def coc_set_up_plot(bincenters, hist, gaussian, variable, threshold = 0, sub_par = ""): ''' Set up the plotting space for the Climatological Outlier Check :param array bincenters: bin centres of histogram :param array hist: histogram values :param array gaussian: parameters of gaussian fit [m, s, n] :param str variable: name of variable for title :param int threshold: threshold to plot :param str sub_par: sub parameter for axis label ''' import matplotlib.pyplot as plt plt.clf() plt.axes([0.1,0.15,0.85,0.75]) plot_hist = np.array([0.01 if h == 0 else h for h in hist]) plt.step(bincenters, plot_hist, 'k-', label = 'standardised months', where='mid') # plot fitted Gaussian plot_gaussian = utils.gaussian(bincenters, gaussian) plt.plot(bincenters, plot_gaussian, 'b-', label = 'Gaussian fit') # sort the labels etc plt.xlabel("%s offset (IQR)" % variable) plt.ylabel("Frequency (%s)" % sub_par) plt.gca().set_yscale('log') plt.axvline(-threshold-1,c='r') plt.axvline(threshold+1,c='r') plt.axvline(-threshold,c='orange') plt.axvline(threshold,c='orange') plt.ylim(ymin=0.1) plt.title("Climatological Gap Check - %s - %s" % (sub_par, variable) ) return # coc_set_up_plot
def fvc_plot_setup(hist_data, hist, binEdges, xlabel, title = ""): ''' Plot the histogram, with removed observations highlighted :param array hist_data: raw values which have been binned to create hist :param array hist: values of histogram :param array binEdges: location of LH bin edge :param str xlabel: label for x-axis :param str title: title of plot :returns: plot-hist - useful histogram data to plot in log-scale bincenters - locations of centres of bins ''' import matplotlib.pyplot as plt plot_hist = np.array([float(x) if x != 0 else 1e-1 for x in hist]) plt.clf() bincenters = 0.5 * (binEdges[1:] + binEdges[:-1]) plt.step(bincenters, plot_hist, 'b-', label = 'observations', where='mid') fit = utils.fit_gaussian(bincenters, hist, max(hist), mu = np.mean(hist_data), sig = np.std(hist_data)) plot_gaussian = utils.gaussian(bincenters, fit) plt.plot(bincenters, plot_gaussian, 'r-', label = 'Gaussian fit') # sort labels and prettify plt.xlabel(xlabel) plt.ylabel("Frequency") plt.gca().set_yscale('log') plt.ylim([0.1,10000]) plt.title(title) return plot_hist, bincenters # fvc_plot_setup
def plot_target_neigh_diffs_dist(differences, iqr): ''' Plot the distribution of target-neighbour differences :param array differences: masked difference array :param float iqr: inter quartile range of differences :returns: ''' import matplotlib.pyplot as plt plt.clf() bins, bincenters = utils.create_bins(differences.compressed(), 1.0) hist, binEdges = np.histogram(differences.compressed(), bins=bins) plot_hist = np.array([float(x) if x != 0 else 1e-1 for x in hist]) plt.step(bincenters, plot_hist, 'k-', label = 'observations', where='mid') fit = utils.fit_gaussian(bincenters, hist, max(hist), mu=np.mean(differences.compressed()), sig = np.std(differences.compressed())) plot_gaussian = utils.gaussian(bincenters, fit) plt.plot(bincenters, plot_gaussian, 'b-', label = 'Gaussian fit') plt.axvline(5.*iqr, c = 'r') plt.axvline(-5.*iqr, c = 'r') print "only shows lowest of monthly IQRs" plt.ylabel("Frequency") plt.gca().set_yscale('log') plt.ylim([0.1,2*max(hist)]) plt.show() return # plot_target_neigh_diffs_dist
def plot_target_neigh_diffs_dist(differences, iqr): ''' Plot the distribution of target-neighbour differences :param array differences: masked difference array :param float iqr: inter quartile range of differences :returns: ''' import matplotlib.pyplot as plt plt.clf() bins, bincenters = utils.create_bins(differences.compressed(), 1.0) hist, binEdges = np.histogram(differences.compressed(), bins=bins) plot_hist = np.array([float(x) if x != 0 else 1e-1 for x in hist]) plt.step(bincenters, plot_hist, 'k-', label='observations', where='mid') fit = utils.fit_gaussian(bincenters, hist, max(hist), mu=np.mean(differences.compressed()), sig=np.std(differences.compressed())) plot_gaussian = utils.gaussian(bincenters, fit) plt.plot(bincenters, plot_gaussian, 'b-', label='Gaussian fit') plt.axvline(5. * iqr, c='r') plt.axvline(-5. * iqr, c='r') print "only shows lowest of monthly IQRs" plt.ylabel("Frequency") plt.gca().set_yscale('log') plt.ylim([0.1, 2 * max(hist)]) plt.show() return # plot_target_neigh_diffs_dist
def fvc_plot_setup(hist_data, hist, binEdges, xlabel, title=""): ''' Plot the histogram, with removed observations highlighted :param array hist_data: raw values which have been binned to create hist :param array hist: values of histogram :param array binEdges: location of LH bin edge :param str xlabel: label for x-axis :param str title: title of plot :returns: plot-hist - useful histogram data to plot in log-scale bincenters - locations of centres of bins ''' import matplotlib.pyplot as plt plot_hist = np.array([float(x) if x != 0 else 1e-1 for x in hist]) plt.clf() bincenters = 0.5 * (binEdges[1:] + binEdges[:-1]) plt.step(bincenters, plot_hist, 'b-', label='observations', where='mid') fit = utils.fit_gaussian(bincenters, hist, max(hist), mu=np.mean(hist_data), sig=np.std(hist_data)) plot_gaussian = utils.gaussian(bincenters, fit) plt.plot(bincenters, plot_gaussian, 'r-', label='Gaussian fit') # sort labels and prettify plt.xlabel(xlabel) plt.ylabel("Frequency") plt.gca().set_yscale('log') plt.ylim([0.1, 10000]) plt.title(title) return plot_hist, bincenters # fvc_plot_setup
def wind_rose_check(station, flag_col, start, end, logfile, plots=False, diagnostics=False): """ Checks for large differences in the year-to-year wind-rose shape. Uses RMSE and fits Gaussian. Finds gap in distribution to flag beyond :param MetStation station: station object :param int flag_col: which column to store the flags in :param datetime start: start of data :param datetime end: end of data :param bool plots: run the plots :param bool diagnostics: run the diagnostics """ direction = station.winddirs.data speed = station.windspeeds.data flags = station.qc_flags[:, flag_col] month_ranges = utils.month_starts_in_pairs(start, end) month_ranges_years = month_ranges.reshape(-1, 12, 2) # histogram of wind directions ( ~ unravelled wind-rose) bw = 20 bins = range(0, 360 + bw, bw) full_hist, binEdges = np.histogram(direction, bins=bins, normed=True) # use rmse as this is known (Chi-sq remains just in case) rmse, chisq = -np.ma.ones([month_ranges_years.shape[0]]), -np.ma.ones([month_ranges_years.shape[0]]) # run through each year to extract RMSE's for y, year in enumerate(month_ranges_years): if len(direction[year[0][0] : year[-1][0]].compressed()) > 0: hist, binEdges = np.histogram(direction[year[0][0] : year[-1][0]], bins=bins, normed=True) chisq[y] = np.sum((full_hist - hist) ** 2 / (full_hist + hist)) / 2.0 rmse[y] = np.sqrt(np.mean((full_hist - hist) ** 2)) else: rmse.mask[y] = True # now to bin up the differences and see what the fit is. # need to have values spread so can bin! if len(np.unique(rmse.compressed())) > 1: binEdges, bincenters = wind_create_bins(rmse) hist, binEdges = np.histogram(rmse, bins=binEdges) # , density=True) norm = get_histogram_norm(rmse, binEdges) # inputs for fit mu = np.mean(rmse) std = np.std(rmse) # try to get decent fit to bulk of obs. # initial_values = [np.max(hist), np.mean(rmse), np.std(rmse), stats.skew(rmse), stats.kurtosis(rmse)] # norm, mean, std, sk#ew, kurtosis # fit = leastsq(utils.residualsGH, initial_values, [bincenters, hist, np.ones(len(hist))]) # res = utils.hermite2gauss(fit[0]) # plot_gaussian = utils.funcGH(fit[0], bincenters) fit = stats.rice.fit(rmse.compressed(), loc=0, scale=np.ma.std(rmse)) dist_pdf = stats.rice.pdf(bincenters, fit[:-2], loc=fit[-2], scale=fit[-1]) * norm gaussian = utils.fit_gaussian(bincenters, hist, max(hist), mu=mu, sig=std) # invert Gaussian to find initial threshold, then hunt for first gap beyond # threshold = utils.invert_gaussian(PROB_THRESHOLD, gaussian) # invert Rician to find initial threshold, then hunt for first gap beyond if dist_pdf[-1] < PROB_THRESHOLD: # then curve has dropped below the threshold, so can find some updated ones. threshold = -np.where(dist_pdf[::-1] > PROB_THRESHOLD)[0][0] else: threshold = bincenters[-1] n = 0 center = np.argmax(hist) gap = bincenters[-1] # nothing should be beyond this while True: if center + n + 1 == len(bincenters): # gone beyond edge - nothing to flag, so just break break if bincenters[center + n] < threshold: n += 1 # continue moving outwards continue if hist[center + n] == 0: # found one if center + n + 1 == len(bincenters): # gone beyond edge - nothing to flag - escape break elif hist[center + n + 1] == 0: # has to be two bins wide? gap = bincenters[center + n] break n += 1 # run through each year to extract RMSE's for y, year in enumerate(month_ranges_years): if rmse[y] > gap: # only flag where there are observations good, = np.where( np.logical_or( direction.mask[year[0][0] : year[-1][0]] == False, speed.mask[year[0][0] : year[-1][0]] == False ) ) flags[year[0][0] : year[-1][0]][good] = 1 if diagnostics or plots: print "Flagging {} RMSE {} > {}".format(y + start.year, rmse[y], gap) elif rmse.mask[y] == False: if diagnostics or plots: print "{}".format(y + start.year) if plots: import matplotlib.pyplot as plt # plot underlying histogram plt.clf() plot_hist = np.array([float(x) if x != 0 else 1e-1 for x in hist]) plt.step(binEdges[1:], plot_hist, color="k") # plot the Rician distribution on top plt.plot(bincenters, dist_pdf, "r-", label="Rician") # plot the gaussian on top plt.plot(binEdges[1:], utils.gaussian(bincenters, gaussian), color="b", ls=":", label="Gaussian") plt.yscale("log") plt.ylim([0.001, 2 * max(plot_hist)]) # plot the thresholds plt.axvline(threshold, color="g") plt.axvline(gap, color="r") # plot flagged values in different colour if len(rmse[rmse > gap]) > 0: plt.step(binEdges[1:][bincenters >= gap], plot_hist[bincenters >= gap], color="r") # prettify plt.xlabel("RMSE between complete record and each year") plt.ylabel("Frequency") plt.title(station.id + " annual wind rose differences") plt.xlim([0, 1.1 * np.ma.max(rmse)]) plt.legend(loc="lower right", frameon=False) plt.show() # plot all the annual wind roses, flattened out. plt.clf() hist, binEdges = np.histogram(direction, bins=np.arange(0.0, 360.0 + DEGREEBINS, DEGREEBINS), normed=True) bincenters = (binEdges[:-1] + binEdges[1:]) / 2.0 plt.plot(bincenters, hist, "k-", lw=2) for y, year in enumerate(month_ranges_years): if len(speed[year[0][0] : year[-1][0]].compressed() > 0): hist, binEdges = np.histogram(direction[year[0][0] : year[-1][0]], bins=binEdges, normed=True) plt.plot(bincenters, hist) plt.xlabel("Direction (degrees)") plt.show() # plot wind roses as wind roses plot_wind_rose(speed, direction, "{} - {}".format(station.id, "all years")) for y, year in enumerate(month_ranges_years): if len(speed[year[0][0] : year[-1][0]].compressed() > 0): plot_wind_rose( speed[year[0][0] : year[-1][0]], direction[year[0][0] : year[-1][0]], "{} - {}".format(station.id, start.year + y), label="RMSE {:6.4f}\nThreshold {:6.4f}".format(rmse[y], gap), ) # and apply the flags and output text flag_locs, = np.where(flags != 0) if plots or diagnostics: utils.print_flagged_obs_number(logfile, "Wind Rose Check", "windspeeds/dirs", len(flag_locs), noWrite=True) else: utils.print_flagged_obs_number(logfile, "Wind Rose Check", "windspeeds/dirs", len(flag_locs)) station.qc_flags[:, flag_col] = flags # and flag the variables station.windspeeds.flags[flag_locs] = 1 station.winddirs.flags[flag_locs] = 1 return # wind_rose_check
def wind_rose_check(station, flag_col, start, end, logfile, plots = False, diagnostics = False, doMonth = False): ''' Checks for large differences in the year-to-year wind-rose shape. Uses RMSE and fits Gaussian. Finds gap in distribution to flag beyond :param MetStation station: station object :param int flag_col: which column to store the flags in :param datetime start: start of data :param datetime end: end of data :param bool plots: run the plots :param bool diagnostics: run the diagnostics ''' st_var_spd = getattr(station, "windspeeds") st_var_dir = getattr(station, "winddirs") direction = st_var_dir.data speed = st_var_spd.data flags = station.qc_flags[:,flag_col] month_ranges = utils.month_starts_in_pairs(start, end) month_ranges_years = month_ranges.reshape(-1,12,2) filtered_direction = utils.apply_filter_flags(st_var_dir, doMonth = doMonth, start = start, end = end) filtered_speed = utils.apply_filter_flags(st_var_spd, doMonth = doMonth, start = start, end = end) # histogram of wind directions ( ~ unravelled wind-rose) dir_bins = range(0,360+DEGREEBINS,DEGREEBINS) full_hist, full_binEdges = np.histogram(filtered_direction.compressed(), bins = dir_bins, normed = True) if diagnostics: print full_hist # use rmse as this is known (Chi-sq remains just in case) rmse, chisq = -np.ma.ones([month_ranges_years.shape[0]]), -np.ma.ones([month_ranges_years.shape[0]]) # run through each year to extract RMSE's for y,year in enumerate(month_ranges_years): if len(direction[year[0][0]:year[-1][0]].compressed()) > 0: hist, dummy = np.histogram(direction[year[0][0]:year[-1][0]].compressed(), bins = dir_bins, normed = True) chisq[y] = np.sum((full_hist-hist)**2/(full_hist+hist))/2. rmse[y] = np.sqrt(np.mean((full_hist-hist)**2)) else: rmse.mask[y] = True # now to bin up the differences and see what the fit is. # need to have values spread so can bin! if len(np.unique(rmse.compressed())) > 1: rmse_binEdges, rmse_bincenters = wind_create_bins(rmse) hist, rmse_binEdges = np.histogram(rmse, bins = rmse_binEdges)#, density=True) norm = get_histogram_norm(rmse, rmse_binEdges) # inputs for fit mu = np.mean(rmse) std = np.std(rmse) # try to get decent fit to bulk of obs. # initial_values = [np.max(hist), np.mean(rmse), np.std(rmse), stats.skew(rmse), stats.kurtosis(rmse)] # norm, mean, std, sk#ew, kurtosis # fit = leastsq(utils.residualsGH, initial_values, [bincenters, hist, np.ones(len(hist))]) # res = utils.hermite2gauss(fit[0]) # plot_gaussian = utils.funcGH(fit[0], bincenters) fit = stats.rice.fit(rmse.compressed(), loc = 0, scale = np.ma.std(rmse)) dist_pdf = stats.rice.pdf(rmse_bincenters, fit[:-2], loc=fit[-2], scale=fit[-1]) * norm gaussian = utils.fit_gaussian(rmse_bincenters, hist, max(hist), mu = mu, sig = std) # invert Gaussian to find initial threshold, then hunt for first gap beyond # threshold = utils.invert_gaussian(PROB_THRESHOLD, gaussian) # invert Rician to find initial threshold, then hunt for first gap beyond if dist_pdf[-1] < PROB_THRESHOLD: # then curve has dropped below the threshold, so can find some updated ones. threshold = -np.where(dist_pdf[::-1] > PROB_THRESHOLD)[0][0] else: threshold = rmse_bincenters[-1] n = 0 center = np.argmax(hist) gap = rmse_bincenters[-1] # nothing should be beyond this while True: if center + n + 1 == len(rmse_bincenters): # gone beyond edge - nothing to flag, so just break break if rmse_bincenters[center + n] < threshold: n += 1 # continue moving outwards continue if hist[center + n] == 0: # found one if center + n + 1 == len(rmse_bincenters): # gone beyond edge - nothing to flag - escape break elif hist[center + n + 1] == 0: # has to be two bins wide? gap = rmse_bincenters[center + n] break n += 1 # run through each year to extract RMSE's for y,year in enumerate(month_ranges_years): if rmse[y] > gap: # only flag where there are observations good, = np.where(np.logical_or(direction.mask[year[0][0]:year[-1][0]] == False, speed.mask[year[0][0]:year[-1][0]] == False)) if len(good) > 100: flags[year[0][0]:year[-1][0]][good] = 1 if diagnostics or plots: print "Flagging {} RMSE {} > {}".format(y+start.year, rmse[y], gap) else: if diagnostics or plots: print "{} beyond threshold (RMSE {} > {}) but retained as only {} observations\n".format(y+start.year, rmse[y], gap, len(good)) logfile.write("{} beyond threshold but retained as only {} observations\n".format(y+start.year, len(good))) elif rmse.mask[y] == False: if diagnostics or plots: print "{}".format(y+start.year) if plots: import matplotlib.pyplot as plt # plot underlying histogram plt.clf() plot_hist = np.array([float(x) if x != 0 else 1e-1 for x in hist]) plt.step(rmse_binEdges[1:], plot_hist, color = 'k') # plot the Rician distribution on top plt.plot(rmse_bincenters, dist_pdf, "r-", label = "Rician") # plot the gaussian on top plt.plot(rmse_binEdges[1:], utils.gaussian(rmse_bincenters, gaussian), color = 'b', ls = ":", label = "Gaussian") plt.yscale("log") plt.ylim([0.001, 2*max(plot_hist)]) # plot the thresholds plt.axvline(threshold, color = 'g') plt.axvline(gap, color = 'r') # plot flagged values in different colour if len(rmse[rmse > gap]) > 0: plt.step(rmse_binEdges[1:][rmse_bincenters >= gap], plot_hist[rmse_bincenters >= gap], color = 'r') # prettify plt.xlabel("RMSE between complete record and each year") plt.ylabel("Frequency") plt.title(station.id + " annual wind rose differences") plt.xlim([0, 1.1*np.ma.max(rmse)]) plt.legend(loc = "lower right", frameon = False) plt.show() # plot all the annual wind roses, flattened out. plt.clf() bincenters = (full_binEdges[:-1] + full_binEdges[1:])/2. plt.plot(bincenters, full_hist, "k-", lw = 2) for y,year in enumerate(month_ranges_years): if len(speed[year[0][0]:year[-1][0]].compressed() > 0): hist, binEdges = np.histogram(direction[year[0][0]:year[-1][0]].compressed(), bins = dir_bins, normed = True) plt.plot(bincenters, hist) plt.xlabel("Direction (degrees)") plt.show() # plot wind roses as wind roses plot_wind_rose(speed, direction, "{} - {}".format(station.id, "all years")) for y,year in enumerate(month_ranges_years): if len(speed[year[0][0]:year[-1][0]].compressed() > 0): plot_wind_rose(speed[year[0][0]:year[-1][0]], direction[year[0][0]:year[-1][0]], "{} - {}".format(station.id, start.year + y), label = "RMSE {:6.4f}\nThreshold {:6.4f}".format(rmse[y], gap)) else: print "no data for {}".format(year) # and apply the flags and output text flag_locs, = np.where(flags != 0) utils.print_flagged_obs_number(logfile, "Wind Rose Check", "windspeeds/dirs", len(flag_locs), noWrite=diagnostics) station.qc_flags[:,flag_col] = flags # and flag the variables station.windspeeds.flags[flag_locs] = 1 station.winddirs.flags[flag_locs] = 1 return # wind_rose_check
def dgc_all_obs(station, variable, flags, start, end, plots=False, diagnostics=False, idl=False, windspeeds=False, GH=False): '''RJHD addition working on all observations''' if plots: import matplotlib.pyplot as plt st_var = getattr(station, variable) month_ranges = utils.month_starts_in_pairs(start, end) month_ranges = month_ranges.reshape(-1, 12, 2) all_filtered = utils.apply_filter_flags(st_var) for month in range(12): if windspeeds == True: st_var_wind = getattr(station, "windspeeds") # get monthly averages windspeeds_month = np.empty([]) for y, year in enumerate(month_ranges[:, month, :]): if y == 0: windspeeds_month = np.ma.array( st_var_wind.data[year[0]:year[1]]) else: windspeeds_month = np.ma.concatenate( [windspeeds_month, st_var_wind.data[year[0]:year[1]]]) windspeeds_month_average = dgc_get_monthly_averages( windspeeds_month, OBS_LIMIT, st_var_wind.mdi, MEAN) windspeeds_month_mad = utils.mean_absolute_deviation( windspeeds_month, median=True) this_month_data = np.array([]) this_month_filtered = np.array([]) this_month_data, dummy, dummy = utils.concatenate_months( month_ranges[:, month, :], st_var.data, hours=False) this_month_filtered, dummy, dummy = utils.concatenate_months( month_ranges[:, month, :], all_filtered, hours=False) if len(this_month_filtered.compressed()) > OBS_LIMIT: if idl: monthly_median = utils.idl_median( this_month_filtered.compressed().reshape(-1)) else: monthly_median = np.ma.median(this_month_filtered) iqr = utils.IQR(this_month_filtered.compressed()) if iqr == 0.0: # to get some spread if IQR too small iqr = utils.IQR(this_month_filtered.compressed(), percentile=0.05) print "Spurious_stations file not yet sorted" if iqr != 0.0: monthly_values = np.ma.array( (this_month_data.compressed() - monthly_median) / iqr) bins, bincenters = utils.create_bins(monthly_values, BIN_SIZE) dummy, plot_bincenters = utils.create_bins( monthly_values, BIN_SIZE / 10.) hist, binEdges = np.histogram(monthly_values, bins=bins) if GH: # Use Gauss-Hermite polynomials to add skew and kurtosis to Gaussian fit - January 2015 ^RJHD initial_values = [ np.max(hist), np.mean(monthly_values), np.std(monthly_values), stats.skew(monthly_values), stats.kurtosis(monthly_values) ] # norm, mean, std, skew, kurtosis fit = leastsq(utils.residualsGH, initial_values, [bincenters, hist, np.ones(len(hist))]) res = utils.hermite2gauss(fit[0], diagnostics=diagnostics) plot_gaussian = utils.funcGH(fit[0], plot_bincenters) # adjust to remove the rising bumps seen in some fits - artefacts of GH fitting? mid_point = np.argmax(plot_gaussian) bad, = np.where( plot_gaussian[mid_point:] < FREQUENCY_THRESHOLD / 10.) if len(bad) > 0: plot_gaussian[mid_point:][ bad[0]:] = FREQUENCY_THRESHOLD / 10. bad, = np.where( plot_gaussian[:mid_point] < FREQUENCY_THRESHOLD / 10.) if len(bad) > 0: plot_gaussian[:mid_point][:bad[ -1]] = FREQUENCY_THRESHOLD / 10. # extract threshold values good_values = np.argwhere( plot_gaussian > FREQUENCY_THRESHOLD) l_minimum_threshold = round( plot_bincenters[good_values[0]]) - 1 u_minimum_threshold = 1 + round( plot_bincenters[good_values[-1]]) else: gaussian = utils.fit_gaussian(bincenters, hist, max(hist), mu=np.mean(monthly_values), sig=np.std(monthly_values)) # assume the same threshold value u_minimum_threshold = 1 + round( utils.invert_gaussian(FREQUENCY_THRESHOLD, gaussian)) l_minimum_threshold = -u_minimum_threshold plot_gaussian = utils.gaussian(plot_bincenters, gaussian) if diagnostics: if GH: print hist print res print iqr, l_minimum_threshold, u_minimum_threshold else: print hist print gaussian print iqr, u_minimum_threshold, 1. + utils.invert_gaussian( FREQUENCY_THRESHOLD, gaussian) if plots: dgc_set_up_plot(plot_gaussian, monthly_values, variable, threshold=(u_minimum_threshold, l_minimum_threshold), sub_par="observations", GH=GH) if GH: plt.figtext( 0.15, 0.67, 'Mean %.2f, S.d. %.2f,\nSkew %.2f, Kurtosis %.2f' % (res['mean'], res['dispersion'], res['skewness'], res['kurtosis']), color='k', size='small') uppercount = len( np.where(monthly_values > u_minimum_threshold)[0]) lowercount = len( np.where(monthly_values < l_minimum_threshold)[0]) # this needs refactoring - but lots of variables to pass in if plots or diagnostics: gap_plot_values = np.array([]) if uppercount > 0: gap_start = dgc_find_gap(hist, binEdges, u_minimum_threshold) if gap_start != 0: for y, year in enumerate(month_ranges[:, month, :]): this_year_data = np.ma.array( all_filtered[year[0]:year[1]]) this_year_flags = np.array(flags[year[0]:year[1]]) gap_cleaned_locations = np.where( ((this_year_data - monthly_median) / iqr) > gap_start) this_year_flags[gap_cleaned_locations] = 1 flags[year[0]:year[1]] = this_year_flags if plots or diagnostics: gap_plot_values = np.append( gap_plot_values, (this_year_data[gap_cleaned_locations]. compressed() - monthly_median) / iqr) if lowercount > 0: gap_start = dgc_find_gap(hist, binEdges, l_minimum_threshold) if gap_start != 0: for y, year in enumerate(month_ranges[:, month, :]): this_year_data = np.ma.array( all_filtered[year[0]:year[1]]) this_year_flags = np.array(flags[year[0]:year[1]]) gap_cleaned_locations = np.where( np.logical_and( ((this_year_data - monthly_median) / iqr) < gap_start, this_year_data.mask != True)) this_year_flags[gap_cleaned_locations] = 1 flags[year[0]:year[1]] = this_year_flags if plots or diagnostics: gap_plot_values = np.append( gap_plot_values, (this_year_data[gap_cleaned_locations]. compressed() - monthly_median) / iqr) if windspeeds: this_year_flags[ gap_cleaned_locations] = 2 # tentative flags slp_average = dgc_get_monthly_averages( this_month_data, OBS_LIMIT, st_var.mdi, MEAN) slp_mad = utils.mean_absolute_deviation( this_month_data, median=True) storms = np.where((((windspeeds_month - windspeeds_month_average) / windspeeds_month_mad) > 4.5) &\ (((this_month_data - slp_average) / slp_mad) > 4.5)) if len(storms[0]) >= 2: storm_1diffs = np.diff(storms) separations = np.where(storm_1diffs != 1) #for sep in separations: if plots: hist, binEdges = np.histogram(gap_plot_values, bins=bins) plot_hist = np.array([0.01 if h == 0 else h for h in hist]) plt.step(bincenters, plot_hist, 'r-', label='flagged', where='mid') import calendar plt.text(0.1, 0.9, calendar.month_name[month + 1], transform=plt.gca().transAxes) plt.legend(loc='lower center', ncol=3, bbox_to_anchor=(0.5, -0.2), frameon=False, prop={'size': 13}) plt.show() #plt.savefig(IMAGELOCATION+'/'+station.id+'_DistributionalGap_'+str(month+1)+'.png') if diagnostics: utils.print_flagged_obs_number("", "Distributional Gap", variable, len(gap_plot_values), noWrite=True) return flags # dgc_all_obs
def dgc_monthly(station, variable, flags, start, end, plots=False, diagnostics=False, idl=False): ''' Original Distributional Gap Check :param obj station: station object :param str variable: variable to act on :param array flags: flags array :param datetime start: data start :param datetime end: data end :param bool plots: run plots :param bool diagnostics: run diagnostics :param bool idl: run IDL equivalent routines for median :returns: flags - updated flag array ''' if plots: import matplotlib.pyplot as plt st_var = getattr(station, variable) month_ranges = utils.month_starts_in_pairs(start, end) # get monthly averages month_average = np.empty(month_ranges.shape[0]) month_average.fill(st_var.mdi) month_average_filtered = np.empty(month_ranges.shape[0]) month_average_filtered.fill(st_var.mdi) all_filtered = utils.apply_filter_flags(st_var) for m, month in enumerate(month_ranges): data = st_var.data[month[0]:month[1]] filtered = all_filtered[month[0]:month[1]] month_average[m] = dgc_get_monthly_averages(data, OBS_LIMIT, st_var.mdi, MEAN) month_average_filtered[m] = dgc_get_monthly_averages( filtered, OBS_LIMIT, st_var.mdi, MEAN) # get overall monthly climatologies - use filtered data month_average = month_average.reshape(-1, 12) month_average_filtered = month_average_filtered.reshape(-1, 12) standardised_months = np.empty(month_average.shape) standardised_months.fill(st_var.mdi) for m in range(12): valid_filtered = np.where(month_average_filtered[:, m] != st_var.mdi) if len(valid_filtered[0]) >= VALID_MONTHS: valid_data = month_average_filtered[valid_filtered, m][0] if MEAN: clim = np.mean(valid_data) spread = np.stdev(valid_data) else: if idl: clim = utils.idl_median( valid_data.compressed().reshape(-1)) else: clim = np.median(valid_data) spread = utils.IQR(valid_data) if spread <= SPREAD_LIMIT: spread = SPREAD_LIMIT standardised_months[valid_filtered, m] = (month_average[valid_filtered, m] - clim) / spread standardised_months = standardised_months.reshape(month_ranges.shape[0]) good_months = np.where(standardised_months != st_var.mdi) # must be able to do this with masked arrays if plots: bins, bincenters = utils.create_bins(standardised_months[good_months], BIN_SIZE) dummy, plot_bincenters = utils.create_bins( standardised_months[good_months], BIN_SIZE / 10.) hist, binEdges = np.histogram(standardised_months[good_months], bins=bins) fit = utils.fit_gaussian(bincenters, hist, max(hist), mu=np.mean(standardised_months[good_months]), sig=np.std(standardised_months[good_months])) plot_gaussian = utils.gaussian(plot_bincenters, fit) dgc_set_up_plot(plot_gaussian, standardised_months[good_months], variable, sub_par="Months") # remove all months with a large standardised offset if len(good_months[0]) >= MONTH_LIMIT: standardised_months = np.ma.masked_values(standardised_months, st_var.mdi) large_offsets = np.where(standardised_months >= LARGE_LIMIT) if len(large_offsets[0]) > 0: for lo in large_offsets[0]: flags[month_ranges[lo, 0]:month_ranges[lo, 1]] = 1 if plots: hist, binEdges = np.histogram( standardised_months[large_offsets], bins=bins) plot_hist = np.array([0.01 if h == 0 else h for h in hist]) plt.step(bincenters, plot_hist, 'g-', label='> %i' % LARGE_LIMIT, where='mid', zorder=5) plt.axvline(5, c='g') plt.axvline(-5, c='g') # walk distribution from centre and see if any assymetry sort_order = standardised_months[good_months].argsort() mid_point = len(good_months[0]) / 2 good = True iter = 1 while good: if standardised_months[good_months][sort_order][ mid_point - iter] != standardised_months[good_months][sort_order][ mid_point + iter]: # using IDL notation tempvals = [ np.abs( standardised_months[good_months][sort_order][mid_point - iter]), np.abs( standardised_months[good_months][sort_order][mid_point + iter]) ] if min(tempvals) != 0: if max(tempvals) / min(tempvals) >= 2. and min( tempvals) >= 1.5: # substantial asymmetry in distribution - at least 1.5 from centre and difference of 2. if tempvals[0] == max(tempvals): # LHS bad = good_months[0][sort_order][:mid_point - iter] if plots: badplot = standardised_months[good_months][ sort_order][:mid_point - iter] elif tempvals[1] == max(tempvals): #RHS bad = good_months[0][sort_order][mid_point + iter:] if plots: badplot = standardised_months[good_months][ sort_order][mid_point + iter:] for b in bad: flags[month_ranges[b, 0]:month_ranges[b, 1]] = 1 if plots: hist, binEdges = np.histogram(badplot, bins=bins) plot_hist = np.array( [0.01 if h == 0 else h for h in hist]) plt.step(bincenters, plot_hist, 'r-', label='Gap', where='mid', zorder=4) good = False iter += 1 if iter == mid_point: break if plots: plt.legend(loc='lower center', ncol=4, bbox_to_anchor=(0.5, -0.2), frameon=False, prop={'size': 13}) plt.show() #plt.savefig(IMAGELOCATION+'/'+station.id+'_DistributionalGap.png') return flags # dgc_monthly
def find_month_thresholds(obs_var, station, config_file, plots=False, diagnostics=False, winsorize=True): """ Use distribution to identify threshold values. Then also store in config file. :param MetVar obs_var: meteorological variable object :param Station station: station object :param str config_file: configuration file to store critical values :param bool plots: turn on plots :param bool diagnostics: turn on diagnostic output :param bool winsorize: apply winsorization at 5%/95% """ # get hourly climatology for each month for month in range(1, 13): normalised_anomalies = prepare_data(obs_var, station, month, diagnostics=diagnostics, winsorize=winsorize) if len(normalised_anomalies.compressed() ) >= utils.DATA_COUNT_THRESHOLD: bins = utils.create_bins(normalised_anomalies, BIN_WIDTH, obs_var.name) hist, bin_edges = np.histogram(normalised_anomalies.compressed(), bins) gaussian_fit = utils.fit_gaussian( bins[1:], hist, max(hist), mu=bins[np.argmax(hist)], sig=utils.spread(normalised_anomalies)) fitted_curve = utils.gaussian(bins[1:], gaussian_fit) # diagnostic plots if plots: import matplotlib.pyplot as plt plt.clf() plt.step(bins[1:], hist, color='k', where="pre") plt.yscale("log") plt.ylabel("Number of Observations") plt.xlabel("Scaled {}".format(obs_var.name.capitalize())) plt.title("{} - month {}".format(station.id, month)) plt.plot(bins[1:], fitted_curve) plt.ylim([0.1, max(hist) * 2]) # use bins and curve to find points where curve is < FREQUENCY_THRESHOLD try: lower_threshold = bins[1:][np.where( np.logical_and(fitted_curve < FREQUENCY_THRESHOLD, bins[1:] < 0))[0]][-1] except: lower_threshold = bins[1] try: upper_threshold = bins[1:][np.where( np.logical_and(fitted_curve < FREQUENCY_THRESHOLD, bins[1:] > 0))[0]][0] except: upper_threshold = bins[-1] if plots: plt.axvline(upper_threshold, c="r") plt.axvline(lower_threshold, c="r") plt.show() utils.write_qc_config(config_file, "CLIMATOLOGICAL-{}".format(obs_var.name), "{}-uthresh".format(month), "{}".format(upper_threshold), diagnostics=diagnostics) utils.write_qc_config(config_file, "CLIMATOLOGICAL-{}".format(obs_var.name), "{}-lthresh".format(month), "{}".format(lower_threshold), diagnostics=diagnostics) return # find_month_thresholds
def dgc_all_obs(station, variable, flags, start, end, plots = False, diagnostics = False, idl = False, windspeeds = False, GH = False): '''RJHD addition working on all observations''' if plots: import matplotlib.pyplot as plt st_var = getattr(station, variable) month_ranges = utils.month_starts_in_pairs(start, end) month_ranges = month_ranges.reshape(-1,12,2) all_filtered = utils.apply_filter_flags(st_var) for month in range(12): if windspeeds == True: st_var_wind = getattr(station, "windspeeds") # get monthly averages windspeeds_month = np.empty([]) for y, year in enumerate(month_ranges[:,month,:]): if y == 0: windspeeds_month = np.ma.array(st_var_wind.data[year[0]:year[1]]) else: windspeeds_month = np.ma.concatenate([windspeeds_month, st_var_wind.data[year[0]:year[1]]]) windspeeds_month_average = dgc_get_monthly_averages(windspeeds_month, OBS_LIMIT, st_var_wind.mdi, MEAN) windspeeds_month_mad = utils.mean_absolute_deviation(windspeeds_month, median=True) this_month_data = np.array([]) this_month_filtered = np.array([]) this_month_data, dummy, dummy = utils.concatenate_months(month_ranges[:,month,:], st_var.data, hours = False) this_month_filtered, dummy, dummy = utils.concatenate_months(month_ranges[:,month,:], all_filtered, hours = False) if len(this_month_filtered.compressed()) > OBS_LIMIT: if idl: monthly_median = utils.idl_median(this_month_filtered.compressed().reshape(-1)) else: monthly_median = np.ma.median(this_month_filtered) iqr = utils.IQR(this_month_filtered.compressed()) if iqr == 0.0: # to get some spread if IQR too small iqr = utils.IQR(this_month_filtered.compressed(), percentile = 0.05) print "Spurious_stations file not yet sorted" if iqr != 0.0: monthly_values = np.ma.array((this_month_data.compressed() - monthly_median) / iqr) bins, bincenters = utils.create_bins(monthly_values, BIN_SIZE) dummy, plot_bincenters = utils.create_bins(monthly_values, BIN_SIZE/10.) hist, binEdges = np.histogram(monthly_values, bins = bins) if GH: # Use Gauss-Hermite polynomials to add skew and kurtosis to Gaussian fit - January 2015 ^RJHD initial_values = [np.max(hist), np.mean(monthly_values), np.std(monthly_values), stats.skew(monthly_values), stats.kurtosis(monthly_values)] # norm, mean, std, skew, kurtosis fit = leastsq(utils.residualsGH, initial_values, [bincenters, hist, np.ones(len(hist))]) res = utils.hermite2gauss(fit[0], diagnostics = diagnostics) plot_gaussian = utils.funcGH(fit[0], plot_bincenters) # adjust to remove the rising bumps seen in some fits - artefacts of GH fitting? mid_point = np.argmax(plot_gaussian) bad, = np.where(plot_gaussian[mid_point:] < FREQUENCY_THRESHOLD/10.) if len(bad) > 0: plot_gaussian[mid_point:][bad[0]:] = FREQUENCY_THRESHOLD/10. bad, = np.where(plot_gaussian[:mid_point] < FREQUENCY_THRESHOLD/10.) if len(bad) > 0: plot_gaussian[:mid_point][:bad[-1]] = FREQUENCY_THRESHOLD/10. # extract threshold values good_values = np.argwhere(plot_gaussian > FREQUENCY_THRESHOLD) l_minimum_threshold = round(plot_bincenters[good_values[0]]) - 1 u_minimum_threshold = 1 + round(plot_bincenters[good_values[-1]]) else: gaussian = utils.fit_gaussian(bincenters, hist, max(hist), mu = np.mean(monthly_values), sig = np.std(monthly_values)) # assume the same threshold value u_minimum_threshold = 1 + round(utils.invert_gaussian(FREQUENCY_THRESHOLD, gaussian)) l_minimum_threshold = -u_minimum_threshold plot_gaussian = utils.gaussian(plot_bincenters, gaussian) if diagnostics: if GH: print hist print res print iqr, l_minimum_threshold, u_minimum_threshold else: print hist print gaussian print iqr, u_minimum_threshold, 1. + utils.invert_gaussian(FREQUENCY_THRESHOLD, gaussian) if plots: dgc_set_up_plot(plot_gaussian, monthly_values, variable, threshold = (u_minimum_threshold, l_minimum_threshold), sub_par = "observations", GH = GH) if GH: plt.figtext(0.15, 0.67, 'Mean %.2f, S.d. %.2f,\nSkew %.2f, Kurtosis %.2f' %(res['mean'], res['dispersion'], res['skewness'], res['kurtosis']), color='k', size='small') uppercount = len(np.where(monthly_values > u_minimum_threshold)[0]) lowercount = len(np.where(monthly_values < l_minimum_threshold)[0]) # this needs refactoring - but lots of variables to pass in if plots or diagnostics: gap_plot_values = np.array([]) if uppercount > 0: gap_start = dgc_find_gap(hist, binEdges, u_minimum_threshold) if gap_start != 0: for y, year in enumerate(month_ranges[:,month,:]): this_year_data = np.ma.array(all_filtered[year[0]:year[1]]) this_year_flags = np.array(flags[year[0]:year[1]]) gap_cleaned_locations = np.where(((this_year_data - monthly_median) / iqr) > gap_start) this_year_flags[gap_cleaned_locations] = 1 flags[year[0]:year[1]] = this_year_flags if plots or diagnostics: gap_plot_values = np.append(gap_plot_values, (this_year_data[gap_cleaned_locations].compressed() - monthly_median)/iqr) if lowercount > 0: gap_start = dgc_find_gap(hist, binEdges, l_minimum_threshold) if gap_start != 0: for y, year in enumerate(month_ranges[:,month,:]): this_year_data = np.ma.array(all_filtered[year[0]:year[1]]) this_year_flags = np.array(flags[year[0]:year[1]]) gap_cleaned_locations = np.where(np.logical_and(((this_year_data - monthly_median) / iqr) < gap_start, this_year_data.mask != True)) this_year_flags[gap_cleaned_locations] = 1 flags[year[0]:year[1]] = this_year_flags if plots or diagnostics: gap_plot_values = np.append(gap_plot_values, (this_year_data[gap_cleaned_locations].compressed() - monthly_median)/iqr) if windspeeds: this_year_flags[gap_cleaned_locations] = 2 # tentative flags slp_average = dgc_get_monthly_averages(this_month_data, OBS_LIMIT, st_var.mdi, MEAN) slp_mad = utils.mean_absolute_deviation(this_month_data, median=True) storms = np.where((((windspeeds_month - windspeeds_month_average) / windspeeds_month_mad) > 4.5) &\ (((this_month_data - slp_average) / slp_mad) > 4.5)) if len(storms[0]) >= 2: storm_1diffs = np.diff(storms) separations = np.where(storm_1diffs != 1) #for sep in separations: if plots: hist, binEdges = np.histogram(gap_plot_values, bins = bins) plot_hist = np.array([0.01 if h == 0 else h for h in hist]) plt.step(bincenters, plot_hist, 'r-', label = 'flagged', where='mid') import calendar plt.text(0.1,0.9,calendar.month_name[month+1], transform = plt.gca().transAxes) plt.legend(loc='lower center',ncol=3, bbox_to_anchor=(0.5,-0.2),frameon=False,prop={'size':13}) plt.show() #plt.savefig(IMAGELOCATION+'/'+station.id+'_DistributionalGap_'+str(month+1)+'.png') if diagnostics: utils.print_flagged_obs_number("", "Distributional Gap", variable, len(gap_plot_values), noWrite=True) return flags # dgc_all_obs
def dgc_monthly(station, variable, flags, start, end, plots=False, diagnostics=False, idl = False): ''' Original Distributional Gap Check :param obj station: station object :param str variable: variable to act on :param array flags: flags array :param datetime start: data start :param datetime end: data end :param bool plots: run plots :param bool diagnostics: run diagnostics :param bool idl: run IDL equivalent routines for median :returns: flags - updated flag array ''' if plots: import matplotlib.pyplot as plt st_var = getattr(station, variable) month_ranges = utils.month_starts_in_pairs(start, end) # get monthly averages month_average = np.empty(month_ranges.shape[0]) month_average.fill(st_var.mdi) month_average_filtered = np.empty(month_ranges.shape[0]) month_average_filtered.fill(st_var.mdi) all_filtered = utils.apply_filter_flags(st_var) for m, month in enumerate(month_ranges): data = st_var.data[month[0]:month[1]] filtered = all_filtered[month[0]:month[1]] month_average[m] = dgc_get_monthly_averages(data, OBS_LIMIT, st_var.mdi, MEAN) month_average_filtered[m] = dgc_get_monthly_averages(filtered, OBS_LIMIT, st_var.mdi, MEAN) # get overall monthly climatologies - use filtered data month_average = month_average.reshape(-1,12) month_average_filtered = month_average_filtered.reshape(-1,12) standardised_months = np.empty(month_average.shape) standardised_months.fill(st_var.mdi) for m in range(12): valid_filtered = np.where(month_average_filtered[:,m] != st_var.mdi) if len(valid_filtered[0]) >= VALID_MONTHS: valid_data = month_average_filtered[valid_filtered,m][0] if MEAN: clim = np.mean(valid_data) spread = np.stdev(valid_data) else: if idl: clim = utils.idl_median(valid_data.compressed().reshape(-1)) else: clim = np.median(valid_data) spread = utils.IQR(valid_data) if spread <= SPREAD_LIMIT: spread = SPREAD_LIMIT standardised_months[valid_filtered,m] = (month_average[valid_filtered,m] - clim) / spread standardised_months = standardised_months.reshape(month_ranges.shape[0]) good_months = np.where(standardised_months != st_var.mdi) # must be able to do this with masked arrays if plots: bins, bincenters = utils.create_bins(standardised_months[good_months], BIN_SIZE) dummy, plot_bincenters = utils.create_bins(standardised_months[good_months], BIN_SIZE/10.) hist, binEdges = np.histogram(standardised_months[good_months], bins = bins) fit = utils.fit_gaussian(bincenters, hist, max(hist), mu = np.mean(standardised_months[good_months]), sig = np.std(standardised_months[good_months])) plot_gaussian = utils.gaussian(plot_bincenters, fit) dgc_set_up_plot(plot_gaussian, standardised_months[good_months], variable, sub_par = "Months") # remove all months with a large standardised offset if len(good_months[0]) >= MONTH_LIMIT: standardised_months = np.ma.masked_values(standardised_months, st_var.mdi) large_offsets = np.where(standardised_months >= LARGE_LIMIT) if len(large_offsets[0]) > 0: for lo in large_offsets[0]: flags[month_ranges[lo,0]:month_ranges[lo,1]] = 1 if plots: hist, binEdges = np.histogram(standardised_months[large_offsets], bins = bins) plot_hist = np.array([0.01 if h == 0 else h for h in hist]) plt.step(bincenters, plot_hist, 'g-', label = '> %i' % LARGE_LIMIT, where = 'mid', zorder = 5) plt.axvline(5,c='g') plt.axvline(-5,c='g') # walk distribution from centre and see if any assymetry sort_order = standardised_months[good_months].argsort() mid_point = len(good_months[0]) / 2 good = True iter = 1 while good: if standardised_months[good_months][sort_order][mid_point - iter] != standardised_months[good_months][sort_order][mid_point + iter]: # using IDL notation tempvals = [np.abs(standardised_months[good_months][sort_order][mid_point - iter]),np.abs(standardised_months[good_months][sort_order][mid_point + iter])] if min(tempvals) != 0: if max(tempvals)/min(tempvals) >= 2. and min(tempvals) >= 1.5: # substantial asymmetry in distribution - at least 1.5 from centre and difference of 2. if tempvals[0] == max(tempvals): # LHS bad = good_months[0][sort_order][:mid_point - iter] if plots: badplot = standardised_months[good_months][sort_order][:mid_point - iter] elif tempvals[1] == max(tempvals): #RHS bad = good_months[0][sort_order][mid_point + iter:] if plots: badplot = standardised_months[good_months][sort_order][mid_point + iter:] for b in bad: flags[month_ranges[b,0]:month_ranges[b,1]] = 1 if plots: hist, binEdges = np.histogram(badplot, bins = bins) plot_hist = np.array([0.01 if h == 0 else h for h in hist]) plt.step(bincenters, plot_hist, 'r-', label = 'Gap', where = 'mid', zorder = 4) good = False iter += 1 if iter == mid_point: break if plots: plt.legend(loc='lower center',ncol=4, bbox_to_anchor=(0.5,-0.2),frameon=False,prop={'size':13}) plt.show() #plt.savefig(IMAGELOCATION+'/'+station.id+'_DistributionalGap.png') return flags # dgc_monthly
def dgc_all_obs(station, variable, flags, start, end, logfile, plots=False, diagnostics=False, idl=False, windspeeds=False, GH=False, doMonth=False): '''RJHD addition working on all observations''' if plots: import matplotlib.pyplot as plt month_ranges = utils.month_starts_in_pairs(start, end) month_ranges = month_ranges.reshape(-1, 12, 2) # extract variable st_var = getattr(station, variable) # apply flags (and mask incomplete year if appropriate) all_filtered = utils.apply_filter_flags(st_var, doMonth=doMonth, start=start, end=end) st_var_complete_year = copy.deepcopy(st_var) if doMonth: # restrict the incomplete year if appropriate - keep other flagged obs. full_year_end = utils.get_first_hour_this_year(start, end) st_var_complete_year.data.mask[full_year_end:] = True for month in range(12): # if requiring wind data, extract data and find monthly averages if windspeeds == True: st_var_wind = getattr(station, "windspeeds") if doMonth: # restrict the incomplete year if appropriate st_var_wind.data.mask[full_year_end:] = True # get monthly averages windspeeds_month = np.empty([]) for y, year in enumerate(month_ranges[:, month, :]): if y == 0: windspeeds_month = np.ma.array( st_var_wind.data[year[0]:year[1]]) else: windspeeds_month = np.ma.concatenate( [windspeeds_month, st_var_wind.data[year[0]:year[1]]]) windspeeds_month_average = dgc_get_monthly_averages( windspeeds_month, OBS_LIMIT, st_var_wind.mdi, MEAN) windspeeds_month_mad = utils.mean_absolute_deviation( windspeeds_month, median=True) # pull data from each calendar month together this_month_data, dummy, dummy = utils.concatenate_months( month_ranges[:, month, :], st_var.data, hours=False) this_month_filtered, dummy, dummy = utils.concatenate_months( month_ranges[:, month, :], all_filtered, hours=False) this_month_complete, dummy, dummy = utils.concatenate_months( month_ranges[:, month, :], st_var_complete_year.data, hours=False) # if enough clean and complete data for this calendar month find the median and IQR if len(this_month_filtered.compressed()) > OBS_LIMIT: if idl: monthly_median = utils.idl_median( this_month_filtered.compressed().reshape(-1)) else: monthly_median = np.ma.median(this_month_filtered) iqr = utils.IQR(this_month_filtered.compressed()) if iqr == 0.0: # to get some spread if IQR too small iqr = utils.IQR(this_month_filtered.compressed(), percentile=0.05) print "Spurious_stations file not yet sorted" # if have an IQR, anomalise using median and standardise using IQR if iqr != 0.0: monthly_values = np.ma.array( (this_month_data.compressed() - monthly_median) / iqr) complete_values = np.ma.array( (this_month_complete.compressed() - monthly_median) / iqr) # use complete years only for the histogram - aiming to find outliers. bins, bincenters = utils.create_bins(complete_values, BIN_SIZE) dummy, plot_bincenters = utils.create_bins( complete_values, BIN_SIZE / 10.) hist, binEdges = np.histogram(complete_values, bins=bins) """ Change to monthly updates Oct 2017 Thought about changing distribution to use filtered values But this changes the test beyond just dealing with additional months Commented out lines below would be alternative. """ # bins, bincenters = utils.create_bins(filtered_values, BIN_SIZE) # dummy, plot_bincenters = utils.create_bins(filtered_values, BIN_SIZE/10.) # hist, binEdges = np.histogram(filtered_values, bins = bins) # used filtered (incl. incomplete year mask) to determine the distribution. if GH: # Use Gauss-Hermite polynomials to add skew and kurtosis to Gaussian fit - January 2015 ^RJHD # Feb 2019 - if large amounts off centre, can affect initial values # switched to median and MAD initial_values = [ np.max(hist), np.median(complete_values), utils.mean_absolute_deviation(complete_values, median=True), stats.skew(complete_values), stats.kurtosis(complete_values) ] # norm, mean, std, skew, kurtosis fit = leastsq(utils.residualsGH, initial_values, [bincenters, hist, np.ones(len(hist))]) res = utils.hermite2gauss(fit[0], diagnostics=diagnostics) plot_gaussian = utils.funcGH(fit[0], plot_bincenters) # adjust to remove the rising bumps seen in some fits - artefacts of GH fitting? mid_point = np.argmax(plot_gaussian) bad, = np.where( plot_gaussian[mid_point:] < FREQUENCY_THRESHOLD / 10.) if len(bad) > 0: plot_gaussian[mid_point:][ bad[0]:] = FREQUENCY_THRESHOLD / 10. bad, = np.where( plot_gaussian[:mid_point] < FREQUENCY_THRESHOLD / 10.) if len(bad) > 0: plot_gaussian[:mid_point][:bad[ -1]] = FREQUENCY_THRESHOLD / 10. # extract threshold values good_values = np.argwhere( plot_gaussian > FREQUENCY_THRESHOLD) l_minimum_threshold = round( plot_bincenters[good_values[0]]) - 1 u_minimum_threshold = 1 + round( plot_bincenters[good_values[-1]]) if diagnostics: print hist print res print iqr, l_minimum_threshold, u_minimum_threshold # or just a standard Gaussian else: gaussian = utils.fit_gaussian( bincenters, hist, max(hist), mu=np.median(complete_values), sig=utils.mean_absolute_value(complete_values)) # assume the same threshold value u_minimum_threshold = 1 + round( utils.invert_gaussian(FREQUENCY_THRESHOLD, gaussian)) l_minimum_threshold = -u_minimum_threshold plot_gaussian = utils.gaussian(plot_bincenters, gaussian) if diagnostics: print hist print gaussian print iqr, u_minimum_threshold, 1. + utils.invert_gaussian( FREQUENCY_THRESHOLD, gaussian) if plots: dgc_set_up_plot(plot_gaussian, complete_values, variable, threshold=(u_minimum_threshold, l_minimum_threshold), sub_par="observations", GH=GH) if GH: plt.figtext( 0.15, 0.67, 'Mean %.2f, S.d. %.2f,\nSkew %.2f, Kurtosis %.2f' % (res['mean'], res['dispersion'], res['skewness'], res['kurtosis']), color='k', size='small') # now trying to find gaps in the distribution uppercount = len( np.where(monthly_values > u_minimum_threshold)[0]) lowercount = len( np.where(monthly_values < l_minimum_threshold)[0]) # this needs refactoring - but lots of variables to pass in if plots or diagnostics: gap_plot_values = np.array([]) # do one side of distribution and then other if uppercount > 0: gap_start = dgc_find_gap(hist, binEdges, u_minimum_threshold) if gap_start != 0: # if found a gap, then go through each year for this calendar month # and flag observations further from middle for y, year in enumerate(month_ranges[:, month, :]): # not using filtered - checking all available data this_year_data = np.ma.array( st_var.data[year[0]:year[1]]) this_year_flags = np.array(flags[year[0]:year[1]]) gap_cleaned_locations = np.ma.where( ((this_year_data - monthly_median) / iqr) > gap_start) this_year_flags[gap_cleaned_locations] = 1 flags[year[0]:year[1]] = this_year_flags if plots or diagnostics: gap_plot_values = np.append( gap_plot_values, (this_year_data[gap_cleaned_locations]. compressed() - monthly_median) / iqr) if len(gap_cleaned_locations[0]) > 0: print "Upper {}-{} - {} obs flagged".format( y + start.year, month, len(gap_cleaned_locations[0])) print gap_cleaned_locations, this_year_data[ gap_cleaned_locations] if lowercount > 0: gap_start = dgc_find_gap(hist, binEdges, l_minimum_threshold) if gap_start != 0: # if found a gap, then go through each year for this calendar month # and flag observations further from middle for y, year in enumerate(month_ranges[:, month, :]): this_year_data = np.ma.array( st_var.data[year[0]:year[1]]) this_year_flags = np.array(flags[year[0]:year[1]]) gap_cleaned_locations = np.ma.where( np.logical_and( ((this_year_data - monthly_median) / iqr) < gap_start, this_year_data.mask != True)) # add flag requirement for low pressure bit if appropriate this_year_flags[gap_cleaned_locations] = 1 flags[year[0]:year[1]] = this_year_flags if plots or diagnostics: gap_plot_values = np.append( gap_plot_values, (this_year_data[gap_cleaned_locations]. compressed() - monthly_median) / iqr) if len(gap_cleaned_locations[0]) > 0: print "Lower {}-{} - {} obs flagged".format( y + start.year, month, len(gap_cleaned_locations[0])) print gap_cleaned_locations, this_year_data[ gap_cleaned_locations] # if doing SLP then do extra checks for storms if windspeeds: windspeeds_year = np.ma.array( st_var_wind.data[year[0]:year[1]]) this_year_flags[ gap_cleaned_locations] = 2 # tentative flags slp_average = dgc_get_monthly_averages( this_month_data, OBS_LIMIT, st_var.mdi, MEAN) slp_mad = utils.mean_absolute_deviation( this_month_data, median=True) # need to ensure that this_year_data is less than slp_average, hence order of test storms, = np.ma.where((((windspeeds_year - windspeeds_month_average) / windspeeds_month_mad) > MAD_THRESHOLD) &\ (((slp_average - this_year_data) / slp_mad) > MAD_THRESHOLD)) # using IDL terminology if len(storms) >= 2: # use the first difference series to find when there are gaps in # contiguous sequences of storm observations - want to split up into # separate storm events storm_1diffs = np.diff(storms) separations, = np.where(storm_1diffs != 1) # expand around storm signal so that all low SLP values covered, and unflagged if len(separations) >= 1: print " multiple storms in {} {}".format( y + start.year, month) # if more than one storm signal that month, then use intervals # in the first difference series to expand around the first interval alone storm_start = 0 storm_finish = separations[0] + 1 first_storm = dgc_expand_storms( storms[storm_start:storm_finish], len(this_year_data)) final_storms = copy.deepcopy( first_storm) for j in range(len(separations)): # then do the rest in a loop if j + 1 == len(separations): # final one this_storm = dgc_expand_storms( storms[separations[j] + 1:], len(this_year_data)) else: this_storm = dgc_expand_storms( storms[separations[j] + 1:separations[j + 1] + 1], len(this_year_data)) final_storms = np.append( final_storms, this_storm) else: # else just expand around the signal by 6 hours either way final_storms = dgc_expand_storms( storms, len(this_year_data)) else: final_storms = storms if len(storms) >= 1: print "Tropical Storm signal in {} {}".format( y + start.year, month) this_year_flags[final_storms] = 0 # and write flags back into array flags[year[0]:year[1]] = this_year_flags if plots: hist, binEdges = np.histogram(gap_plot_values, bins=bins) plot_hist = np.array([0.01 if h == 0 else h for h in hist]) plt.step(bincenters, plot_hist, 'r-', label='flagged', where='mid') import calendar plt.text(0.1, 0.9, calendar.month_name[month + 1], transform=plt.gca().transAxes) plt.legend(loc='lower center', ncol=3, bbox_to_anchor=(0.5, -0.2), frameon=False, prop={'size': 13}) plt.show() #plt.savefig(IMAGELOCATION+'/'+station.id+'_DistributionalGap_'+str(month+1)+'.png') nflags, = np.where(flags != 0) utils.print_flagged_obs_number(logfile, "Distributional Gap All", variable, len(nflags), noWrite=diagnostics) return flags # dgc_all_obs