique_name,
                     unit=units,
                     lat_name=lat_name,
                     lon_name=lon_name,
                     shift_lon=False,
                     scale_factor=scf,
                     level=thelevel,
                     time_cycle=thetime_cylce)
        mdata_std = Data(mdata_clim_std_file,
                         varname,
                         read=True,
                         label=self._unique_name + ' std',
                         unit='-',
                         lat_name=lat_name,
                         lon_name=lon_name,
                         shift_lon=False,
                         level=thelevel,
                         time_cycle=thetime_cylce)
        mdata.std = mdata_std.data.copy()
        del mdata_std
        mdata_N = Data(mdata_N_file,
                       varname,
                       read=True,
                       label=self._unique_name + ' std',
                       unit='-',
                       lat_name=lat_name,
                       lon_name=lon_name,
                       shift_lon=False,
                       scale_factor=scf,
                       level=thelevel)
        mdata.n = mdata_N.data.copy()
        del mdata_N

        # ensure that climatology always starts with January, therefore set date and then sort
        mdata.adjust_time(year=1700,
                          day=15)  # set arbitrary time for climatology
        mdata.timsort()

        #4) read monthly data
        mdata_all = Data(file_monthly,
                         varname,
                         read=True,
                         label=self._unique_name,
                         unit=units,
                         lat_name=lat_name,
                         lon_name=lon_name,
                         shift_lon=False,
                         time_cycle=12,
                         scale_factor=scf,
                         level=thelevel)
        mdata_all.adjust_time(day=15)

        #mask_antarctica masks everything below 60 degrees S.
        #here we only mask Antarctica, if only LAND points shall be used
        if valid_mask == 'land':
            mask_antarctica = True
        elif valid_mask == 'ocean':
            mask_antarctica = False
        else:
            mask_antarctica = False

        if target_grid == 't63grid':
            mdata._apply_mask(
                get_T63_landseamask(False,
                                    area=valid_mask,
                                    mask_antarctica=mask_antarctica))
            mdata_all._apply_mask(
                get_T63_landseamask(False,
                                    area=valid_mask,
                                    mask_antarctica=mask_antarctica))
        else:
            tmpmsk = get_generic_landseamask(False,
                                             area=valid_mask,
                                             target_grid=target_grid,
                                             mask_antarctica=mask_antarctica)
            mdata._apply_mask(tmpmsk)
            mdata_all._apply_mask(tmpmsk)
            del tmpmsk

        mdata_mean = mdata_all.fldmean()

        mdata._raw_filename = filename1
        mdata._monthly_filename = file_monthly
        mdata._clim_filename = mdata_clim_file
        mdata._varname = varname

        # return data as a tuple list
        retval = (mdata_all.time, mdata_mean, mdata_all)

        del mdata_all
        return mdata, retval
Exemplo n.º 46
0
class TestData(TestCase):

    def setUp(self):
        # init Data object for testing
        n=100  # slows down significantly! constraint is percentile  test
        x = sc.randn(n)*100.  # generate dummy data
        self.D = Data(None, None)
        d=np.ones((n, 1, 1))
        self.D.data = d
        self.D.data[:,0,0]=x
        self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
        self.D.verbose = True
        self.D.unit = 'myunit'
        self.D.label = 'testlabel'
        self.D.filename = 'testinputfilename.nc'
        self.D.varname = 'testvarname'
        self.D.long_name = 'This is the longname'
        self.D.time = np.arange(n) + pl.datestr2num('2001-01-01') - 1
        self.D.time_str = "days since 0001-01-01 00:00:00"
        self.D.calendar = 'gregorian'
        self.D.cell_area = np.ones_like(self.D.data[0,:,:])


    @unittest.skip('wait for bug free scipy')
    def test_pattern_correlation(self):
        """
        test pattern correlation function
        """
        x = self.D.copy()

        # correlation with random values
        y = self.D.copy()
        tmp = np.random.random(y.shape)
        y.data = np.ma.array(tmp, mask=tmp != tmp)
        P2 = PatternCorrelation(x, y)
        P2._correlate()
        self.assertEqual(x.nt,len(P2.r_value))
        self.assertEqual(x.nt,len(P2.t))

        for i in xrange(x.nt):
            slope, intercept, r_value, p_value, std_err = stats.mstats.linregress(x.data[i,:,:].flatten(),y.data[i,:,:].flatten())
            self.assertEqual(P2.r_value[i], r_value)
            self.assertEqual(P2.p_value[i], p_value)
            self.assertEqual(P2.slope[i], slope)
            self.assertEqual(P2.intercept[i], intercept)
            self.assertEqual(P2.std_err[i], std_err)



    def test_gleckler_index(self):
        """
        test Reichler index/Gleckler plot
        """

        # generate sample data
        # sample data
        tmp = np.zeros((5, 3, 1))
        tmp[:,0,0] = np.ones(5)*1.
        tmp[:,1,0] = np.ones(5)*2.
        tmp[:,2,0] = np.ones(5)*5.

        # The data is like ...
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |

        x = self.D.copy()
        x._temporal_subsetting(0, 4)

        x.data = np.ma.array(tmp, mask=tmp!=tmp)
        x.std = np.ones(x.data.shape)
        x.time[0] = pl.datestr2num('2000-02-15')
        x.time[1] = pl.datestr2num('2000-03-15')
        x.time[2] = pl.datestr2num('2000-04-15')
        x.time[3] = pl.datestr2num('2000-05-15')
        x.time[4] = pl.datestr2num('2000-06-15')

        y = self.D.copy()
        y._temporal_subsetting(0, 4)
        tmp = np.ones(x.data.shape)  # sample data 2
        y.data = np.ma.array(tmp, mask=tmp!=tmp)
        y.time[0] = pl.datestr2num('2000-02-15')
        y.time[1] = pl.datestr2num('2000-03-15')
        y.time[2] = pl.datestr2num('2000-04-15')
        y.time[3] = pl.datestr2num('2000-05-15')
        y.time[4] = pl.datestr2num('2000-06-15')

        # Case 1: same area weights
        # cell area
        tmp = np.ones((3, 1))
        x.cell_area = tmp*1.

        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #===================
        #| 0   | 5   | 5*4**2=5*16. = 80 |
        #==> E2 = sqrt(85./(15.))
        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt(((85./15.) * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b')

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt(((85./15.) * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error



        # Case 2: Different area weights
        # cell area
        tmp = np.ones((3, 1))
        tmp[1, 0] = 2.
        x.cell_area = tmp*1.

        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #--------------------------
        # w = 0.25 w = 0.5  w=0.25|
        #--------------------------

        # 0.25*0 + 0.5 * 1 + 0.25 * 16 = 0 + 0.5 + 4 = 4.5
        # the mean of that is 4.5 for each timestep
        # mean because the overall weights are calculated as such that
        # they give a total weight if 1

        #  diagnostic
        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt((4.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt((4.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        # Case 3: use different std
        x.std = np.ones(x.data.shape)
        x.std[:, 2, 0] = 0.5

        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #--------------------------------
        # w = 0.25    w = 0.5    w=0.25|
        #    0    +   0.5   +  0.25*32 = 0.5 + 8 = 8.5

        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt((8.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt((8.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error



    def test_RegionalAnalysis_xNone(self):
        region = RegionIndex(55, 1, 1, 1, 1, label='test')
        R = RegionalAnalysis(None, self.D, region)
        self.assertEqual(R.x, None)

    def test_RegionalAnalysis_InvalidX(self):
        region = RegionIndex(77, 1, 1, 1, 1, label='test')
        with self.assertRaises(ValueError):
            R = RegionalAnalysis([123.], self.D, region)

    def test_RegionalAnalysis_InvalidY(self):
        region = RegionIndex(88, 1, 1, 1, 1, label='test')
        with self.assertRaises(ValueError):
            R = RegionalAnalysis(self.D, [123.], region)

    def test_RegionalAnalysis_yNone(self):

        region = RegionIndex(55, 1, 1, 1, 1, label='test')
        R = RegionalAnalysis(self.D, None, region)
        self.assertEqual(R.y, None)

    def test_RegionalAnalysis_InvalidRegion(self):
        region = 1.
        with self.assertRaises(ValueError):
            R = RegionalAnalysis(self.D, self.D, region)

    def test_RegionalAnalysis_InvalidGeometry(self):
        region = RegionIndex(99, 1, 1, 1, 1, label='test')
        x = self.D.copy()
        y = self.D.copy()
        y.data = np.random.random((2,3,4,5))
        with self.assertRaises(ValueError):
            R = RegionalAnalysis(x, y, region)

    @unittest.skip('wait for solving logplot proplem in map_plot')
    def test_EOF(self):
        x = np.random.random((self.D.nt, 20, 30))
        self.D.data = np.ma.array(x, mask=x != x)
        self.D.cell_area = np.ones_like(self.D.data[0,:,:])
        E = EOF(self.D)
        r = E.reconstruct_data()
        c = E.get_correlation_matrix()
        E.get_eof_data_correlation()
        #~ E.plot_channnel_correlations(100000)   #slow!!
        E.plot_eof_coefficients(None, all=True)
        E._calc_anomalies()


        E.plot_EOF(None, all=True)




    #~ def test_koeppen(self):
        #~ T = self.D.copy()
        #~ T.data = np.random.random((10,20,30))
        #~ T.unit = 'K'
        #~ P = self.D.copy()
        #~ P.data = np.random.random((10,20,30))
        #~ P.unit = 'kg/m^2s'
        #~ lsm = self.D.copy()
        #~ lsm.unit = 'fractional'
        #~ lsm.data = np.ones((20,30))
#~
        #~ k = Koeppen(temp=T, precip=P, lsm=lsm)

    def test_koeppen_InvalidInput(self):
        T = self.D.copy()
        P = self.D.copy()
        lsm = self.D.copy()
        with self.assertRaises(ValueError):
            k = Koeppen(temp=None, precip=P, lsm=lsm)
        with self.assertRaises(ValueError):
            k = Koeppen(temp=T, precip=None, lsm=lsm)
        with self.assertRaises(ValueError):
            k = Koeppen(temp=T, precip=P, lsm=None)
Exemplo n.º 47
0
from pycmbs.region import RegionBboxLatLon
from pycmbs.examples import download
from pycmbs.data import Data
from pycmbs.mapping import map_plot

import matplotlib.pyplot as plt

# specify some region using bounding box
# here: 20deg W ... 30 DEG E, 40 DEG S ... 5 DEG N
r = RegionBboxLatLon(777, -20., 30., -40., 5.,
                     label='testregion')  #777 is just the ID value

# read some data as Data object
filename = download.get_sample_file(name='air', return_object=False)
air = Data(filename, 'air', read=True)

# generate some plot BEFORE the masking
map_plot(air, title='before', use_basemap=True)

# now mask the data ...
air.get_aoi_lat_lon(r)

# generate some plot AFTER the masking
map_plot(air, title='after', use_basemap=True)

#... o.k., so far so good, but the dataset "air" still contains data for the entire domain.
# even if it is masked it will eat some of your memory. You can see this by plotting the size of the matrix
print(air.shape)

# wouldn't it be nice to just remove everything which is not needed?
Exemplo n.º 48
0
class TestEOF(TestCase):

    def setUp(self):
        #init Data object for testing
        n=4 #slows down significantly! constraint is percentile  test
        x = sc.randn(n)*100. #generate dummy data
        self.D = Data(None,None)
        d=np.ones((n,1,2))
        self.D.data = d
        self.D.data[:,0,0]=x
        self.D.data = np.ma.array(self.D.data,mask=self.D.data != self.D.data)
        self.D.verbose = True
        self.D.unit = 'myunit'

        self.D.time = np.arange(n) + pl.datestr2num('2001-01-01') - 1


    def test_eof_analysis(self):
        #test of EOF
        #example taken from:
        #   http://www.atmos.washington.edu/~dennis/552_Notes_4.pdf , page 80

        #assign sampled data
        D = self.D.copy()
#        d1 = np.array([2,4,-6,8])
#        d2 = np.array([1,2,-3,4])
        #d1 = np.array([2,1])
        #d2 = np.array([4,2])
        #d3 = np.array([-6,-3])
        #d4 = np.array([8,4])

        #D.data[:,0,0] = d1; D.data[:,0,1] = d2
        #D.data[:,0,2] = d3; D.data[:,0,3] = d4

#        D.data[:,0,0] = d1
#        D.data[:,0,1] = d2
#
#        E = EOF(D,cov_norm=False) #do not normalize covariance matrix, as this is also not done in example
#        print E.C #covariance matrix


#        shape of EOF is wrong !!!!!!!
#
#        something is not really working here !!!!
#
#
#        irgendwie ist hier ein problem
#        warum einmal 4x4 und einmal 2x2 ???

#        print 'eigval'
#        print E.eigval
#
#        print 'eigvec'
#        print E.eigvec






    pass
Exemplo n.º 49
0
# -*- coding: utf-8 -*-
"""
This file is part of pyCMBS.
(c) 2012- Alexander Loew
For COPYING and LICENSE details, please refer to the LICENSE file
"""
from pycmbs.data import Data
from pycmbs.plots import map_season
import matplotlib.pyplot as plt

file_name = '../../../pycmbs/examples/example_data/air.mon.mean.nc'
air = Data(file_name, 'air', lat_name='lat', lon_name='lon', read=True, label='air temperature')
c = air.get_climatology(return_object=True)

# a quick plot as well as a projection plot
f1 = map_season(c, show_stat=False, vmin=-30., vmax=30., cticks=[-30., 0., 30.])  # unprojected
plt.show()
Exemplo n.º 50
0
    def xxxxxxxxxxxxxxxxxxxget_surface_shortwave_radiation_down(self, interval='season', force_calc=False, **kwargs):
        """
        return data object of
        a) seasonal means for SIS
        b) global mean timeseries for SIS at original temporal resolution
        """

        the_variable = 'rsds'

        locdict = kwargs[self.type]
        valid_mask = locdict.pop('valid_mask')

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        if self.type == 'CMIP5':
            filename1 = self.data_dir + 'rsds' + os.sep + self.experiment + '/ready/' + self.model + '/rsds_Amon_' + self.model + '_' + self.experiment + '_ensmean.nc'
        elif self.type == 'CMIP5RAW':  # raw CMIP5 data based on ensembles
            filename1 = self._get_ensemble_filename(the_variable)
        elif self.type == 'CMIP5RAWSINGLE':
            filename1 = self.get_single_ensemble_file(the_variable, mip='Amon', realm='atmos', temporal_resolution='mon')
        else:
            raise ValueError('Unknown model type! not supported here!')

        if not os.path.exists(filename1):
            print ('WARNING file not existing: %s' % filename1)
            return None

        #/// PREPROCESSING ///
        cdo = Cdo()

        #1) select timeperiod and generatget_she monthly mean file
        file_monthly = filename1[:-3] + '_' + s_start_time + '_' + s_stop_time + '_T63_monmean.nc'
        file_monthly = get_temporary_directory() + os.path.basename(file_monthly)

        print file_monthly

        sys.stdout.write('\n *** Model file monthly: %s\n' % file_monthly)
        cdo.monmean(options='-f nc', output=file_monthly, input='-remapcon,t63grid -seldate,' + s_start_time + ',' + s_stop_time + ' ' + filename1, force=force_calc)

        sys.stdout.write('\n *** Reading model data... \n')
        sys.stdout.write('     Interval: ' + interval + '\n')

        #2) calculate monthly or seasonal climatology
        if interval == 'monthly':
            sis_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            sis_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            sis_N_file = file_monthly[:-3] + '_ymonN.nc'
            sis_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32', output=sis_clim_file, input=file_monthly, force=force_calc)
            cdo.ymonsum(options='-f nc -b 32', output=sis_sum_file, input=file_monthly, force=force_calc)
            cdo.ymonstd(options='-f nc -b 32', output=sis_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc', output=sis_N_file, input=sis_sum_file + ' ' + sis_clim_file, force=force_calc)  # number of samples
        elif interval == 'season':
            sis_clim_file = file_monthly[:-3] + '_yseasmean.nc'
            sis_sum_file = file_monthly[:-3] + '_yseassum.nc'
            sis_N_file = file_monthly[:-3] + '_yseasN.nc'
            sis_clim_std_file = file_monthly[:-3] + '_yseasstd.nc'
            cdo.yseasmean(options='-f nc -b 32', output=sis_clim_file, input=file_monthly, force=force_calc)
            cdo.yseassum(options='-f nc -b 32', output=sis_sum_file, input=file_monthly, force=force_calc)
            cdo.yseasstd(options='-f nc -b 32', output=sis_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc -b 32', output=sis_N_file, input=sis_sum_file + ' ' + sis_clim_file, force=force_calc)  # number of samples
        else:
            print interval
            raise ValueError('Unknown temporal interval. Can not perform preprocessing!')

        if not os.path.exists(sis_clim_file):
            return None

        #3) read data
        sis = Data(sis_clim_file, 'rsds', read=True, label=self._unique_name, unit='$W m^{-2}$', lat_name='lat', lon_name='lon', shift_lon=False)
        sis_std = Data(sis_clim_std_file, 'rsds', read=True, label=self._unique_name + ' std', unit='-', lat_name='lat', lon_name='lon', shift_lon=False)
        sis.std = sis_std.data.copy()
        del sis_std
        sis_N = Data(sis_N_file, 'rsds', read=True, label=self._unique_name + ' std', unit='-', lat_name='lat', lon_name='lon', shift_lon=False)
        sis.n = sis_N.data.copy()
        del sis_N

        #ensure that climatology always starts with January, therefore set date and then sort
        sis.adjust_time(year=1700, day=15)  # set arbitrary time for climatology
        sis.timsort()

        #4) read monthly data
        sisall = Data(file_monthly, 'rsds', read=True, label=self._unique_name, unit='W m^{-2}', lat_name='lat', lon_name='lon', shift_lon=False)
        if not sisall._is_monthly():
            raise ValueError('Timecycle of 12 expected here!')
        sisall.adjust_time(day=15)

        # land/sea masking ...
        if valid_mask == 'land':
            mask_antarctica = True
        elif valid_mask == 'ocean':
            mask_antarctica = False
        else:
            mask_antarctica = False

        sis._apply_mask(get_T63_landseamask(False, mask_antarctica=mask_antarctica, area=valid_mask))
        sisall._apply_mask(get_T63_landseamask(False, mask_antarctica=mask_antarctica, area=valid_mask))
        sismean = sisall.fldmean()

        # return data as a tuple list
        retval = (sisall.time, sismean, sisall)
        del sisall

        # mask areas without radiation (set to invalid): all data < 1 W/m**2
        sis.data = np.ma.array(sis.data, mask=sis.data < 1.)

        return sis, retval
Exemplo n.º 51
0
"""
"""
This is an example that should illustrate how you can scale
a dataset by the length of the month
"""

from pycmbs.examples import download
from pycmbs.data import Data
from pycmbs.mapping import map_plot
import matplotlib.pyplot as plt

plt.close('all')

# read some data as Data object
filename = download.get_sample_file(name='air', return_object=False)
air = Data(filename, 'air', read=True)

# this dataset has the following times
print air.date

# obviously the different months have different numbers of days.
# Let's say you want now to perform a proper averaging of the data
# taking into account the different lengths of the months
#
# the way how you would do it is like
# y = sum(w[i] * x[i])
# whereas w is a weighting factor for each timestep and 'x' is the input data

# how can you easily do that with the Data object?

# 1) calculate the weights ...
Exemplo n.º 52
0
    def xxxxxget_surface_shortwave_radiation_up(self, interval='season', force_calc=False, **kwargs):

        the_variable = 'rsus'

        if self.type == 'CMIP5':
            filename1 = self.data_dir + the_variable + os.sep + self.experiment + os.sep + 'ready' + os.sep + self.model + os.sep + 'rsus_Amon_' + self.model + '_' + self.experiment + '_ensmean.nc'
        elif self.type == 'CMIP5RAW':  # raw CMIP5 data based on ensembles
            filename1 = self._get_ensemble_filename(the_variable)
        elif self.type == 'CMIP5RAWSINGLE':
            filename1 = self.get_single_ensemble_file(the_variable, mip='Amon', realm='atmos', temporal_resolution='mon')
        else:
            raise ValueError('Unknown type! not supported here!')

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        if not os.path.exists(filename1):
            print ('WARNING file not existing: %s' % filename1)
            return None

        # PREPROCESSING
        cdo = Cdo()
        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        #1) select timeperiod and generate monthly mean file
        file_monthly = filename1[:-3] + '_' + s_start_time + '_' + s_stop_time + '_T63_monmean.nc'
        file_monthly = get_temporary_directory() + os.path.basename(file_monthly)
        cdo.monmean(options='-f nc', output=file_monthly, input='-remapcon,t63grid -seldate,' + s_start_time + ',' + s_stop_time + ' ' + filename1, force=force_calc)

        #2) calculate monthly or seasonal climatology
        if interval == 'monthly':
            sup_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            sup_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            sup_N_file = file_monthly[:-3] + '_ymonN.nc'
            sup_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32', output=sup_clim_file, input=file_monthly, force=force_calc)
            cdo.ymonsum(options='-f nc -b 32', output=sup_sum_file, input=file_monthly, force=force_calc)
            cdo.ymonstd(options='-f nc -b 32', output=sup_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc', output=sup_N_file, input=sup_sum_file + ' ' + sup_clim_file, force=force_calc)  # number of samples
        elif interval == 'season':
            sup_clim_file = file_monthly[:-3] + '_yseasmean.nc'
            sup_sum_file = file_monthly[:-3] + '_yseassum.nc'
            sup_N_file = file_monthly[:-3] + '_yseasN.nc'
            sup_clim_std_file = file_monthly[:-3] + '_yseasstd.nc'
            cdo.yseasmean(options='-f nc -b 32', output=sup_clim_file, input=file_monthly, force=force_calc)
            cdo.yseassum(options='-f nc -b 32', output=sup_sum_file, input=file_monthly, force=force_calc)
            cdo.yseasstd(options='-f nc -b 32', output=sup_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc -b 32', output=sup_N_file, input=sup_sum_file + ' ' + sup_clim_file, force=force_calc)  # number of samples
        else:
            print interval
            raise ValueError('Unknown temporal interval. Can not perform preprocessing! ')

        if not os.path.exists(sup_clim_file):
            print 'File not existing (sup_clim_file): ' + sup_clim_file
            return None

        #3) read data
        sup = Data(sup_clim_file, 'rsus', read=True, label=self._unique_name, unit='$W m^{-2}$', lat_name='lat', lon_name='lon', shift_lon=False)
        sup_std = Data(sup_clim_std_file, 'rsus', read=True, label=self._unique_name + ' std', unit='-', lat_name='lat', lon_name='lon', shift_lon=False)
        sup.std = sup_std.data.copy()
        del sup_std
        sup_N = Data(sup_N_file, 'rsus', read=True, label=self._unique_name + ' std', unit='-', lat_name='lat', lon_name='lon', shift_lon=False)
        sup.n = sup_N.data.copy()
        del sup_N

        # ensure that climatology always starts with January, therefore set date and then sort
        sup.adjust_time(year=1700, day=15)  # set arbitrary time for climatology
        sup.timsort()

        #4) read monthly data
        supall = Data(file_monthly, 'rsus', read=True, label=self._unique_name, unit='$W m^{-2}$', lat_name='lat', lon_name='lon', shift_lon=False)
        supall.adjust_time(day=15)
        if not supall._is_monthly():
            raise ValueError('Monthly timecycle expected here!')
        supmean = supall.fldmean()

        #/// return data as a tuple list
        retval = (supall.time, supmean, supall)
        del supall

        #/// mask areas without radiation (set to invalid): all data < 1 W/m**2
        #sup.data = np.ma.array(sis.data,mask=sis.data < 1.)

        return sup, retval
Exemplo n.º 53
0
class TestPycmbsBenchmarkingModels(unittest.TestCase):

    def setUp(self):
        self.D = Data(None, None)
        self.D._init_sample_object(nt=1000, ny=1, nx=1)

        # generate dummy Model object
        data_dir = './test/'
        varmethods = {'albedo':'get_albedo()', 'sis': 'get_sis()'}
        self.model = models.Model(data_dir, varmethods, name='testmodel', intervals='monthly')

        sis = self.D.copy()
        sis.mulc(5., copy=False)
        sis.label='sisdummy'

        alb = self.D.copy()
        alb.label='albedodummy'

        # add some dummy data variable
        self.model.variables = {'albedo':alb, 'sis':sis}

    def test_save_prefix_missing(self):
        m = self.model
        odir = tempfile.mkdtemp() + os.sep
        with self.assertRaises(ValueError):
            m.save(odir)

    def test_save_create_odir(self):
        m = self.model
        odir = tempfile.mkdtemp() + os.sep
        if os.path.exists(odir):
            os.system('rm -rf ' + odir)
        m.save(odir, prefix='test')
        self.assertTrue(os.path.exists(odir))
        os.system('rm -rf ' + odir)

    def test_save(self):
        m = self.model
        odir = tempfile.mkdtemp() + os.sep

        sisfile = odir + 'testoutput_SIS.nc'
        albfile = odir + 'testoutput_ALBEDO.nc'
        if os.path.exists(sisfile):
            os.remove(sisfile)
        if os.path.exists(albfile):
            os.remove(albfile)

        m.save(odir, prefix='testoutput')
        self.assertTrue(os.path.exists(sisfile))
        self.assertTrue(os.path.exists(albfile))

        if os.path.exists(sisfile):
            os.remove(sisfile)
        if os.path.exists(albfile):
            os.remove(albfile)
        os.system('rm -rf ' + odir)

    def test_cmip5_init_singlemember(self):
        data_dir = tempfile.mkdtemp()

        # invalid model identifier
        with self.assertRaises(ValueError):
            M = models.CMIP5RAW_SINGLE(data_dir, 'MPI-M:MPI-ESM-LR1', 'amip', {}, intervals='monthly')
        with self.assertRaises(ValueError):
            M = models.CMIP5RAW_SINGLE(data_dir, 'MPI-M:MPI-ESM-LR#1#2', 'amip', {}, intervals='monthly')
        M1 = models.CMIP5RAW_SINGLE(data_dir, 'MPI-M:MPI-ESM-LR#1', 'amip', {}, intervals='monthly')
        M2 = models.CMIP5RAW_SINGLE(data_dir, 'MPI-M:MPI-ESM-LR#728', 'amip', {}, intervals='monthly')
        self.assertEqual(M1.ens_member, 1)
        self.assertEqual(M2.ens_member, 728)

    def test_cmip5_singlemember_filename(self):
        data_dir = tempfile.mkdtemp()

        # generate testfile
        testfile = data_dir + os.sep + 'MPI-M' + os.sep + 'MPI-ESM-LR' + os.sep + 'amip' + os.sep + 'mon' + os.sep + 'atmos' + os.sep + 'Amon' + os.sep + 'r1i1p1' + os.sep + 'ta' + os.sep + 'ta_Amon_MPI-ESM-LR_amip_r1i1p1_197901-200812.nc'
        os.makedirs(os.path.dirname(testfile))
        os.system('touch ' + testfile)
        self.assertTrue(os.path.exists(testfile))

        M = models.CMIP5RAW_SINGLE(data_dir, 'MPI-M:MPI-ESM-LR#1', 'amip', {}, intervals='monthly')
        f = M.get_single_ensemble_file('ta', mip='Amon', realm='atmos')
        self.assertTrue(os.path.exists(f))
        self.assertEqual(f, testfile)
Exemplo n.º 54
0
    def get_model_data_generic(self, interval='season', **kwargs):
        """
        unique parameters are:
            filename - file basename
            variable - name of the variable as the short_name in the netcdf file

            kwargs is a dictionary with keys for each model. Then a dictionary with properties follows

        """

        if not self.type in kwargs.keys():
            print 'WARNING: it is not possible to get data using generic function, as method missing: ', self.type, kwargs.keys()
            return None

        locdict = kwargs[self.type]

        # read settings and details from the keyword arguments
        # no defaults; everything should be explicitely specified in either the config file or the dictionaries
        varname = locdict.pop('variable')
        units = locdict.pop('unit', 'Crazy Unit')
        #interval = kwargs.pop('interval') #, 'season') #does not make sense to specifiy a default value as this option is specified by configuration file!

        lat_name = locdict.pop('lat_name', 'lat')
        lon_name = locdict.pop('lon_name', 'lon')
        model_suffix = locdict.pop('model_suffix')
        model_prefix = locdict.pop('model_prefix')
        file_format = locdict.pop('file_format')
        scf = locdict.pop('scale_factor')
        valid_mask = locdict.pop('valid_mask')
        custom_path = locdict.pop('custom_path', None)
        thelevel = locdict.pop('level', None)

        target_grid = self._actplot_options['targetgrid']
        interpolation = self._actplot_options['interpolation']

        if custom_path is None:
            filename1 = ("%s%s/merged/%s_%s_%s_%s_%s.%s" %
                        (self.data_dir, varname, varname, model_prefix, self.model, self.experiment, model_suffix, file_format))
        else:
            if self.type == 'CMIP5':
                filename1 = ("%s/%s_%s_%s_%s_%s.%s" %
                             (custom_path, varname, model_prefix, self.model, self.experiment, model_suffix, file_format))
            elif self.type == 'CMIP5RAW':
                filename1 = ("%s/%s_%s_%s_%s_%s.%s" %
                             (custom_path, varname, model_prefix, self.model, self.experiment, model_suffix, file_format))
            elif self.type == 'CMIP5RAWSINGLE':
                print 'todo needs implementation!'
                assert False
            elif self.type == 'CMIP3':
                filename1 = ("%s/%s_%s_%s_%s.%s" %
                             (custom_path, self.experiment, self.model, varname, model_suffix, file_format))
            else:
                print self.type
                raise ValueError('Can not generate filename: invalid model type! %s' % self.type)

        force_calc = False

        if self.start_time is None:
            raise ValueError('Start time needs to be specified')
        if self.stop_time is None:
            raise ValueError('Stop time needs to be specified')

        #/// PREPROCESSING ///
        cdo = Cdo()
        s_start_time = str(self.start_time)[0:10]
        s_stop_time = str(self.stop_time)[0:10]

        #1) select timeperiod and generate monthly mean file
        if target_grid == 't63grid':
            gridtok = 'T63'
        else:
            gridtok = 'SPECIAL_GRID'

        file_monthly = filename1[:-3] + '_' + s_start_time + '_' + s_stop_time + '_' + gridtok + '_monmean.nc'  # target filename
        file_monthly = get_temporary_directory() + os.path.basename(file_monthly)

        sys.stdout.write('\n *** Model file monthly: %s\n' % file_monthly)

        if not os.path.exists(filename1):
            print 'WARNING: File not existing: ' + filename1
            return None

        cdo.monmean(options='-f nc', output=file_monthly, input='-' + interpolation + ',' + target_grid + ' -seldate,' + s_start_time + ',' + s_stop_time + ' ' + filename1, force=force_calc)

        sys.stdout.write('\n *** Reading model data... \n')
        sys.stdout.write('     Interval: ' + interval + '\n')

        #2) calculate monthly or seasonal climatology
        if interval == 'monthly':
            mdata_clim_file = file_monthly[:-3] + '_ymonmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_ymonsum.nc'
            mdata_N_file = file_monthly[:-3] + '_ymonN.nc'
            mdata_clim_std_file = file_monthly[:-3] + '_ymonstd.nc'
            cdo.ymonmean(options='-f nc -b 32', output=mdata_clim_file, input=file_monthly, force=force_calc)
            cdo.ymonsum(options='-f nc -b 32', output=mdata_sum_file, input=file_monthly, force=force_calc)
            cdo.ymonstd(options='-f nc -b 32', output=mdata_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc', output=mdata_N_file, input=mdata_sum_file + ' ' + mdata_clim_file, force=force_calc)  # number of samples
        elif interval == 'season':
            mdata_clim_file = file_monthly[:-3] + '_yseasmean.nc'
            mdata_sum_file = file_monthly[:-3] + '_yseassum.nc'
            mdata_N_file = file_monthly[:-3] + '_yseasN.nc'
            mdata_clim_std_file = file_monthly[:-3] + '_yseasstd.nc'
            cdo.yseasmean(options='-f nc -b 32', output=mdata_clim_file, input=file_monthly, force=force_calc)
            cdo.yseassum(options='-f nc -b 32', output=mdata_sum_file, input=file_monthly, force=force_calc)
            cdo.yseasstd(options='-f nc -b 32', output=mdata_clim_std_file, input=file_monthly, force=force_calc)
            cdo.div(options='-f nc -b 32', output=mdata_N_file, input=mdata_sum_file + ' ' + mdata_clim_file, force=force_calc)  # number of samples
        else:
            raise ValueError('Unknown temporal interval. Can not perform preprocessing!')

        if not os.path.exists(mdata_clim_file):
            return None

        #3) read data
        if interval == 'monthly':
            thetime_cylce = 12
        elif interval == 'season':
            thetime_cylce = 4
        else:
            print interval
            raise ValueError('Unsupported interval!')
        mdata = Data(mdata_clim_file, varname, read=True, label=self._unique_name, unit=units, lat_name=lat_name, lon_name=lon_name, shift_lon=False, scale_factor=scf, level=thelevel, time_cycle=thetime_cylce)
        mdata_std = Data(mdata_clim_std_file, varname, read=True, label=self._unique_name + ' std', unit='-', lat_name=lat_name, lon_name=lon_name, shift_lon=False, level=thelevel, time_cycle=thetime_cylce)
        mdata.std = mdata_std.data.copy()
        del mdata_std
        mdata_N = Data(mdata_N_file, varname, read=True, label=self._unique_name + ' std', unit='-', lat_name=lat_name, lon_name=lon_name, shift_lon=False, scale_factor=scf, level=thelevel)
        mdata.n = mdata_N.data.copy()
        del mdata_N

        #ensure that climatology always starts with January, therefore set date and then sort
        mdata.adjust_time(year=1700, day=15)  # set arbitrary time for climatology
        mdata.timsort()

        #4) read monthly data
        mdata_all = Data(file_monthly, varname, read=True, label=self._unique_name, unit=units, lat_name=lat_name, lon_name=lon_name, shift_lon=False, time_cycle=12, scale_factor=scf, level=thelevel)
        mdata_all.adjust_time(day=15)

        #mask_antarctica masks everything below 60 degrees S.
        #here we only mask Antarctica, if only LAND points shall be used
        if valid_mask == 'land':
            mask_antarctica = True
        elif valid_mask == 'ocean':
            mask_antarctica = False
        else:
            mask_antarctica = False

        if target_grid == 't63grid':
            mdata._apply_mask(get_T63_landseamask(False, area=valid_mask, mask_antarctica=mask_antarctica))
            mdata_all._apply_mask(get_T63_landseamask(False, area=valid_mask, mask_antarctica=mask_antarctica))
        else:
            tmpmsk = get_generic_landseamask(False, area=valid_mask, target_grid=target_grid, mask_antarctica=mask_antarctica)
            mdata._apply_mask(tmpmsk)
            mdata_all._apply_mask(tmpmsk)
            del tmpmsk

        mdata_mean = mdata_all.fldmean()

        # return data as a tuple list
        retval = (mdata_all.time, mdata_mean, mdata_all)

        del mdata_all
        return mdata, retval
Exemplo n.º 55
0
# -*- coding: utf-8 -*-
"""
This file is part of pyCMBS.
(c) 2012- Alexander Loew
For COPYING and LICENSE details, please refer to the LICENSE file
"""
from pycmbs.data import Data
from pycmbs.diagnostic import PatternCorrelation
import matplotlib.pyplot as plt
import numpy as np

file_name = '../../../pycmbs/examples/example_data/air.mon.mean.nc'
A = Data(file_name,
         'air',
         lat_name='lat',
         lon_name='lon',
         read=True,
         label='air temperature')
B = A.copy()
B.mulc(2.3, copy=False)
B.data = B.data + np.random.random(B.shape) * 100.

# calculate spatial correlation for all timesteps ...
P = PatternCorrelation(A, B)
# ... and vizalize it
P.plot()

plt.show()
"""
This file is part of pyCMBS.
(c) 2012- Alexander Loew
For COPYING and LICENSE details, please refer to the LICENSE file
"""

"""
development script for pattern correlation analysis
"""

from pycmbs.diagnostic import PatternCorrelation
from pycmbs.data import Data
import numpy as np

import matplotlib.pyplot as plt

plt.close('all')
fname = '../pycmbs/examples/example_data/air.mon.mean.nc'

# generate two datasets
x = Data(fname, 'air', read=True)
xc = x.get_climatology(return_object=True)
yc = xc.copy()
yc.data = yc.data * np.random.random(yc.shape)*10.

PC = PatternCorrelation(xc, yc)
PC.plot()

plt.show()
Exemplo n.º 57
0
# -*- coding: utf-8 -*-
"""
This file is part of pyCMBS.
(c) 2012- Alexander Loew
For COPYING and LICENSE details, please refer to the LICENSE files
"""
from pycmbs.data import Data
from pycmbs.plots import map_difference
import matplotlib.pyplot as plt

file_name = '../../../pycmbs/examples/example_data/air.mon.mean.nc'
A = Data(file_name, 'air', lat_name='lat', lon_name='lon', read=True, label='air temperature')
B = A.copy()
B.mulc(2.3, copy=False)
a = A.get_climatology(return_object=True)
b = B.get_climatology(return_object=True)

# a quick plot as well as a projection plot
f1 = map_difference(a, b, show_stat=False, vmin=-30., vmax=30., dmin=-60., dmax=60.)  # unprojected
plt.show()
Exemplo n.º 58
0
class TestPycmbsBenchmarkingModels(unittest.TestCase):

    def setUp(self):
        n=1000  # slows down significantly! constraint is percentile  test
        x = sc.randn(n)*100.  # generate dummy data
        self.D = Data(None, None)
        d=np.ones((n, 1, 1))
        self.D.data = d
        self.D.data[:,0,0]=x
        self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
        self.D.verbose = True
        self.D.unit = 'myunit'
        self.D.label = 'testlabel'
        self.D.filename = 'testinputfilename.nc'
        self.D.varname = 'testvarname'
        self.D.long_name = 'This is the longname'
        self.D.time = np.arange(n) + pl.datestr2num('2001-01-01')
        self.D.time_str = "days since 0001-01-01 00:00:00"
        self.D.calendar = 'gregorian'
        self.D.oldtime=False

        # generate dummy Model object
        data_dir = './test/'
        varmethods = {'albedo':'get_albedo()', 'sis': 'get_sis()'}
        self.model = models.Model(data_dir, varmethods, name='testmodel', intervals='monthly')

        sis = self.D.copy()
        sis.mulc(5., copy=False)
        sis.label='sisdummy'

        alb = self.D.copy()
        alb.label='albedodummy'

        # add some dummy data variable
        self.model.variables = {'albedo':alb, 'sis':sis}

    def test_save_prefix_missing(self):
        m = self.model
        odir = './odir/'
        with self.assertRaises(ValueError):
            m.save(odir)

    def test_save_create_odir(self):
        m = self.model
        odir = './odir/'
        if os.path.exists(odir):
            os.system('rm -rf ' + odir)
        m.save(odir, prefix='test')
        self.assertTrue(os.path.exists(odir))
        os.system('rm -rf ' + odir)

    def test_save(self):
        m = self.model
        odir = './odir/'

        sisfile = odir + 'testoutput_SIS.nc'
        albfile = odir + 'testoutput_ALBEDO.nc'
        if os.path.exists(sisfile):
            os.remove(sisfile)
        if os.path.exists(albfile):
            os.remove(albfile)

        m.save(odir, prefix='testoutput')
        self.assertTrue(os.path.exists(sisfile))
        self.assertTrue(os.path.exists(albfile))

        if os.path.exists(sisfile):
            os.remove(sisfile)
        if os.path.exists(albfile):
            os.remove(albfile)
        os.system('rm -rf ' + odir)