Exemplo n.º 1
0
def Vtrace(cdata, param, fig=None):
    """ Calculate position of next V-trace from fitted model .

    Args:
        cdata (?): TODO
        param (?): TODO
        fit (None or integer): figure handle.

    """
    cc = cdata[0]
    psi = param[-1]

    q = np.array([10, 0]).reshape((2, 1))
    p1 = cc + pgeometry.rot2D(psi).dot(q)
    p2 = cc + pgeometry.rot2D(np.pi + psi).dot(q)
    pp = np.array(np.hstack((p1, cc, p2)))
    pp = np.array(np.hstack((p1, p2)))
    if fig is not None:
        plt.figure(fig)

        pgeometry.plotPoints(pp, '--k', markersize=20, linewidth=3, label='scan line')
        pgeometry.plotPoints(pp, '.y', markersize=20)
        plt.legend(numpoints=1, fontsize=14, loc=0)
    psi, slope = __calcSlope(pp)
    return pp, cc, slope
Exemplo n.º 2
0
def plot_onedot(results, ds=None, verbose=2, fig=100, linecolor='c', ims=None, extentImageMatlab=None, lv=None):
    """ Plot results of a barrier-barrier scan of a single dot

    Args:
        results (dict): results of the onedotGetBalance function
        ds (None or DataSet): dataset to use for plotting
        fig (int or None): figure window to plot to
    """

    if ds is None:
        ds = qtt.data.get_dataset(results)

    if fig is not None:
        _plot_dataset(ds, fig)

        if verbose >= 2:
            pgeometry.plotPoints(results['balancefit'], '--', color=linecolor, linewidth=2, label='balancefit')
        if verbose >= 2:
            pgeometry.plotPoints(results['balancepoint0'], '.r', markersize=13, label='balancepoint0')
        pgeometry.plotPoints(results['balancepoint'], '.m', markersize=17, label='balancepoint')

        if ims is not None:
            qtt.utilities.tools.showImage(ims, extentImageMatlab, fig=fig + 1)  # XX
            plt.axis('image')
            plt.title('Smoothed image')
            pgeometry.plotPoints(results['balancepoint'], '.m', markersize=16, label='balancepoint')

            qtt.utilities.tools.showImage(ims > lv, None, fig=fig + 2)
            pgeometry.plotPoints(results['balancefitpixel'], '--c', markersize=16, label='balancefit')
            pgeometry.plotLabels(results['balancefitpixel'])
            plt.axis('image')
            plt.title('thresholded area')

            if verbose >= 2:
                qq = ims.flatten()
                plt.figure(fig + 3)
                plt.clf()
                plt.hist(qq, 20)
                plot2Dline([-1, 0, np.percentile(ims, 1)], '--m', label='percentile 1')
                plot2Dline([-1, 0, np.percentile(ims, 2)], '--m', label='percentile 2')
                plot2Dline([-1, 0, np.percentile(ims, 99)], '--m', label='percentile 99')
                plot2Dline([-1, 0, lv], '--r', linewidth=2, label='lv')
                plt.legend(numpoints=1)
                plt.title('Histogram of image intensities')
                plt.xlabel('Image (smoothed) values')
Exemplo n.º 3
0
def _onedotGetBlobs(fimg, fig=None):
    """ Extract blobs for a 2D scan of a one-dot """
    # thr=otsu(fimg)
    thr = np.median(fimg)
    x = np.percentile(fimg, 99.5)
    thr = thr + (x - thr) * .5
    bim = 30 * (fimg > thr).astype(np.uint8)

    xx = detect_blobs_binary(bim)

    if int(cv2.__version__[0]) >= 3:
        # opencv 3
        ww, contours, tmp = cv2.findContours(bim.copy(), cv2.RETR_EXTERNAL,
                                             cv2.CHAIN_APPROX_SIMPLE)
    else:
        contours, tmp = cv2.findContours(bim.copy(), cv2.RETR_EXTERNAL,
                                         cv2.CHAIN_APPROX_SIMPLE)

    qq = []
    for ii in range(len(contours)):
        qq += [weightedCentroid(fimg, contours, contourIdx=ii, fig=None)]
    xxw = np.array(qq)
    if fig is not None:
        plt.figure(fig)
        plt.clf()
        pgeometry.imshowz(fimg, interpolation='nearest')
        plt.axis('image')
        plt.colorbar()
        # ax = plt.gca()
        pgeometry.plotPoints(xx.T, '.g', markersize=16, label='blob centres')
        plt.title('Reponse image with detected blobs')

        plt.figure(fig + 1)
        plt.clf()
        pgeometry.imshowz(bim, interpolation='nearest')
        plt.axis('image')
        plt.colorbar()
        # ax = plt.gca()
        pgeometry.plotPoints(xxw.T, '.g', markersize=16, label='blob centres')
        pgeometry.plotPoints(xx.T,
                             '.m',
                             markersize=12,
                             label='blob centres (alternative)')
        plt.title('Binary blobs')

        pgeometry.tilefigs([fig, fig + 1], [2, 2])

    return xxw, (xx, contours)
Exemplo n.º 4
0
def onedotGetBalance(dataset,
                     verbose=1,
                     fig=None,
                     drawpoly=False,
                     polylinewidth=2,
                     linecolor='c',
                     full_output=False,
                     od=None):
    """ Determine tuning point from a 2D scan of a 1-dot
    
    This function performs a simple fitting of the open (conducting region).
    
    Args:
        od (one-dot structure or None): data for one-dot
        dd (2D dataset): data containing charge stability diagram
        
    Returns:
        fitresults (dict): dictionary with fitting results
        od (obj): modified one-dot object
    
    """
    if od is not None:
        warnings.warn('od argument will be removed in the future',
                      DeprecationWarning)

    extentscan, g0, g2, vstep, vsweep, arrayname = dataset2Dmetadata(
        dataset, arrayname=None)

    im, tr = qtt.data.dataset2image(dataset)

    extentImageMatlab = tr.matplotlib_image_extent()

    ims = im.copy()

    # simlpy smoothing of the image
    kk = np.ones((3, 3)) / 9.
    for ii in range(2):
        ims = scipy.ndimage.convolve(ims, kk, mode='nearest', cval=0.0)

    r = np.percentile(ims, 99) - np.percentile(ims, 1)
    lv = np.percentile(ims, 2) + r / 100
    x = ims.flatten()
    lvstd = np.std(x[x < lv])
    lv = lv + lvstd / 2  # works for very smooth images

    lv = (.45 * pgeometry.otsu(ims) + .55 * lv)  # more robust
    if verbose >= 2:
        print('onedotGetBalance: threshold for low value %.1f' % lv)

    # balance point: method 1 (first point above threshold of 45 degree line)
    try:
        ww = np.nonzero(ims > lv)
        zz = -ww[0] + ww[1]
        idx = zz.argmin()
        pt = np.array([[ww[1][idx]], [ww[0][idx]]])
        ptv = tr.pixel2scan(pt)
    except:
        print('qutechtnotools: error in onedotGetBalance: please debug')
        idx = 0
        pt = np.array([[int(vstep.size / 2)], [int(vsweep.size / 2)]])
        ptv = np.array([[vstep[pt[0, 0]]], [vsweep[-pt[1, 0]]]])
        pass

    # balance point: method 2 (fit quadrilateral)
    wwarea = ims > lv

    x0 = np.array(
        [pt[0] - .1 * im.shape[1], pt[1] + .1 * im.shape[0], pt[0],
         pt[1]]).reshape(4, )  # initial square
    ff = lambda x: costscoreOD(x[0], x[1], x[2:4], wwarea)

    # scipy.optimize.show_options(method='Nelder-Mead')

    opts = dict({'disp': verbose >= 2, 'fatol': 1e-6, 'xatol': 1e-5})
    powell_opts = dict({'disp': verbose >= 2, 'ftol': 1e-6, 'xtol': 1e-5})

    xx = scipy.optimize.minimize(ff, x0, method='Nelder-Mead', options=opts)
    # print('  optimize: %f->%f' % (ff(x0), ff(xx.x)) )
    opts['disp'] = verbose >= 2
    xx = scipy.optimize.minimize(ff,
                                 xx.x,
                                 method='Powell',
                                 options=powell_opts)
    x = xx.x
    cost, pts, imx = costscoreOD(x0[0], x0[1], x0[2:4], wwarea, output=True)
    balancefitpixel0 = pts.reshape((-1, 2)).T.copy()
    cost, pts, imx = costscoreOD(x[0], x[1], x[2:4], wwarea, output=True)
    pt = pts[1, :, :].transpose()

    fitresults = {}
    fitresults['balancepoint0'] = ptv
    fitresults['balancepointpixel'] = pt
    fitresults['balancepointpolygon'] = tr.pixel2scan(pt)
    fitresults['balancepoint'] = tr.pixel2scan(pt)
    fitresults['balancefitpixel'] = pts.reshape((-1, 2)).T.copy()
    fitresults['balancefit'] = tr.pixel2scan(fitresults['balancefitpixel'])
    fitresults['balancefit1'] = tr.pixel2scan(balancefitpixel0)
    fitresults['setpoint'] = fitresults['balancepoint'] + 8
    fitresults['x0'] = x0
    fitresults['gatevalues'] = dataset.metadata.get('allgatevalues', None)

    if od is not None:

        fitresults['gatevalues'][od['gates'][2]] = float(
            fitresults['balancepoint'][0])
        fitresults['gatevalues'][od['gates'][0]] = float(
            fitresults['balancepoint'][1])

    ptv = fitresults['balancepoint']

    if od is not None:
        # copy results into od structure
        for k in fitresults:
            od[k] = fitresults[k]
        od['onedotbalance'] = fitresults

        odname = od['name']
    else:
        odname = 'one-dot'

    if verbose:
        print('onedotGetBalance %s: balance point 0 at: %.1f %.1f [mV]' %
              (odname, ptv[0, 0], ptv[1, 0]))
        print('onedotGetBalance: balance point at: %.1f %.1f [mV]' %
              (fitresults['balancepoint'][0, 0],
               fitresults['balancepoint'][1, 0]))

    if verbose >= 3:
        #%
        plt.figure(9)
        plt.clf()
        plt.imshow(im, interpolation='nearest')
        pgeometry.plotPoints(balancefitpixel0, '.-r', label='balancefitpixel0')
        pgeometry.plotLabels(balancefitpixel0)
        pgeometry.plotPoints(fitresults['balancefitpixel'], '.-m')
        pgeometry.plotLabels(fitresults['balancefitpixel'])

        cost, pts, imx = costscoreOD(x[0],
                                     x[1],
                                     x[2:4],
                                     wwarea,
                                     output=True,
                                     verbose=1)

        #%
    if fig is not None:
        plot_onedot(fitresults,
                    ds=dataset,
                    verbose=2,
                    fig=100,
                    linecolor='c',
                    ims=ims,
                    extentImageMatlab=extentImageMatlab,
                    lv=lv)

        qtt.utilities.tools.showImage(im, extentImageMatlab, fig=fig)

        if verbose >= 2 or drawpoly:
            pgeometry.plotPoints(fitresults['balancefit'],
                                 '--',
                                 color=linecolor,
                                 linewidth=polylinewidth,
                                 label='balancefit')
        if verbose >= 2:
            pgeometry.plotPoints(fitresults['balancepoint0'],
                                 '.r',
                                 markersize=13,
                                 label='balancepoint0')
        pgeometry.plotPoints(fitresults['balancepoint'],
                             '.m',
                             markersize=17,
                             label='balancepoint')
        plt.axis('image')

    if full_output:
        fitresults['ims'] = ims
        fitresults['lv'] = lv
        fitresults['wwarea'] = wwarea

    return fitresults, ptv
Exemplo n.º 5
0
def onedotGetBalanceFine(impixel=None,
                         dd=None,
                         verbose=1,
                         fig=None,
                         baseangle=-np.pi / 4,
                         units=None,
                         full_output=False):
    """ Determine central position of Coulomb peak in 2D scan

    The position is determined by scanning with Gabor filters and then performing blob detection

    The image should be in pixel coordinates
    
    
    Returns:    
        pt (array): detected point
        results (dict): dictionary with all results
    """
    extentscan, g0, g2, vstep, vsweep, arrayname = dataset2Dmetadata(
        dd, arrayname=None)
    tr = qtt.data.image_transform(dd)
    if impixel is None:
        impixel, tr = dataset2image(dd, mode='pixel')
        im = np.array(impixel)
    else:

        im = np.array(impixel)

    theta0 = baseangle
    step = np.abs(np.nanmean(np.diff(vstep)))

    filters, angles, _ = qtt.algorithms.generic.makeCoulombFilter(
        theta0=theta0, step=step, fig=None)

    lowvalue = np.percentile(im, 5)
    highvalue = np.percentile(im, 95)

    gfilter = filters[0]
    fimg = cv2.filter2D(im, -1, gfilter)

    bestvalue = highvalue * gfilter[gfilter > 0].sum() + lowvalue * gfilter[
        gfilter < 0].sum()

    xxw, _ = _onedotGetBlobs(fimg, fig=None)
    vv = _onedotSelectBlob(im, xxw, fimg=None)
    ptpixel = np.array(vv).reshape((1, 2))
    pt = tr.pixel2scan(ptpixel.T)
    ptvalue = fimg[int(ptpixel[0, 1]), int(ptpixel[0, 0])]

    if verbose:
        print('onedotGetBalanceFine: point/best filter value: %.2f/%.2f' %
              (ptvalue, bestvalue))

    if fig is not None:
        od = None
        xx = show2D(dd,
                    impixel=im,
                    fig=fig,
                    verbose=1,
                    title='input image for gabor',
                    units=units)
        if od is not None:
            pt0 = od['balancepoint'].reshape((2, 1))
            pgeometry.plotPoints(pt0, '.m', markersize=12)
        plt.plot(pt[0], pt[1], '.', color=(0, .8, 0), markersize=16)
        plt.axis('image')

        xx = show2D(dd,
                    impixel=fimg,
                    fig=fig + 1,
                    verbose=1,
                    title='response image for gabor',
                    units=units)
        plt.plot(pt[0],
                 pt[1],
                 '.',
                 color=(0, .8, 0),
                 markersize=16,
                 label='balance point fine')
        plt.axis('image')

    acc = 1

    if (np.abs(ptvalue) / bestvalue < 0.05):
        acc = 0
        logging.debug('accuracy: %d: %.2f' % (acc,
                                              (np.abs(ptvalue) / bestvalue)))

    results = dict({
        'step': step,
        'ptv': pt,
        'ptpixel': ptpixel,
        'accuracy': acc,
        'gfilter': gfilter
    })
    if full_output:
        results['fimg'] = fimg

    return pt, results