Exemplo n.º 1
0
def set_dem_file():
    global ax_v, inps, img

    if inps.dem_file:
        dem = readfile.read(inps.dem_file, datasetName='height')[0]
        ax_v = pp.plot_dem_yx(ax_v, dem)

    img = ax_v.imshow(d_v, cmap=inps.colormap, clim=inps.ylim_mat, interpolation='nearest')
Exemplo n.º 2
0
def main(iargs=None):
    # Actual code.
    inps = cmd_line_parse(iargs)

    # Time Series Info
    atr = readfile.read_attribute(inps.timeseries_file)
    k = atr['FILE_TYPE']
    print('input file is ' + k + ': ' + inps.timeseries_file)
    if not k in ['timeseries', 'GIANT_TS']:
        raise ValueError('Only timeseries file is supported!')

    obj = timeseries(inps.timeseries_file)
    obj.open()
    h5 = h5py.File(inps.timeseries_file, 'r')
    if k in ['GIANT_TS']:
        dateList = [
            dt.fromordinal(int(i)).strftime('%Y%m%d')
            for i in h5['dates'][:].tolist()
        ]
    else:
        dateList = obj.dateList
    date_num = len(dateList)
    inps.dates, inps.yearList = ptime.date_list2vector(dateList)

    # Read exclude dates
    if inps.ex_date_list:
        input_ex_date = list(inps.ex_date_list)
        inps.ex_date_list = []
        if input_ex_date:
            for ex_date in input_ex_date:
                if os.path.isfile(ex_date):
                    ex_date = ptime.read_date_list(ex_date)
                else:
                    ex_date = [ptime.yyyymmdd(ex_date)]
                inps.ex_date_list += list(
                    set(ex_date) - set(inps.ex_date_list))
            # delete dates not existed in input file
            inps.ex_date_list = sorted(
                list(set(inps.ex_date_list).intersection(dateList)))
            inps.ex_dates = ptime.date_list2vector(inps.ex_date_list)[0]
            inps.ex_idx_list = sorted(
                [dateList.index(i) for i in inps.ex_date_list])
            print('exclude date:' + str(inps.ex_date_list))

    # Zero displacement for 1st acquisition
    if inps.zero_first:
        if inps.ex_date_list:
            inps.zero_idx = min(
                list(set(range(date_num)) - set(inps.ex_idx_list)))
        else:
            inps.zero_idx = 0

    # File Size
    length = int(atr['LENGTH'])
    width = int(atr['WIDTH'])
    print('data size in [y0,y1,x0,x1]: [%d, %d, %d, %d]' %
          (0, length, 0, width))
    try:
        ullon = float(atr['X_FIRST'])
        ullat = float(atr['Y_FIRST'])
        lon_step = float(atr['X_STEP'])
        lat_step = float(atr['Y_STEP'])
        lrlon = ullon + width * lon_step
        lrlat = ullat + length * lat_step
        print('data size in [lat0,lat1,lon0,lon1]: [%.4f, %.4f, %.4f, %.4f]' %
              (lrlat, ullat, ullon, lrlon))
    except:
        pass

    # Initial Pixel Coord
    if inps.lalo and 'Y_FIRST' in atr.keys():
        y = int((inps.lalo[0] - ullat) / lat_step + 0.5)
        x = int((inps.lalo[1] - ullon) / lon_step + 0.5)
        inps.yx = [y, x]

    if inps.ref_lalo and 'Y_FIRST' in atr.keys():
        y = int((inps.ref_lalo[0] - ullat) / lat_step + 0.5)
        x = int((inps.ref_lalo[1] - ullon) / lon_step + 0.5)
        inps.ref_yx = [y, x]

    # Display Unit
    if inps.disp_unit == 'cm':
        inps.unit_fac = 100.0
    elif inps.disp_unit == 'm':
        inps.unit_fac = 1.0
    elif inps.disp_unit == 'dm':
        inps.unit_fac = 10.0
    elif inps.disp_unit == 'mm':
        inps.unit_fac = 1000.0
    elif inps.disp_unit == 'km':
        inps.unit_fac = 0.001
    else:
        raise ValueError('Un-recognized unit: ' + inps.disp_unit)
    if k in ['GIANT_TS']:
        print('data    unit: mm')
        inps.unit_fac *= 0.001
    else:
        print('data    unit: m')
    print('display unit: ' + inps.disp_unit)

    # Flip up-down / left-right
    if inps.auto_flip:
        inps.flip_lr, inps.flip_ud = pp.auto_flip_direction(atr)
    else:
        inps.flip_ud = False
        inps.left_lr = False

    # Mask file
    if not inps.mask_file:
        if os.path.basename(inps.timeseries_file).startswith('geo_'):
            file_list = ['geo_maskTempCoh.h5']
        else:
            file_list = ['maskTempCoh.h5', 'mask.h5']
        try:
            inps.mask_file = ut.get_file_list(file_list)[0]
        except:
            inps.mask_file = None
    try:
        mask = readfile.read(inps.mask_file, datasetName='mask')[0]
        mask[mask != 0] = 1
        print('load mask from file: ' + inps.mask_file)
    except:
        mask = None
        print('No mask used.')

    # Initial Map
    d_v = readfile.read(
        inps.timeseries_file,
        datasetName=dateList[inps.epoch_num])[0] * inps.unit_fac
    if inps.ref_date:
        inps.ref_d_v = readfile.read(
            inps.timeseries_file, datasetName=inps.ref_date)[0] * inps.unit_fac
        d_v -= inps.ref_d_v
    if mask is not None:
        d_v = mask_matrix(d_v, mask)
    if inps.ref_yx:
        d_v -= d_v[inps.ref_yx[0], inps.ref_yx[1]]
    data_lim = [np.nanmin(d_v), np.nanmax(d_v)]

    if not inps.ylim_mat:
        inps.ylim_mat = data_lim
    print('Initial data range: ' + str(data_lim))
    print('Display data range: ' + str(inps.ylim_mat))

    # Fig 1 - Cumulative Displacement Map
    if not inps.disp_fig:
        plt.switch_backend('Agg')

    fig_v = plt.figure('Cumulative Displacement')

    # Axes 1
    #ax_v = fig_v.add_subplot(111)
    # ax_v.set_position([0.125,0.25,0.75,0.65])
    # This works on OSX. Original worked on Linux.
    # rect[left, bottom, width, height]
    ax_v = fig_v.add_axes([0.125, 0.25, 0.75, 0.65])
    if inps.dem_file:
        dem = readfile.read(inps.dem_file, datasetName='height')[0]
        ax_v = pp.plot_dem_yx(ax_v, dem)
    img = ax_v.imshow(d_v,
                      cmap=inps.colormap,
                      clim=inps.ylim_mat,
                      interpolation='nearest')

    # Reference Pixel
    if inps.ref_yx:
        d_v -= d_v[inps.ref_yx[0], inps.ref_yx[1]]
        ax_v.plot(inps.ref_yx[1], inps.ref_yx[0], 'ks', ms=6)
    else:
        try:
            ax_v.plot(int(atr['REF_X']), int(atr['REF_Y']), 'ks', ms=6)
        except:
            pass

    # Initial Pixel
    if inps.yx:
        ax_v.plot(inps.yx[1], inps.yx[0], 'ro', markeredgecolor='black')

    ax_v.set_xlim(0, np.shape(d_v)[1])
    ax_v.set_ylim(np.shape(d_v)[0], 0)

    # Status Bar
    def format_coord(x, y):
        col = int(x + 0.5)
        row = int(y + 0.5)
        if 0 <= col < width and 0 <= row < length:
            z = d_v[row, col]
            try:
                lon = ullon + x * lon_step
                lat = ullat + y * lat_step
                return 'x=%.0f, y=%.0f, value=%.4f, lon=%.4f, lat=%.4f' % (
                    x, y, z, lon, lat)
            except:
                return 'x=%.0f, y=%.0f, value=%.4f' % (x, y, z)

    ax_v.format_coord = format_coord

    # Title and Axis Label
    ax_v.set_title(
        'N = %d, Time = %s' %
        (inps.epoch_num, inps.dates[inps.epoch_num].strftime('%Y-%m-%d')))
    if not 'Y_FIRST' in atr.keys():
        ax_v.set_xlabel('Range')
        ax_v.set_ylabel('Azimuth')

    # Flip axis
    if inps.flip_lr:
        ax_v.invert_xaxis()
        print('flip map left and right')
    if inps.flip_ud:
        ax_v.invert_yaxis()
        print('flip map up and down')

    # Colorbar
    cbar = fig_v.colorbar(img, orientation='vertical')
    cbar.set_label('Displacement [%s]' % inps.disp_unit)

    # Axes 2 - Time Slider
    ax_time = fig_v.add_axes([0.125, 0.1, 0.6, 0.07],
                             facecolor='lightgoldenrodyellow',
                             yticks=[])
    tslider = Slider(ax_time,
                     'Years',
                     inps.yearList[0],
                     inps.yearList[-1],
                     valinit=inps.yearList[inps.epoch_num])
    tslider.ax.bar(inps.yearList,
                   np.ones(len(inps.yearList)),
                   facecolor='black',
                   width=0.01,
                   ecolor=None)
    tslider.ax.set_xticks(
        np.round(
            np.linspace(inps.yearList[0], inps.yearList[-1], num=5) * 100) /
        100)

    def time_slider_update(val):
        """Update Displacement Map using Slider"""
        timein = tslider.val
        idx_nearest = np.argmin(np.abs(np.array(inps.yearList) - timein))
        ax_v.set_title(
            'N = %d, Time = %s' %
            (idx_nearest, inps.dates[idx_nearest].strftime('%Y-%m-%d')))
        d_v = h5[dateList[idx_nearest]][:] * inps.unit_fac
        if inps.ref_date:
            d_v -= inps.ref_d_v
        if mask is not None:
            d_v = mask_matrix(d_v, mask)
        if inps.ref_yx:
            d_v -= d_v[inps.ref_yx[0], inps.ref_yx[1]]
        img.set_data(d_v)
        fig_v.canvas.draw()

    tslider.on_changed(time_slider_update)

    # Fig 2 - Time Series Displacement - Point
    fig_ts = plt.figure('Time series - point', figsize=inps.fig_size)
    ax_ts = fig_ts.add_subplot(111)

    # Read Error List
    inps.error_ts = None
    if inps.error_file:
        error_fileContent = np.loadtxt(inps.error_file,
                                       dtype=bytes).astype(str)
        inps.error_ts = error_fileContent[:, 1].astype(
            np.float) * inps.unit_fac
        if inps.ex_date_list:
            e_ts = inps.error_ts[:]
            inps.ex_error_ts = np.array([e_ts[i] for i in inps.ex_idx_list])
            inps.error_ts = np.array([
                e_ts[i] for i in range(date_num) if i not in inps.ex_idx_list
            ])

    def plot_timeseries_errorbar(ax, dis_ts, inps):
        dates = list(inps.dates)
        d_ts = dis_ts[:]
        if inps.ex_date_list:
            # Update displacement time-series
            dates = sorted(list(set(inps.dates) - set(inps.ex_dates)))
            ex_d_ts = np.array([dis_ts[i] for i in inps.ex_idx_list])
            d_ts = np.array([
                dis_ts[i] for i in range(date_num) if i not in inps.ex_idx_list
            ])
            # Plot excluded dates
            (_, caps, _) = ax.errorbar(inps.ex_dates,
                                       ex_d_ts,
                                       yerr=inps.ex_error_ts,
                                       fmt='-o',
                                       color='gray',
                                       ms=inps.marker_size,
                                       lw=0,
                                       alpha=1,
                                       mfc='gray',
                                       elinewidth=inps.edge_width,
                                       ecolor='black',
                                       capsize=inps.marker_size * 0.5)
            for cap in caps:
                cap.set_markeredgewidth(inps.edge_width)
        # Plot kept dates
        (_, caps, _) = ax.errorbar(dates,
                                   d_ts,
                                   yerr=inps.error_ts,
                                   fmt='-o',
                                   ms=inps.marker_size,
                                   lw=0,
                                   alpha=1,
                                   elinewidth=inps.edge_width,
                                   ecolor='black',
                                   capsize=inps.marker_size * 0.5)
        for cap in caps:
            cap.set_markeredgewidth(inps.edge_width)
        return ax

    def plot_timeseries_scatter(ax, dis_ts, inps):
        dates = list(inps.dates)
        d_ts = dis_ts[:]
        if inps.ex_date_list:
            # Update displacement time-series
            dates = sorted(list(set(inps.dates) - set(inps.ex_dates)))
            ex_d_ts = np.array([dis_ts[i] for i in inps.ex_idx_list])
            d_ts = np.array([
                dis_ts[i] for i in range(date_num) if i not in inps.ex_idx_list
            ])
            # Plot excluded dates
            ax.scatter(inps.ex_dates,
                       ex_d_ts,
                       s=inps.marker_size**2,
                       color='gray')  # color='crimson'
        # Plot kept dates
        ax.scatter(dates, d_ts, s=inps.marker_size**2)
        return ax

    def update_timeseries(ax_ts, y, x):
        """Plot point time series displacement at pixel [y, x]"""
        d_ts = read_timeseries_yx(
            inps.timeseries_file, y, x, ref_yx=inps.ref_yx) * inps.unit_fac
        # for date in dateList:
        #    d = h5[k].get(date)[y,x]
        #    if inps.ref_yx:
        #        d -= h5[k].get(date)[inps.ref_yx[0], inps.ref_yx[1]]
        #    d_ts.append(d*inps.unit_fac)

        if inps.zero_first:
            d_ts -= d_ts[inps.zero_idx]

        ax_ts.cla()
        if inps.error_file:
            ax_ts = plot_timeseries_errorbar(ax_ts, d_ts, inps)
        else:
            ax_ts = plot_timeseries_scatter(ax_ts, d_ts, inps)
        if inps.ylim:
            ax_ts.set_ylim(inps.ylim)
        for tick in ax_ts.yaxis.get_major_ticks():
            tick.label.set_fontsize(inps.font_size)

        # Title
        title_ts = 'Y = %d, X = %d' % (y, x)
        try:
            lat = ullat + y * lat_step
            lon = ullon + x * lon_step
            title_ts += ', lat = %.4f, lon = %.4f' % (lat, lon)
        except:
            pass
        if inps.disp_title:
            ax_ts.set_title(title_ts)

        ax_ts = pp.auto_adjust_xaxis_date(ax_ts,
                                          inps.yearList,
                                          fontSize=inps.font_size)[0]
        ax_ts.set_xlabel('Time', fontsize=inps.font_size)
        ax_ts.set_ylabel('Displacement [%s]' % inps.disp_unit,
                         fontsize=inps.font_size)

        fig_ts.canvas.draw()

        # Print to terminal
        print('\n---------------------------------------')
        print(title_ts)
        print(d_ts)

        # Slope estimation
        if inps.ex_date_list:
            inps.yearList_kept = [
                inps.yearList[i] for i in range(date_num)
                if i not in inps.ex_idx_list
            ]
            d_ts_kept = [
                d_ts[i] for i in range(date_num) if i not in inps.ex_idx_list
            ]
            d_slope = stats.linregress(np.array(inps.yearList_kept),
                                       np.array(d_ts_kept))
        else:
            d_slope = stats.linregress(np.array(inps.yearList), np.array(d_ts))
        print('linear velocity: %.2f +/- %.2f [%s/yr]' %
              (d_slope[0], d_slope[4], inps.disp_unit))

        return d_ts

    # Initial point time series plot
    if inps.yx:
        d_ts = update_timeseries(ax_ts, inps.yx[0], inps.yx[1])
    else:
        d_ts = np.zeros(len(inps.yearList))
        ax_ts = plot_timeseries_scatter(ax_ts, d_ts, inps)

    def plot_timeseries_event(event):
        """Event function to get y/x from button press"""
        if event.inaxes != ax_v:
            return

        ii = int(event.ydata + 0.5)
        jj = int(event.xdata + 0.5)
        d_ts = update_timeseries(ax_ts, ii, jj)

    # Output
    if inps.save_fig and inps.yx:
        print('save info for pixel ' + str(inps.yx))
        if not inps.fig_base:
            inps.fig_base = 'y%d_x%d' % (inps.yx[0], inps.yx[1])

        # TXT - point time series
        outName = inps.fig_base + '_ts.txt'
        header_info = 'timeseries_file=' + inps.timeseries_file
        header_info += '\ny=%d, x=%d' % (inps.yx[0], inps.yx[1])
        try:
            lat = ullat + inps.yx[0] * lat_step
            lon = ullon + inps.yx[1] * lon_step
            header_info += '\nlat=%.6f, lon=%.6f' % (lat, lon)
        except:
            pass
        if inps.ref_yx:
            header_info += '\nreference pixel: y=%d, x=%d' % (inps.ref_yx[0],
                                                              inps.ref_yx[1])
        else:
            header_info += '\nreference pixel: y=%s, x=%s' % (atr['REF_Y'],
                                                              atr['REF_X'])
        header_info += '\nunit=m/yr'
        np.savetxt(outName,
                   list(zip(np.array(dateList),
                            np.array(d_ts) / inps.unit_fac)),
                   fmt='%s',
                   delimiter='    ',
                   header=header_info)
        print('save time series displacement in meter to ' + outName)

        # Figure - point time series
        outName = inps.fig_base + '_ts.pdf'
        fig_ts.savefig(outName,
                       bbox_inches='tight',
                       transparent=True,
                       dpi=inps.fig_dpi)
        print('save time series plot to ' + outName)

        # Figure - map
        outName = inps.fig_base + '_' + dateList[inps.epoch_num] + '.png'
        fig_v.savefig(outName,
                      bbox_inches='tight',
                      transparent=True,
                      dpi=inps.fig_dpi)
        print('save map plot to ' + outName)

    # Final linking of the canvas to the plots.
    cid = fig_v.canvas.mpl_connect('button_press_event', plot_timeseries_event)
    if inps.disp_fig:
        plt.show()
    fig_v.canvas.mpl_disconnect(cid)