def test_tree_crossover2(): np.random.seed(42) pset = pg.PrimitiveSet() pset.addFunction(op.add, 2) pset.addFunction(op.sub, 2) pset.addFunction(op.mul, 2) pset.addFunction(protected_div, 2) num_constants = 10 for i in range(num_constants): pset.addTerminal(np.random.randint(-5, 5)) pset.addVariable("x") t1 = np.array([3, 9, 1, 1, 5, 7, 6, 0, 0, 0]) t2 = np.array([6, 0, 0, 0, 0, 0, 0, 0, 0, 0]) i1 = pg.TreeIndividual(tree=t1, nodes=7) i2 = pg.TreeIndividual(tree=t2, nodes=1) o1, o2 = pg.tree_crossover(i1, i2, pset=pset) o1_str = pg.interpreter(pset, o1.genotype) o2_str = pg.interpreter(pset, o2.genotype) assert o1.depth == 3 assert o1.nodes == 5 assert np.array_equal(o1.genotype, np.array([3, 9, 1, 6, 6, 0, 0, 0, 0, 0])) assert o1_str == 'mul(4, add(-2, -2))' assert o2.depth == 2 assert o2.nodes == 3 assert np.array_equal(o2.genotype, np.array([1, 5, 7, 0, 0, 0, 0, 0, 0, 0])) assert o2_str == 'add(1, 2)'
def test_tree_crossover_typed2(): np.random.seed(42) pset = pg.PrimitiveSet(typed=True) pset.addFunction(op.add, 2, types=[int, int, int]) pset.addFunction(op.sub, 2, types=[int, float, float]) pset.addFunction(op.mul, 2, types=[float, int, int]) pset.addFunction(protected_div, 2, types=[float, float, float]) num_constants = 5 for i in range(num_constants): pset.addTerminal(np.random.randint(-5, 5), types=[int]) for i in range(num_constants): pset.addTerminal(np.random.uniform(), types=[float]) pset.addVariable("x", types=[int]) pop = pg.make_tree_population(2, pset, 4, 6, init_method=pg.full_tree) o1, o2 = pg.tree_crossover(pop.individuals[0], pop.individuals[1], pset=pset) o1_str = pg.interpreter(pset, o1.genotype) o2_str = pg.interpreter(pset, o2.genotype) assert o1.depth == 4 assert o1.nodes == 13 assert np.array_equal( o1.genotype, np.array([ 3, 2, 12, 4, 10, 12, 1, 1, 8, 6, 2, 13, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])) assert o1_str == 'mul(sub(0.33370861113902184, protected_div(0.09997491581800289, 0.33370861113902184)), add(add(-1, -2), sub(0.14286681792194078, 0.33370861113902184)))' assert o2.depth == 5 assert o2.nodes == 17 assert np.array_equal( o2.genotype, np.array([ 1, 1, 1, 7, 6, 2, 3, 6, 8, 12, 2, 3, 7, 8, 3, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])) assert o2_str == 'add(add(add(2, -2), sub(mul(-2, -1), 0.33370861113902184)), sub(mul(2, -1), mul(-1, 1)))'
def test_tree_crossover_typed1(): np.random.seed(42) pset = pg.PrimitiveSet(typed=True) pset.addFunction(op.add, 2, types=[int, int, int]) pset.addFunction(op.sub, 2, types=[int, int, int]) pset.addFunction(op.mul, 2, types=[int, int, int]) pset.addFunction(protected_div, 2, types=[float, float, float]) num_constants = 5 for i in range(num_constants): pset.addTerminal(np.random.randint(-5, 5), types=[int]) for i in range(num_constants): pset.addTerminal(np.random.uniform(), types=[float]) pset.addVariable("x", types=[int]) pop = pg.make_tree_population(2, pset, 4, 6, init_method=pg.full_tree) o1, o2 = pg.tree_crossover(pop.individuals[0], pop.individuals[1], pset=pset) o1_str = pg.interpreter(pset, o1.genotype) o2_str = pg.interpreter(pset, o2.genotype) assert o1.depth == 6 assert o1.nodes == 21 assert np.array_equal( o1.genotype, np.array([ 3, 2, 1, 6, 8, 2, 1, 3, 7, 6, 3, 7, 8, 8, 1, 1, 8, 6, 2, 14, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])) assert o1_str == 'mul(sub(add(-2, -1), sub(add(mul(2, -2), mul(2, -1)), -1)), add(add(-1, -2), sub(x, -1)))' assert o2.depth == 4 assert o2.nodes == 9 assert np.array_equal( o2.genotype, np.array([ 1, 6, 3, 1, 7, 14, 3, 14, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])) assert o2_str == 'add(-2, mul(add(2, x), mul(x, 1)))'
def test_tree_crossover_maxdepth(): np.random.seed(42) pset = pg.PrimitiveSet() pset.addFunction(op.add, 2) pset.addFunction(op.sub, 2) pset.addTerminal(1) pset.addTerminal(2) pset.addTerminal(3) pset.addVariable("x") pop = pg.make_tree_population(2, pset, 4, 4, init_method=pg.full_tree) i1 = pop.individuals[0].clone() i2 = pop.individuals[1].clone() i1m, i2m = pg.tree_crossover(i1, i2, pset=pset) # offpsring1 passes max depth, returns parent1 assert i1m.depth == i1.depth assert i1m.nodes == i1.nodes assert np.array_equal(i1.genotype, i1m.genotype) # offspring 2 is legal assert i2m.depth == 1 assert i2m.nodes == 1 assert np.array_equal( i2m.genotype, np.array([5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
def test_tree_crossover1(): np.random.seed(42) pset = pg.PrimitiveSet() pset.addFunction(op.add, 2) pset.addFunction(op.sub, 2) pset.addTerminal(1) pset.addTerminal(2) pset.addTerminal(3) pset.addVariable("x") pop = pg.make_tree_population(2, pset, 4, 6, init_method=pg.full_tree) i1 = pop.individuals[0].clone() i2 = pop.individuals[1].clone() i1m, i2m = pg.tree_crossover(i1, i2, pset=pset) i1m_str = pg.interpreter(pset, i1m.genotype) i2m_str = pg.interpreter(pset, i2m.genotype) assert i1m.depth == 7 assert i1m.nodes == 29 assert np.array_equal( i1m.genotype, np.array([ 1, 2, 1, 5, 1, 2, 2, 6, 5, 2, 3, 4, 2, 2, 4, 4, 2, 6, 6, 2, 3, 3, 1, 2, 5, 5, 1, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])) assert i1m_str == 'add(sub(add(3, add(sub(sub(x, 3), sub(1, 2)), sub(sub(2, 2), sub(x, x)))), sub(1, 1)), add(sub(3, 3), add(3, x)))' assert i2m.depth == 1 assert i2m.nodes == 1 assert np.array_equal( i2m.genotype, np.array([ 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])) assert i2m_str == '3'