Exemplo n.º 1
0
def test_tree_crossover2():
    np.random.seed(42)
    pset = pg.PrimitiveSet()
    pset.addFunction(op.add, 2)
    pset.addFunction(op.sub, 2)
    pset.addFunction(op.mul, 2)
    pset.addFunction(protected_div, 2)
    num_constants = 10
    for i in range(num_constants):
        pset.addTerminal(np.random.randint(-5, 5))
    pset.addVariable("x")

    t1 = np.array([3, 9, 1, 1, 5, 7, 6, 0, 0, 0])
    t2 = np.array([6, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    i1 = pg.TreeIndividual(tree=t1, nodes=7)
    i2 = pg.TreeIndividual(tree=t2, nodes=1)
    o1, o2 = pg.tree_crossover(i1, i2, pset=pset)
    o1_str = pg.interpreter(pset, o1.genotype)
    o2_str = pg.interpreter(pset, o2.genotype)

    assert o1.depth == 3
    assert o1.nodes == 5
    assert np.array_equal(o1.genotype, np.array([3, 9, 1, 6, 6, 0, 0, 0, 0,
                                                 0]))
    assert o1_str == 'mul(4, add(-2, -2))'

    assert o2.depth == 2
    assert o2.nodes == 3
    assert np.array_equal(o2.genotype, np.array([1, 5, 7, 0, 0, 0, 0, 0, 0,
                                                 0]))
    assert o2_str == 'add(1, 2)'
Exemplo n.º 2
0
def test_tree_crossover_typed2():
    np.random.seed(42)
    pset = pg.PrimitiveSet(typed=True)
    pset.addFunction(op.add, 2, types=[int, int, int])
    pset.addFunction(op.sub, 2, types=[int, float, float])
    pset.addFunction(op.mul, 2, types=[float, int, int])
    pset.addFunction(protected_div, 2, types=[float, float, float])
    num_constants = 5
    for i in range(num_constants):
        pset.addTerminal(np.random.randint(-5, 5), types=[int])

    for i in range(num_constants):
        pset.addTerminal(np.random.uniform(), types=[float])
    pset.addVariable("x", types=[int])

    pop = pg.make_tree_population(2, pset, 4, 6, init_method=pg.full_tree)
    o1, o2 = pg.tree_crossover(pop.individuals[0],
                               pop.individuals[1],
                               pset=pset)
    o1_str = pg.interpreter(pset, o1.genotype)
    o2_str = pg.interpreter(pset, o2.genotype)

    assert o1.depth == 4
    assert o1.nodes == 13
    assert np.array_equal(
        o1.genotype,
        np.array([
            3, 2, 12, 4, 10, 12, 1, 1, 8, 6, 2, 13, 12, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        ]))
    assert o1_str == 'mul(sub(0.33370861113902184, protected_div(0.09997491581800289, 0.33370861113902184)), add(add(-1, -2), sub(0.14286681792194078, 0.33370861113902184)))'

    assert o2.depth == 5
    assert o2.nodes == 17
    assert np.array_equal(
        o2.genotype,
        np.array([
            1, 1, 1, 7, 6, 2, 3, 6, 8, 12, 2, 3, 7, 8, 3, 8, 5, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        ]))
    assert o2_str == 'add(add(add(2, -2), sub(mul(-2, -1), 0.33370861113902184)), sub(mul(2, -1), mul(-1, 1)))'
Exemplo n.º 3
0
def test_tree_crossover_typed1():
    np.random.seed(42)
    pset = pg.PrimitiveSet(typed=True)
    pset.addFunction(op.add, 2, types=[int, int, int])
    pset.addFunction(op.sub, 2, types=[int, int, int])
    pset.addFunction(op.mul, 2, types=[int, int, int])
    pset.addFunction(protected_div, 2, types=[float, float, float])
    num_constants = 5
    for i in range(num_constants):
        pset.addTerminal(np.random.randint(-5, 5), types=[int])
    for i in range(num_constants):
        pset.addTerminal(np.random.uniform(), types=[float])
    pset.addVariable("x", types=[int])

    pop = pg.make_tree_population(2, pset, 4, 6, init_method=pg.full_tree)
    o1, o2 = pg.tree_crossover(pop.individuals[0],
                               pop.individuals[1],
                               pset=pset)
    o1_str = pg.interpreter(pset, o1.genotype)
    o2_str = pg.interpreter(pset, o2.genotype)

    assert o1.depth == 6
    assert o1.nodes == 21
    assert np.array_equal(
        o1.genotype,
        np.array([
            3, 2, 1, 6, 8, 2, 1, 3, 7, 6, 3, 7, 8, 8, 1, 1, 8, 6, 2, 14, 8, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        ]))
    assert o1_str == 'mul(sub(add(-2, -1), sub(add(mul(2, -2), mul(2, -1)), -1)), add(add(-1, -2), sub(x, -1)))'

    assert o2.depth == 4
    assert o2.nodes == 9
    assert np.array_equal(
        o2.genotype,
        np.array([
            1, 6, 3, 1, 7, 14, 3, 14, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        ]))
    assert o2_str == 'add(-2, mul(add(2, x), mul(x, 1)))'
Exemplo n.º 4
0
def test_tree_crossover_maxdepth():
    np.random.seed(42)
    pset = pg.PrimitiveSet()
    pset.addFunction(op.add, 2)
    pset.addFunction(op.sub, 2)
    pset.addTerminal(1)
    pset.addTerminal(2)
    pset.addTerminal(3)
    pset.addVariable("x")
    pop = pg.make_tree_population(2, pset, 4, 4, init_method=pg.full_tree)
    i1 = pop.individuals[0].clone()
    i2 = pop.individuals[1].clone()
    i1m, i2m = pg.tree_crossover(i1, i2, pset=pset)
    # offpsring1 passes max depth, returns parent1
    assert i1m.depth == i1.depth
    assert i1m.nodes == i1.nodes
    assert np.array_equal(i1.genotype, i1m.genotype)
    # offspring 2 is legal
    assert i2m.depth == 1
    assert i2m.nodes == 1
    assert np.array_equal(
        i2m.genotype,
        np.array([5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
Exemplo n.º 5
0
def test_tree_crossover1():
    np.random.seed(42)
    pset = pg.PrimitiveSet()
    pset.addFunction(op.add, 2)
    pset.addFunction(op.sub, 2)
    pset.addTerminal(1)
    pset.addTerminal(2)
    pset.addTerminal(3)
    pset.addVariable("x")
    pop = pg.make_tree_population(2, pset, 4, 6, init_method=pg.full_tree)
    i1 = pop.individuals[0].clone()
    i2 = pop.individuals[1].clone()
    i1m, i2m = pg.tree_crossover(i1, i2, pset=pset)
    i1m_str = pg.interpreter(pset, i1m.genotype)
    i2m_str = pg.interpreter(pset, i2m.genotype)

    assert i1m.depth == 7
    assert i1m.nodes == 29
    assert np.array_equal(
        i1m.genotype,
        np.array([
            1, 2, 1, 5, 1, 2, 2, 6, 5, 2, 3, 4, 2, 2, 4, 4, 2, 6, 6, 2, 3, 3,
            1, 2, 5, 5, 1, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        ]))
    assert i1m_str == 'add(sub(add(3, add(sub(sub(x, 3), sub(1, 2)), sub(sub(2, 2), sub(x, x)))), sub(1, 1)), add(sub(3, 3), add(3, x)))'

    assert i2m.depth == 1
    assert i2m.nodes == 1
    assert np.array_equal(
        i2m.genotype,
        np.array([
            5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        ]))
    assert i2m_str == '3'