Exemplo n.º 1
0
def reproject(
        source, destination,
        src_transform=None, src_crs=None,
        dst_transform=None, dst_crs=None,
        resampling=RESAMPLING.nearest,
        **kwargs):
    """Reproject a source raster to a destination.

    If the source and destination are ndarrays, coordinate reference
    system definitions and affine transformation parameters are required
    for reprojection.

    If the source and destination are rasterio Bands, shorthand for
    bands of datasets on disk, the coordinate reference systems and
    transforms will be read from the appropriate datasets.
    """
    if src_transform:
        src_transform = guard_transform(src_transform).to_gdal()
    if dst_transform:
        dst_transform = guard_transform(dst_transform).to_gdal()

    _reproject(
        source, destination,
        src_transform, src_crs,
        dst_transform, dst_crs,
        resampling, **kwargs)
Exemplo n.º 2
0
def reproject(
        source, destination,
        src_transform=None, src_crs=None,
        dst_transform=None, dst_crs=None,
        resampling=RESAMPLING.nearest,
        **kwargs):
    """Reproject a source raster to a destination.

    If the source and destination are ndarrays, coordinate reference
    system definitions and affine transformation parameters are required
    for reprojection.

    If the source and destination are rasterio Bands, shorthand for
    bands of datasets on disk, the coordinate reference systems and
    transforms will be read from the appropriate datasets.
    """
    if src_transform:
        src_transform = guard_transform(src_transform).to_gdal()
    if dst_transform:
        dst_transform = guard_transform(dst_transform).to_gdal()

    _reproject(
        source, destination,
        src_transform, src_crs,
        dst_transform, dst_crs,
        resampling, **kwargs)
Exemplo n.º 3
0
def test_guard_transform_gdal_TypeError(path_rgb_byte_tif):
    """As part of the 1.0 migration, guard_transform() should raise a TypeError
    if a GDAL geotransform is encountered"""

    with rasterio.open(path_rgb_byte_tif) as src:
        aff = src.transform

    with pytest.raises(TypeError):
        transform.guard_transform(aff.to_gdal())
Exemplo n.º 4
0
def test_guard_transform_gdal_TypeError(path_rgb_byte_tif):
    """As part of the 1.0 migration, guard_transform() should raise a TypeError
    if a GDAL geotransform is encountered"""

    with rasterio.open(path_rgb_byte_tif) as src:
        aff = src.transform

    with pytest.raises(TypeError):
        transform.guard_transform(aff.to_gdal())
Exemplo n.º 5
0
def reproject(source,
              destination,
              src_transform=None,
              src_crs=None,
              dst_transform=None,
              dst_crs=None,
              resampling=RESAMPLING.nearest,
              **kwargs):
    """
    Reproject a source raster to a destination raster.

    Parameters
    ------------
    source: ndarray or rasterio Band
        Source raster.
    destination: ndarray or rasterio Band
        Target raster.
    src_transform: affine transform object, optional
        Source affine transformation.  Required if source and destination
        are ndarrays.  Will be derived from source if it is a rasterio Band.
    src_crs: dict, optional
        Source coordinate reference system, in rasterio dict format.
        Required if source and destination are ndarrays.
        Will be derived from source if it is a rasterio Band.
        Example: {'init': 'EPSG:4326'}
    dst_transform: affine transform object, optional
        Target affine transformation.  Required if source and destination
        are ndarrays.  Will be derived from target if it is a rasterio Band.
    dst_crs: dict, optional
        Target coordinate reference system.  Required if source and destination
        are ndarrays.  Will be derived from target if it is a rasterio Band.
    resampling: int
        Resampling method to use.  One of the following:
            RESAMPLING.nearest,
            RESAMPLING.bilinear,
            RESAMPLING.cubic,
            RESAMPLING.cubic_spline,
            RESAMPLING.lanczos,
            RESAMPLING.average,
            RESAMPLING.mode
    kwargs:  dict, optional
        Additional arguments passed to transformation function.

    Returns
    ---------
    out: None
        Output is written to destination.
    """

    if src_transform:
        src_transform = guard_transform(src_transform).to_gdal()
    if dst_transform:
        dst_transform = guard_transform(dst_transform).to_gdal()

    _reproject(source, destination, src_transform, src_crs, dst_transform,
               dst_crs, resampling, **kwargs)
Exemplo n.º 6
0
    def window(self, left, bottom, right, top, boundless=False):
        """Get the window corresponding to the bounding coordinates.

        Parameters
        ----------
        left : float
            Left (west) bounding coordinate
        bottom : float
            Bottom (south) bounding coordinate
        right : float
            Right (east) bounding coordinate
        top : float
            Top (north) bounding coordinate
        boundless: boolean, optional
            If boundless is False, window is limited
            to extent of this dataset.

        Returns
        -------
        window: tuple
            ((row_start, row_stop), (col_start, col_stop))
            corresponding to the bounding coordinates

        """

        transform = guard_transform(self.transform)
        return windows.from_bounds(
            left, bottom, right, top, transform=transform,
            height=self.height, width=self.width, boundless=boundless)
Exemplo n.º 7
0
    def window(self, left, bottom, right, top, boundless=False):
        """Get the window corresponding to the bounding coordinates.

        Parameters
        ----------
        left : float
            Left (west) bounding coordinate
        bottom : float
            Bottom (south) bounding coordinate
        right : float
            Right (east) bounding coordinate
        top : float
            Top (north) bounding coordinate
        boundless: boolean, optional
            If boundless is False, window is limited
            to extent of this dataset.

        Returns
        -------
        window: tuple
            ((row_start, row_stop), (col_start, col_stop))
            corresponding to the bounding coordinates

        """

        transform = guard_transform(self.transform)
        return windows.from_bounds(left,
                                   bottom,
                                   right,
                                   top,
                                   transform=transform,
                                   height=self.height,
                                   width=self.width,
                                   boundless=boundless)
Exemplo n.º 8
0
def shapes(image, mask=None, connectivity=4, transform=IDENTITY):
    """Yields a (shape, image_value) pair for each feature in the image.

    The shapes are GeoJSON-like dicts and the image values are ints or floats
    depending on the data type of the image.

    Features are found using a connected-component labeling algorithm.

    The image must be one of int16, int32, uint8, uint16, float32 data types.
    Note: due to floating point precision issues, the floating point values
    returned from a floating point image may not exactly match the original
    values.

    If a mask is provided, pixels for which the mask is `False` will be
    excluded from feature generation.
    """

    valid_dtypes = ('int16', 'int32', 'uint8', 'uint16', 'float32')

    if np.dtype(image.dtype).name not in valid_dtypes:
        raise ValueError('image dtype must be one of: %s'
                         % (', '.join(valid_dtypes)))

    if mask is not None and np.dtype(mask.dtype) != np.dtype(rasterio.bool_):
        raise ValueError("Mask must be dtype rasterio.bool_")

    if connectivity not in (4, 8):
        raise ValueError("Connectivity Option must be 4 or 8")

    transform = guard_transform(transform)

    with rasterio.drivers():
        for s, v in _shapes(image, mask, connectivity, transform.to_gdal()):
            yield s, v
Exemplo n.º 9
0
def shapes(image, mask=None, connectivity=4, transform=IDENTITY):
    """Yields a (shape, image_value) pair for each feature in the image.
    
    The shapes are GeoJSON-like dicts and the image values are ints.
    
    Features are found using a connected-component labeling algorithm.

    The image must be of unsigned 8-bit integer (rasterio.byte or
    numpy.uint8) data type. If a mask is provided, pixels for which the
    mask is `False` will be excluded from feature generation.
    """
    if np.dtype(image.dtype) != np.dtype(rasterio.ubyte):
        raise ValueError("Image must be dtype uint8/ubyte")

    if mask is not None and np.dtype(mask.dtype) != np.dtype(rasterio.bool_):
        raise ValueError("Mask must be dtype rasterio.bool_")

    if connectivity not in (4, 8):
        raise ValueError("Connectivity Option must be 4 or 8")

    transform = guard_transform(transform)

    with rasterio.drivers():
        for s, v in _shapes(image, mask, connectivity, transform.to_gdal()):
            yield s, v
Exemplo n.º 10
0
    def run(self, processes=4):
        """TODO"""
        if processes == 1:
            self.pool = MockTub(init_worker, (self.inpaths, self.global_args))
        else:
            self.pool = Pool(processes, init_worker, (self.inpaths, self.global_args))

        self.options["transform"] = guard_transform(self.options["transform"])

        if self.mode == "manual_read":
            reader_worker = manual_reader(self.run_function)
        elif self.mode == "array_read":
            reader_worker = array_reader(self.run_function)
        else:
            reader_worker = simple_reader(self.run_function)

        if isinstance(self.outpath_or_dataset, rasterio.io.DatasetWriter):
            destination = self.outpath_or_dataset
        else:
            destination = rasterio.open(self.outpath_or_dataset, "w", **self.options)

        # Open an output file, work through the function in parallel,
        # and write out the data.
        with destination as dst:
            for data, window in self.pool.imap_unordered(reader_worker, self.windows):
                dst.write(data, window=window)

        self.pool.close()
        self.pool.join()
Exemplo n.º 11
0
    def window(self, left, bottom, right, top, precision=None):
        """Get the window corresponding to the bounding coordinates.

        The resulting window is not cropped to the row and column
        limits of the dataset.

        Parameters
        ----------
        left: float
            Left (west) bounding coordinate
        bottom: float
            Bottom (south) bounding coordinate
        right: float
            Right (east) bounding coordinate
        top: float
            Top (north) bounding coordinate
        precision: int, optional
            Number of decimal points of precision when computing inverse
            transform.

        Returns
        -------
        window: Window
        """
        transform = guard_transform(self.transform)
        return from_bounds(
            left, bottom, right, top, transform=transform,
            height=self.height, width=self.width, precision=precision)
Exemplo n.º 12
0
def shapes(image, mask=None, connectivity=4, transform=IDENTITY):
    """Yields a (shape, image_value) pair for each feature in the image.
    
    The shapes are GeoJSON-like dicts and the image values are ints.
    
    Features are found using a connected-component labeling algorithm.

    The image must be of unsigned 8-bit integer (rasterio.byte or
    numpy.uint8) data type. If a mask is provided, pixels for which the
    mask is `False` will be excluded from feature generation.
    """
    if np.dtype(image.dtype) != np.dtype(rasterio.ubyte):
        raise ValueError("Image must be dtype uint8/ubyte")

    if mask is not None and np.dtype(mask.dtype) != np.dtype(rasterio.bool_):
        raise ValueError("Mask must be dtype rasterio.bool_")

    if connectivity not in (4, 8):
        raise ValueError("Connectivity Option must be 4 or 8")

    transform = guard_transform(transform)

    with rasterio.drivers():
        for s, v in _shapes(image, mask, connectivity, transform.to_gdal()):
            yield s, v
def pad(array, transform, pad_width, mode=None, **kwargs):
    """pad array and adjust affine transform matrix.

    Parameters
    ----------
    array: ndarray
        Numpy ndarray, for best results a 2D array
    transform: Affine transform
        transform object mapping pixel space to coordinates
    pad_width: int
        number of pixels to pad array on all four
    mode: str or function
        define the method for determining padded values

    Returns
    -------
    (array, transform): tuple
        Tuple of new array and affine transform

    Notes
    -----
    See numpy docs for details on mode and other kwargs:
    http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.pad.html
    """
    import numpy as np
    transform = guard_transform(transform)
    padded_array = np.pad(array, pad_width, mode, **kwargs)
    padded_trans = list(transform)
    padded_trans[2] -= pad_width * padded_trans[0]
    padded_trans[5] -= pad_width * padded_trans[4]
    return padded_array, Affine(*padded_trans[:6])
Exemplo n.º 14
0
def plotting_extent(source, transform=None):
    """Returns an extent in the format needed
     for matplotlib's imshow (left, right, bottom, top)
     instead of rasterio's bounds (left, bottom, top, right)

    Parameters
    ----------
    source : array or dataset object opened in 'r' mode
        input data
    transform: Affine, required if source is array
        Defines the affine transform if source is an array

    Returns
    -------
    tuple of float
        left, right, bottom, top
    """
    if hasattr(source, 'bounds'):
        extent = (source.bounds.left, source.bounds.right,
                  source.bounds.bottom, source.bounds.top)
    elif not transform:
        raise ValueError(
            "transform is required if source is an array")
    else:
        transform = guard_transform(transform)
        rows, cols = source.shape[0:2]
        left, top = transform * (0, 0)
        right, bottom = transform * (cols, rows)
        extent = (left, right, bottom, top)

    return extent
Exemplo n.º 15
0
    def window(self, left, bottom, right, top, precision=6, **kwargs):
        """Get the window corresponding to the bounding coordinates.

        The resulting window is not cropped to the row and column
        limits of the dataset.

        Parameters
        ----------
        left: float
            Left (west) bounding coordinate
        bottom: float
            Bottom (south) bounding coordinate
        right: float
            Right (east) bounding coordinate
        top: float
            Top (north) bounding coordinate
        precision: int, optional
            Number of decimal points of precision when computing inverse
            transform.
        kwargs: mapping
            For backwards compatibility: absorbs deprecated keyword args.

        Returns
        -------
        window: Window
        """
        if 'boundless' in kwargs:  # pragma: no branch
            warnings.warn("boundless keyword arg should not be used",
                          RasterioDeprecationWarning)

        transform = guard_transform(self.transform)

        return from_bounds(
            left, bottom, right, top, transform=transform,
            height=self.height, width=self.width, precision=precision)
Exemplo n.º 16
0
    def window(self, left, bottom, right, top, precision=None):
        """Get the window corresponding to the bounding coordinates.

        The resulting window is not cropped to the row and column
        limits of the dataset.

        Parameters
        ----------
        left: float
            Left (west) bounding coordinate
        bottom: float
            Bottom (south) bounding coordinate
        right: float
            Right (east) bounding coordinate
        top: float
            Top (north) bounding coordinate
        precision: int, optional
            Number of decimal points of precision when computing inverse
            transform.

        Returns
        -------
        window: Window
        """
        transform = guard_transform(self.transform)

        return from_bounds(
            left, bottom, right, top, transform=transform,
            height=self.height, width=self.width, precision=precision)
Exemplo n.º 17
0
def pad(array, transform, pad_width, mode=None, **kwargs):
    """pad array and adjust affine transform matrix.

    Parameters
    ----------
    array: ndarray
        Numpy ndarray, for best results a 2D array
    transform: Affine transform
        transform object mapping pixel space to coordinates
    pad_width: int
        number of pixels to pad array on all four
    mode: str or function
        define the method for determining padded values

    Returns
    -------
    (array, transform): tuple
        Tuple of new array and affine transform

    Notes
    -----
    See numpy docs for details on mode and other kwargs:
    http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.pad.html
    """
    import numpy as np
    transform = guard_transform(transform)
    padded_array = np.pad(array, pad_width, mode, **kwargs)
    padded_trans = list(transform)
    padded_trans[2] -= pad_width * padded_trans[0]
    padded_trans[5] -= pad_width * padded_trans[4]
    return padded_array, Affine(*padded_trans[:6])
Exemplo n.º 18
0
Arquivo: io.py Projeto: kant/rasterio
    def window(self, left, bottom, right, top, boundless=True, precision=6):
        """Get the window corresponding to the bounding coordinates.

        Parameters
        ----------
        left : float
            Left (west) bounding coordinate
        bottom : float
            Bottom (south) bounding coordinate
        right : float
            Right (east) bounding coordinate
        top : float
            Top (north) bounding coordinate
        boundless: boolean, optional
            If boundless is False, window is limited
            to extent of this dataset.
        precision : int, optional
            Number of decimal points of precision when computing inverse
            transform.

        Returns
        -------
        window: Window
        """

        transform = guard_transform(self.transform)
        return windows.from_bounds(left,
                                   bottom,
                                   right,
                                   top,
                                   transform=transform,
                                   height=self.height,
                                   width=self.width,
                                   boundless=boundless,
                                   precision=precision)
Exemplo n.º 19
0
    def run(self, processes=4):

        if processes == 1:
            self.pool = MockTub(
                main_worker,
                (self.inpaths, self.run_function, self.global_args))
        else:
            self.pool = Pool(
                processes, main_worker,
                (self.inpaths, self.run_function, self.global_args))

        self.options['transform'] = guard_transform(self.options['transform'])

        if self.mode == 'manual_read':
            reader_worker = manualRead
        elif self.mode == 'array_read':
            reader_worker = arrayRead
        else:
            reader_worker = simpleRead

        ## Open an output file, work through the function in parallel, and write out the data
        with rio.open(self.outpath, 'w', **self.options) as dst:
            for data, window in self.pool.imap_unordered(
                    reader_worker, self.windows):
                dst.write(data, window=window)

        self.pool.close()
        self.pool.join()
        return
Exemplo n.º 20
0
    def run(self, processes=4):
        """TODO"""
        if processes == 1:
            self.pool = MockTub(init_worker, (self.inpaths, self.global_args))
        else:
            self.pool = Pool(processes, init_worker,
                             (self.inpaths, self.global_args))

        self.options["transform"] = guard_transform(self.options["transform"])

        if self.mode == "manual_read":
            reader_worker = manual_reader(self.run_function)
        elif self.mode == "array_read":
            reader_worker = array_reader(self.run_function)
        else:
            reader_worker = simple_reader(self.run_function)

        if isinstance(self.outpath_or_dataset, rasterio.io.DatasetWriter):
            destination = self.outpath_or_dataset
        else:
            destination = rasterio.open(self.outpath_or_dataset, "w",
                                        **self.options)

        # Open an output file, work through the function in parallel,
        # and write out the data.
        with destination as dst:
            for data, window in self.pool.imap_unordered(
                    reader_worker, self.windows):
                dst.write(data, window=window)

        self.pool.close()
        self.pool.join()
Exemplo n.º 21
0
def plotting_extent(source, transform=None):
    """Returns an extent in the format needed
     for matplotlib's imshow (left, right, bottom, top)
     instead of rasterio's bounds (left, bottom, right, top)

    Parameters
    ----------
    source : array or dataset object opened in 'r' mode
        If array, data in the order rows, columns and optionally bands. If array
        is band order (bands in the first dimension), use arr[0]
    transform: Affine, required if source is array
        Defines the affine transform if source is an array

    Returns
    -------
    tuple of float
        left, right, bottom, top
    """
    if hasattr(source, 'bounds'):
        extent = (source.bounds.left, source.bounds.right,
                  source.bounds.bottom, source.bounds.top)
    elif not transform:
        raise ValueError("transform is required if source is an array")
    else:
        transform = guard_transform(transform)
        rows, cols = source.shape[0:2]
        left, top = transform * (0, 0)
        right, bottom = transform * (cols, rows)
        extent = (left, right, bottom, top)

    return extent
Exemplo n.º 22
0
def atmos(
    ctx,
    atmo,
    contrast,
    bias,
    jobs,
    out_dtype,
    src_path,
    dst_path,
    creation_options,
    as_color,
):
    """Atmospheric correction
    """
    if as_color:
        click.echo("rio color {} {} {}".format(
            src_path, dst_path, simple_atmo_opstring(atmo, contrast, bias)))
        exit(0)

    with rasterio.open(src_path) as src:
        opts = src.profile.copy()
        windows = [(window, ij) for ij, window in src.block_windows()]

    opts.update(**creation_options)
    opts["transform"] = guard_transform(opts["transform"])

    out_dtype = out_dtype if out_dtype else opts["dtype"]
    opts["dtype"] = out_dtype

    args = {
        "atmo": atmo,
        "contrast": contrast,
        "bias": bias,
        "out_dtype": out_dtype
    }

    jobs = check_jobs(jobs)

    if jobs > 1:
        with riomucho.RioMucho(
            [src_path],
                dst_path,
                atmos_worker,
                windows=windows,
                options=opts,
                global_args=args,
                mode="manual_read",
        ) as mucho:
            mucho.run(jobs)
    else:
        with rasterio.open(dst_path, "w", **opts) as dest:
            with rasterio.open(src_path) as src:
                rasters = [src]
                for window, ij in windows:
                    arr = atmos_worker(rasters, window, ij, args)
                    dest.write(arr, window=window)
Exemplo n.º 23
0
def shapes(image, mask=None, connectivity=4, transform=IDENTITY):
    """
    Return a generator of (polygon, value) for each each set of adjacent pixels
    of the same value.

    Parameters
    ----------
    image : numpy ndarray or rasterio Band object
        (RasterReader, bidx namedtuple).
        Data type must be one of rasterio.int16, rasterio.int32,
        rasterio.uint8, rasterio.uint16, or rasterio.float32.
    mask : numpy ndarray or rasterio Band object, optional
        Values of False or 0 will be excluded from feature generation
        Must evaluate to bool (rasterio.bool_ or rasterio.uint8)
    connectivity : int, optional
        Use 4 or 8 pixel connectivity for grouping pixels into features
    transform : Affine transformation, optional
        If not provided, feature coordinates will be generated based on pixel
        coordinates

    Returns
    -------
    Generator of (polygon, value)
        Yields a pair of (polygon, value) for each feature found in the image.
        Polygons are GeoJSON-like dicts and the values are the associated value
        from the image, in the data type of the image.
        Note: due to floating point precision issues, values returned from a
        floating point image may not exactly match the original values.

    Notes
    -----
    The amount of memory used by this algorithm is proportional to the number
    and complexity of polygons produced.  This algorithm is most appropriate
    for simple thematic data.  Data with high pixel-to-pixel variability, such
    as imagery, may produce one polygon per pixel and consume large amounts of
    memory.

    """

    valid_dtypes = ('int16', 'int32', 'uint8', 'uint16', 'float32')

    if np.dtype(image.dtype).name not in valid_dtypes:
        raise ValueError('image dtype must be one of: %s'
                         % (', '.join(valid_dtypes)))

    if mask is not None and np.dtype(mask.dtype).name not in ('bool', 'uint8'):
        raise ValueError("Mask must be dtype rasterio.bool_ or rasterio.uint8")

    if connectivity not in (4, 8):
        raise ValueError("Connectivity Option must be 4 or 8")

    transform = guard_transform(transform)

    with rasterio.drivers():
        for s, v in _shapes(image, mask, connectivity, transform.to_gdal()):
            yield s, v
Exemplo n.º 24
0
def pad(array, transform, pad_width, mode=None, **kwargs):
    """Returns a padded array and shifted affine transform matrix.
    
    Array is padded using `numpy.pad()`."""
    transform = guard_transform(transform)
    padded_array = numpy.pad(array, pad_width, mode, **kwargs)
    padded_trans = list(transform)
    padded_trans[2] -= pad_width*padded_trans[0]
    padded_trans[5] -= pad_width*padded_trans[4]
    return padded_array, Affine(*padded_trans[:6])
Exemplo n.º 25
0
def pad(array, transform, pad_width, mode=None, **kwargs):
    """Returns a padded array and shifted affine transform matrix.
    
    Array is padded using `numpy.pad()`."""
    import numpy
    transform = guard_transform(transform)
    padded_array = numpy.pad(array, pad_width, mode, **kwargs)
    padded_trans = list(transform)
    padded_trans[2] -= pad_width*padded_trans[0]
    padded_trans[5] -= pad_width*padded_trans[4]
    return padded_array, Affine(*padded_trans[:6])
Exemplo n.º 26
0
def shapes(source, mask=None, connectivity=4, transform=IDENTITY):
    """Get shapes and values of connected regions in a dataset or array.

    Parameters
    ----------
    source : array, dataset object, Band, or tuple(dataset, bidx)
        Data type must be one of rasterio.int16, rasterio.int32,
        rasterio.uint8, rasterio.uint16, or rasterio.float32.
    mask : numpy ndarray or rasterio Band object, optional
        Must evaluate to bool (rasterio.bool_ or rasterio.uint8). Values
        of False or 0 will be excluded from feature generation.  Note
        well that this is the inverse sense from Numpy's, where a mask
        value of True indicates invalid data in an array. If `source` is
        a Numpy masked array and `mask` is None, the source's mask will
        be inverted and used in place of `mask`.
    connectivity : int, optional
        Use 4 or 8 pixel connectivity for grouping pixels into features
    transform : Affine transformation, optional
        If not provided, feature coordinates will be generated based on
        pixel coordinates

    Yields
    -------
    polygon, value
        A pair of (polygon, value) for each feature found in the image.
        Polygons are GeoJSON-like dicts and the values are the
        associated value from the image, in the data type of the image.
        Note: due to floating point precision issues, values returned
        from a floating point image may not exactly match the original
        values.

    Notes
    -----
    The amount of memory used by this algorithm is proportional to the
    number and complexity of polygons produced.  This algorithm is most
    appropriate for simple thematic data.  Data with high pixel-to-pixel
    variability, such as imagery, may produce one polygon per pixel and
    consume large amounts of memory.

    Because the low-level implementation uses either an int32 or float32
    buffer, uint32 and float64 data cannot be operated on without
    truncation issues.

    """
    if hasattr(source, 'mask') and mask is None:
        mask = ~source.mask
        source = source.data

    transform = guard_transform(transform)
    for s, v in _shapes(source, mask, connectivity, transform):
        yield s, v
Exemplo n.º 27
0
    def __init__(self,
                 raster,
                 affine=None,
                 nodata=None,
                 band=None,
                 driver=None,
                 crs=None,
                 variable=None):
        self.array = None
        self.src = None
        self.driver = None
        self.crs = None
        self.variable = variable

        if isinstance(raster, np.ndarray):
            if affine is None:
                # supply default affine transform:
                # (x res, row rotation, xmin, column rotation, y res, ymax)
                aff = default_transform(raster)
                warnings.warn('No affine transform supplied - using default')
            self.array = raster
            self.affine = affine
            self.shape = raster.shape
            if nodata is None:
                nodata = -9999
                warnings.warn('No no data value supplied - using -9999')
            self.nodata = nodata
            if len(raster.shape) > 2:
                self.nbands = raster.shape[-1]  # assumes 3rd dim is bands
            else:
                self.nbands = 1
            self.band = band
            self.dtype = raster.dtype

        else:
            if self.variable:
                self.src = rasterio.open(
                    'netcdf:{0}:{1}'.format(raster, variable), 'r')
            else:
                self.src = rasterio.open(raster, 'r')
            self.affine = guard_transform(self.src.transform)
            self.shape = (self.src.height, self.src.width)
            if nodata is not None:
                # override with specified nodata
                self.nodata = float(nodata)
            else:
                self.nodata = self.src.nodata
            self.nbands = self.src.count
            self.band = band
Exemplo n.º 28
0
def transform_handler(ctx, param, value):
    """Get transform value from a template file or command line."""
    retval = options.from_like_context(ctx, param, value)
    if retval is None and value:
        try:
            value = json.loads(value)
        except ValueError:
            pass
        try:
            retval = guard_transform(value)
        except:
            raise click.BadParameter(
                "'%s' is not recognized as an Affine array." % value,
                param=param, param_hint='transform')
    return retval
Exemplo n.º 29
0
def transform_handler(ctx, param, value):
    """Get transform value from a template file or command line."""
    retval = options.from_like_context(ctx, param, value)
    if retval is None and value:
        try:
            value = json.loads(value)
        except ValueError:
            pass
        try:
            retval = guard_transform(value)
        except Exception:
            raise click.BadParameter(
                "'%s' is not recognized as an Affine array." % value,
                param=param, param_hint='transform')
    return retval
Exemplo n.º 30
0
def write_cloud_mask(arr, profile, cloudmask, threshold=2):
    """
    writes the cloud+alpha mask as single-band uint8 tiff
    suitable for stacking as an alpha band
    threshold defaults to 2; only 2 and above are considered clouds
    """
    func = qa_vars['clouds']
    data = func(arr)
    profile.update(dtype='uint8')
    profile.update(transform=guard_transform(profile['transform']))
    with rasterio.open(cloudmask, 'w', **profile) as dest:
        clouds = (data >= threshold)
        nodata = (data == 0)
        yesdata = ((clouds + nodata) == 0)
        data = (yesdata * 255).astype('uint8')
        dest.write(data, 1)
Exemplo n.º 31
0
    def window_bounds(self, window):
        """Get the bounds of a window

        Parameters
        ----------
        window: rasterio.windows.Window
            Dataset window

        Returns
        -------
        bounds : tuple
            x_min, y_min, x_max, y_max for the given window
        """

        transform = guard_transform(self.transform)
        return bounds(window, transform)
Exemplo n.º 32
0
    def window_transform(self, window):
        """Get the affine transform for a dataset window.

        Parameters
        ----------
        window: tuple
            Dataset window tuple

        Returns
        -------
        transform: Affine
            The affine transform matrix for the given window
        """

        transform = guard_transform(self.transform)
        return windows.transform(window, transform)
Exemplo n.º 33
0
def write_cloud_mask(arr, profile, cloudmask, threshold=2):
    """
    writes the cloud+alpha mask as single-band uint8 tiff
    suitable for stacking as an alpha band
    threshold defaults to 2; only 2 and above are considered clouds
    """
    func = qa_vars['clouds']
    data = func(arr)
    profile.update(dtype='uint8')
    profile.update(transform=guard_transform(profile['transform']))
    with rasterio.open(cloudmask, 'w', **profile) as dest:
        clouds = (data >= threshold)
        nodata = (data == 0)
        yesdata = ((clouds + nodata) == 0)
        data = (yesdata * 255).astype('uint8')
        dest.write(data, 1)
Exemplo n.º 34
0
    def window_transform(self, window):
        """Get the affine transform for a dataset window.

        Parameters
        ----------
        window: rasterio.windows.Window
            Dataset window

        Returns
        -------
        transform: Affine
            The affine transform matrix for the given window
        """

        gtransform = guard_transform(self.transform)
        return transform(window, gtransform)
Exemplo n.º 35
0
    def window_bounds(self, window):
        """Get the bounds of a window

        Parameters
        ----------
        window: rasterio.windows.Window
            Dataset window

        Returns
        -------
        bounds : tuple
            x_min, y_min, x_max, y_max for the given window
        """

        transform = guard_transform(self.transform)
        return bounds(window, transform)
Exemplo n.º 36
0
    def window_transform(self, window):
        """Get the affine transform for a dataset window.

        Parameters
        ----------
        window: tuple
            Dataset window tuple

        Returns
        -------
        transform: Affine
            The affine transform matrix for the given window
        """

        transform = guard_transform(self.transform)
        return windows.transform(window, transform)
Exemplo n.º 37
0
    def window_transform(self, window):
        """Get the affine transform for a dataset window.

        Parameters
        ----------
        window: rasterio.windows.Window
            Dataset window

        Returns
        -------
        transform: Affine
            The affine transform matrix for the given window
        """

        gtransform = guard_transform(self.transform)
        return transform(window, gtransform)
Exemplo n.º 38
0
def shapes(source, mask=None, connectivity=4, transform=IDENTITY):
    """Yield (polygon, value for each set of adjacent pixels of the same value.

    Parameters
    ----------
    source : array or dataset object opened in 'r' mode or Band or tuple(dataset, bidx)
        Data type must be one of rasterio.int16, rasterio.int32,
        rasterio.uint8, rasterio.uint16, or rasterio.float32.
    mask : numpy ndarray or rasterio Band object, optional
        Must evaluate to bool (rasterio.bool_ or rasterio.uint8). Values
        of False or 0 will be excluded from feature generation.  Note
        well that this is the inverse sense from Numpy's, where a mask
        value of True indicates invalid data in an array. If `source` is
        a Numpy masked array and `mask` is None, the source's mask will
        be inverted and used in place of `mask`.
    connectivity : int, optional
        Use 4 or 8 pixel connectivity for grouping pixels into features
    transform : Affine transformation, optional
        If not provided, feature coordinates will be generated based on pixel
        coordinates

    Yields
    -------
    tuple
        A pair of (polygon, value) for each feature found in the image.
        Polygons are GeoJSON-like dicts and the values are the associated value
        from the image, in the data type of the image.
        Note: due to floating point precision issues, values returned from a
        floating point image may not exactly match the original values.

    Notes
    -----
    The amount of memory used by this algorithm is proportional to the number
    and complexity of polygons produced.  This algorithm is most appropriate
    for simple thematic data.  Data with high pixel-to-pixel variability, such
    as imagery, may produce one polygon per pixel and consume large amounts of
    memory.

    """
    if hasattr(source, 'mask') and mask is None:
        mask = ~source.mask
        source = source.data

    transform = guard_transform(transform)
    for s, v in _shapes(source, mask, connectivity, transform):
        yield s, v
Exemplo n.º 39
0
def atmos(ctx, atmo, contrast, bias, jobs, out_dtype,
          src_path, dst_path, creation_options, as_color):
    """Atmospheric correction
    """
    if as_color:
        click.echo("rio color {} {} {}".format(
            src_path, dst_path, simple_atmo_opstring(atmo, contrast, bias)))
        exit(0)

    with rasterio.open(src_path) as src:
        opts = src.profile.copy()
        windows = [(window, ij) for ij, window in src.block_windows()]

    opts.update(**creation_options)
    opts['transform'] = guard_transform(opts['transform'])

    out_dtype = out_dtype if out_dtype else opts['dtype']
    opts['dtype'] = out_dtype

    args = {
        'atmo': atmo,
        'contrast': contrast,
        'bias': bias,
        'out_dtype': out_dtype
    }

    jobs = check_jobs(jobs)

    if jobs > 1:
        with riomucho.RioMucho(
            [src_path],
            dst_path,
            atmos_worker,
            windows=windows,
            options=opts,
            global_args=args,
            mode="manual_read"
        ) as mucho:
            mucho.run(jobs)
    else:
        with rasterio.open(dst_path, 'w', **opts) as dest:
            with rasterio.open(src_path) as src:
                rasters = [src]
                for window, ij in windows:
                    arr = atmos_worker(rasters, window, ij, args)
                    dest.write(arr, window=window)
Exemplo n.º 40
0
def color(jobs, out_dtype, src_path, dst_path, operations, creation_options):
    with rasterio.open(src_path) as src:
        opts = src.profile.copy()
        windows = [(window, ij) for ij, window in src.block_windows()]

    opts.update(**creation_options)
    opts["transform"] = guard_transform(opts["transform"])

    out_dtype = out_dtype if out_dtype else opts["dtype"]
    opts["dtype"] = out_dtype

    args = {"ops_string": " ".join(operations), "out_dtype": out_dtype}
    # Just run this for validation this time
    # parsing will be run again within the worker
    # where its returned value will be used
    try:
        parse_operations(args["ops_string"])
    except ValueError as e:
        import sys

        sys.exit(1)
        print(e)

    jobs = check_jobs(jobs)

    if jobs > 1:
        with riomucho.RioMucho(
            [src_path],
                dst_path,
                color_worker,
                windows=windows,
                options=opts,
                global_args=args,
                mode="manual_read",
        ) as mucho:
            mucho.run(jobs)
    else:
        with rasterio.open(dst_path, "w", **opts) as dest:
            with rasterio.open(src_path) as src:
                rasters = [src]
                for window, ij in windows:
                    arr = color_worker(rasters, window, ij, args)
                    dest.write(arr, window=window)

                dest.colorinterp = src.colorinterp
Exemplo n.º 41
0
    def window(self, left, bottom, right, top, precision=None):
        """Get the window corresponding to the bounding coordinates.

        The resulting window is not cropped to the row and column
        limits of the dataset.

        Parameters
        ----------
        left: float
            Left (west) bounding coordinate
        bottom: float
            Bottom (south) bounding coordinate
        right: float
            Right (east) bounding coordinate
        top: float
            Top (north) bounding coordinate
        precision: int, optional
            This parameters is unused, deprecated in rasterio 1.3.0, and
            will be removed in version 2.0.0.

        Returns
        -------
        window: Window

        """
        if precision is not None:
            warnings.warn(
                "The precision parameter is unused, deprecated, and will be removed in 2.0.0.",
                RasterioDeprecationWarning,
            )

        transform = guard_transform(self.transform)
        return from_bounds(
            left,
            bottom,
            right,
            top,
            transform=transform,
            height=self.height,
            width=self.width,
        )
Exemplo n.º 42
0
def _threshold_raster(file, out_name, threshold=0.9, dst_crs=None):
    """
    writes thresholded ground-truth as single-band uint16 tiff
    """
    file = rio.open(file)
    profile = file.profile

    # need masked array
    data = file.read(1)
    mask = (data == file.nodata)
    data = ma.array(data, mask=mask, fill_value=file.nodata)

    profile.update(dtype='int16')
    profile.update(transform=guard_transform(profile['transform']))
    with rio.open(out_name, 'w', **profile) as dest:
        threshed = (data >= threshold)  # masked array op
        data = (threshed).filled().astype('int16')  # fill mask with nodata.
        dest.write(data, 1)

    if dst_crs is not None:
        reproject_raster(out_name, dst_crs, out_name)
Exemplo n.º 43
0
def shapes(image, mask=None, connectivity=4, transform=IDENTITY):
    """Yield (polygon, value for each set of adjacent pixels of the same value.

    Parameters
    ----------
    image : numpy ndarray or rasterio Band object
        (RasterReader, bidx namedtuple).
        Data type must be one of rasterio.int16, rasterio.int32,
        rasterio.uint8, rasterio.uint16, or rasterio.float32.
    mask : numpy ndarray or rasterio Band object, optional
        Values of False or 0 will be excluded from feature generation
        Must evaluate to bool (rasterio.bool_ or rasterio.uint8)
    connectivity : int, optional
        Use 4 or 8 pixel connectivity for grouping pixels into features
    transform : Affine transformation, optional
        If not provided, feature coordinates will be generated based on pixel
        coordinates

    Yields
    -------
    tuple
        A pair of (polygon, value) for each feature found in the image.
        Polygons are GeoJSON-like dicts and the values are the associated value
        from the image, in the data type of the image.
        Note: due to floating point precision issues, values returned from a
        floating point image may not exactly match the original values.

    Notes
    -----
    The amount of memory used by this algorithm is proportional to the number
    and complexity of polygons produced.  This algorithm is most appropriate
    for simple thematic data.  Data with high pixel-to-pixel variability, such
    as imagery, may produce one polygon per pixel and consume large amounts of
    memory.

    """
    transform = guard_transform(transform)
    rasterio.env.setenv()
    for s, v in _shapes(image, mask, connectivity, transform.to_gdal()):
        yield s, v
Exemplo n.º 44
0
    def __init__(self, raster, affine=None, nodata=None, band=1):
        self.array = None
        self.src = None

        if isinstance(raster, np.ndarray):
            if affine is None:
                raise ValueError("Specify affine transform for numpy arrays")
            self.array = raster
            self.affine = affine
            self.shape = raster.shape
            self.nodata = nodata
        else:
            self.src = rasterio.open(raster, 'r')
            self.affine = guard_transform(self.src.transform)
            self.shape = (self.src.height, self.src.width)
            self.band = band

            if nodata is not None:
                # override with specified nodata
                self.nodata = float(nodata)
            else:
                self.nodata = self.src.nodata
Exemplo n.º 45
0
def shapes(image, mask=None, connectivity=4, transform=IDENTITY):
    """Yield (polygon, value for each set of adjacent pixels of the same value.

    Parameters
    ----------
    image : numpy ndarray or rasterio Band object
        (RasterReader, bidx namedtuple).
        Data type must be one of rasterio.int16, rasterio.int32,
        rasterio.uint8, rasterio.uint16, or rasterio.float32.
    mask : numpy ndarray or rasterio Band object, optional
        Values of False or 0 will be excluded from feature generation
        Must evaluate to bool (rasterio.bool_ or rasterio.uint8)
    connectivity : int, optional
        Use 4 or 8 pixel connectivity for grouping pixels into features
    transform : Affine transformation, optional
        If not provided, feature coordinates will be generated based on pixel
        coordinates

    Yields
    -------
    tuple
        A pair of (polygon, value) for each feature found in the image.
        Polygons are GeoJSON-like dicts and the values are the associated value
        from the image, in the data type of the image.
        Note: due to floating point precision issues, values returned from a
        floating point image may not exactly match the original values.

    Notes
    -----
    The amount of memory used by this algorithm is proportional to the number
    and complexity of polygons produced.  This algorithm is most appropriate
    for simple thematic data.  Data with high pixel-to-pixel variability, such
    as imagery, may produce one polygon per pixel and consume large amounts of
    memory.

    """
    transform = guard_transform(transform)
    for s, v in _shapes(image, mask, connectivity, transform.to_gdal()):
        yield s, v
Exemplo n.º 46
0
    def __init__(self, raster, affine=None, nodata=None, band=1):
        self.array = None
        self.src = None

        if isinstance(raster, np.ndarray):
            if affine is None:
                raise ValueError("Specify affine transform for numpy arrays")
            self.array = raster
            self.affine = affine
            self.shape = raster.shape
            self.nodata = nodata
        else:
            self.src = rasterio.open(raster, 'r')
            self.affine = guard_transform(self.src.transform)
            self.shape = (self.src.height, self.src.width)
            self.band = band

            if nodata is not None:
                # override with specified nodata
                self.nodata = float(nodata)
            else:
                self.nodata = self.src.nodata
Exemplo n.º 47
0
def plotting_extent(source, transform=None):
    """Returns an extent in the format needed
     for matplotlib's imshow (left, right, bottom, top)
     instead of rasterio's bounds (left, bottom, top, right)

    Parameters
    ----------
    source : raster dataset or array in image order (see reshape_as_image)
    transform: Affine, required if source is array
    """
    if hasattr(source, 'bounds'):
        extent = (source.bounds.left, source.bounds.right,
                  source.bounds.bottom, source.bounds.top)
    elif not transform:
        raise ValueError("transform is required if source is an array")
    else:
        transform = guard_transform(transform)
        rows, cols = source.shape[0:2]
        left, top = transform * (0, 0)
        right, bottom = transform * (cols, rows)
        extent = (left, right, bottom, top)

    return extent
Exemplo n.º 48
0
def plotting_extent(source, transform=None):
    """Returns an extent in the format needed
     for matplotlib's imshow (left, right, bottom, top)
     instead of rasterio's bounds (left, bottom, top, right)

    Parameters
    ----------
    source : raster dataset or array in image order (see reshape_as_image)
    transform: Affine, required if source is array
    """
    if hasattr(source, 'bounds'):
        extent = (source.bounds.left, source.bounds.right,
                  source.bounds.bottom, source.bounds.top)
    elif not transform:
        raise ValueError(
            "transform is required if source is an array")
    else:
        transform = guard_transform(transform)
        rows, cols = source.shape[0:2]
        left, top = transform * (0, 0)
        right, bottom = transform * (cols, rows)
        extent = (left, right, bottom, top)

    return extent
Exemplo n.º 49
0
def rasterize(shapes, out_shape=None, fill=0, output=None, transform=IDENTITY, all_touched=False, default_value=255):
    """Returns an image array with points, lines, or polygons burned in.

    A different value may be specified for each shape.  The shapes may
    be georeferenced or may have image coordinates. An existing image
    array may be provided, or one may be created. By default, the center
    of image elements determines whether they are updated, but all
    touched elements may be optionally updated.

    :param shapes: an iterator over Fiona style geometry objects (with
    a default value of 255) or an iterator over (geometry, value) pairs.
    Values must be unsigned integer type (uint8).

    :param transform: GDAL style geotransform to be applied to the
    image.

    :param out_shape: shape of created image array
    :param fill: fill value for created image array
    :param output: alternatively, an existing image array

    :param all_touched: if True, will rasterize all pixels touched, 
    otherwise will use GDAL default method.
    :param default_value: value burned in for shapes if not provided as part of shapes.  Must be unsigned integer type (uint8).
    """

    if not isinstance(default_value, int) or (default_value > 255 or default_value < 0):
        raise ValueError("default_value %s is not uint8/ubyte" % default_value)

    def shape_source():
        """A generator that screens out non-geometric objects and does
        its best to make sure that no NULLs get through to 
        GDALRasterizeGeometries."""
        for index, item in enumerate(shapes):
            try:

                if isinstance(item, (tuple, list)):
                    geom, value = item
                    # TODO: relax this for other data types.
                    if not isinstance(value, int) or value > 255 or value < 0:
                        raise ValueError("Shape number %i, value '%s' is not uint8/ubyte" % (index, value))
                else:
                    geom = item
                    value = default_value
                geom = getattr(geom, "__geo_interface__", None) or geom
                if not isinstance(geom, dict) or "type" not in geom or "coordinates" not in geom:
                    raise ValueError("Object %r at index %d is not a geometric object" % (geom, index))
                yield geom, value
            except Exception:
                log.exception("Exception caught, skipping shape %d", index)

    if out_shape is not None:
        out = np.empty(out_shape, dtype=rasterio.ubyte)
        out.fill(fill)
    elif output is not None:
        if np.dtype(output.dtype) != np.dtype(rasterio.ubyte):
            raise ValueError("Output image must be dtype uint8/ubyte")
        out = output
    else:
        raise ValueError("An output image must be provided or specified")

    transform = guard_transform(transform)

    with rasterio.drivers():
        _rasterize(shape_source(), out, transform.to_gdal(), all_touched)

    return out
Exemplo n.º 50
0
def open(fp, mode='r', driver=None, width=None, height=None, count=None,
         crs=None, transform=None, dtype=None, nodata=None, sharing=True,
         **kwargs):
    """Open a dataset for reading or writing.

    The dataset may be located in a local file, in a resource located by
    a URL, or contained within a stream of bytes.

    In read ('r') or read/write ('r+') mode, no keyword arguments are
    required: these attributes are supplied by the opened dataset.

    In write ('w' or 'w+') mode, the driver, width, height, count, and dtype
    keywords are strictly required.

    Parameters
    ----------
    fp : str, file object or pathlib.Path object
        A filename or URL, a file object opened in binary ('rb') mode,
        or a Path object.
    mode : str, optional
        'r' (read, the default), 'r+' (read/write), 'w' (write), or
        'w+' (write/read).
    driver : str, optional
        A short format driver name (e.g. "GTiff" or "JPEG") or a list of
        such names (see GDAL docs at
        http://www.gdal.org/formats_list.html). In 'w' or 'w+' modes
        a single name is required. In 'r' or 'r+' modes the driver can
        usually be omitted. Registered drivers will be tried
        sequentially until a match is found. When multiple drivers are
        available for a format such as JPEG2000, one of them can be
        selected by using this keyword argument.
    width, height : int, optional
        The numbers of rows and columns of the raster dataset. Required
        in 'w' or 'w+' modes, they are ignored in 'r' or 'r+' modes.
    count : int, optional
        The count of dataset bands. Required in 'w' or 'w+' modes, it is
        ignored in 'r' or 'r+' modes.
    dtype : str or numpy dtype
        The data type for bands. For example: 'uint8' or
        ``rasterio.uint16``. Required in 'w' or 'w+' modes, it is
        ignored in 'r' or 'r+' modes.
    crs : str, dict, or CRS; optional
        The coordinate reference system. Required in 'w' or 'w+' modes,
        it is ignored in 'r' or 'r+' modes.
    transform : Affine instance, optional
        Affine transformation mapping the pixel space to geographic
        space. Required in 'w' or 'w+' modes, it is ignored in 'r' or
        'r+' modes.
    nodata : int, float, or nan; optional
        Defines the pixel value to be interpreted as not valid data.
        Required in 'w' or 'w+' modes, it is ignored in 'r' or 'r+'
        modes.
    sharing : bool
        A flag that allows sharing of dataset handles. Default is
        `True`. Should be set to `False` in a multithreaded:w program.
    kwargs : optional
        These are passed to format drivers as directives for creating or
        interpreting datasets. For example: in 'w' or 'w+' modes
        a `tiled=True` keyword argument will direct the GeoTIFF format
        driver to create a tiled, rather than striped, TIFF.

    Returns
    -------
    A ``DatasetReader`` or ``DatasetUpdater`` object.

    Examples
    --------

    To open a GeoTIFF for reading using standard driver discovery and
    no directives:

    >>> import rasterio
    >>> with rasterio.open('example.tif') as dataset:
    ...     print(dataset.profile)

    To open a JPEG2000 using only the JP2OpenJPEG driver:

    >>> with rasterio.open(
    ...         'example.jp2', driver='JP2OpenJPEG') as dataset:
    ...     print(dataset.profile)

    To create a new 8-band, 16-bit unsigned, tiled, and LZW-compressed
    GeoTIFF with a global extent and 0.5 degree resolution:

    >>> from rasterio.transform import from_origin
    >>> with rasterio.open(
    ...         'example.tif', 'w', driver='GTiff', dtype='uint16',
    ...         width=720, height=360, count=8, crs='EPSG:4326',
    ...         transform=from_origin(-180.0, 90.0, 0.5, 0.5),
    ...         nodata=0, tiled=True, compress='lzw') as dataset:
    ...     dataset.write(...)
    """

    if not isinstance(fp, string_types):
        if not (hasattr(fp, 'read') or hasattr(fp, 'write') or isinstance(fp, Path)):
            raise TypeError("invalid path or file: {0!r}".format(fp))
    if mode and not isinstance(mode, string_types):
        raise TypeError("invalid mode: {0!r}".format(mode))
    if driver and not isinstance(driver, string_types):
        raise TypeError("invalid driver: {0!r}".format(driver))
    if dtype and not check_dtype(dtype):
        raise TypeError("invalid dtype: {0!r}".format(dtype))
    if nodata is not None:
        nodata = float(nodata)
    if transform:
        transform = guard_transform(transform)

    # Check driver/mode blacklist.
    if driver and is_blacklisted(driver, mode):
        raise RasterioIOError(
            "Blacklisted: file cannot be opened by "
            "driver '{0}' in '{1}' mode".format(driver, mode))

    # Special case for file object argument.
    if mode == 'r' and hasattr(fp, 'read'):

        @contextmanager
        def fp_reader(fp):
            memfile = MemoryFile(fp.read())
            dataset = memfile.open()
            try:
                yield dataset
            finally:
                dataset.close()
                memfile.close()

        return fp_reader(fp)

    elif mode in ('w', 'w+') and hasattr(fp, 'write'):

        @contextmanager
        def fp_writer(fp):
            memfile = MemoryFile()
            dataset = memfile.open(driver=driver, width=width, height=height,
                                   count=count, crs=crs, transform=transform,
                                   dtype=dtype, nodata=nodata, **kwargs)
            try:
                yield dataset
            finally:
                dataset.close()
                memfile.seek(0)
                fp.write(memfile.read())
                memfile.close()

        return fp_writer(fp)

    else:
        # If a pathlib.Path instance is given, convert it to a string path.
        if isinstance(fp, Path):
            fp = str(fp)

        # The 'normal' filename or URL path.
        path = parse_path(fp)

        # Create dataset instances and pass the given env, which will
        # be taken over by the dataset's context manager if it is not
        # None.
        if mode == 'r':
            s = DatasetReader(path, driver=driver, **kwargs)
        elif mode == 'r+':
            s = get_writer_for_path(path)(path, mode, driver=driver, **kwargs)
        elif mode.startswith("w"):
            s = get_writer_for_driver(driver)(path, mode, driver=driver,
                                              width=width, height=height,
                                              count=count, crs=crs,
                                              transform=transform,
                                              dtype=dtype, nodata=nodata,
                                              **kwargs)
        else:
            raise ValueError(
                "mode must be one of 'r', 'r+', or 'w', not %s" % mode)
        return s
Exemplo n.º 51
0
def rasterize(
        shapes,
        out_shape=None,
        fill=0,
        out=None,
        output=None,
        transform=IDENTITY,
        all_touched=False,
        default_value=1,
        dtype=None):
    """
    Returns an image array with input geometries burned in.

    Parameters
    ----------
    shapes : iterable of (geometry, value) pairs or iterable over
        geometries. `geometry` can either be an object that implements
        the geo interface or GeoJSON-like object.
    out_shape : tuple or list
        Shape of output numpy ndarray.
    fill : int or float, optional
        Used as fill value for all areas not covered by input
        geometries.
    out : numpy ndarray, optional
        Array of same shape and data type as `image` in which to store
        results.
    output : older alias for `out`, will be removed before 1.0.
    transform : Affine transformation object, optional
        Transformation from pixel coordinates of `image` to the
        coordinate system of the input `shapes`. See the `transform`
        property of dataset objects.
    all_touched : boolean, optional
        If True, all pixels touched by geometries will be burned in.  If
        false, only pixels whose center is within the polygon or that
        are selected by Bresenham's line algorithm will be burned in.
    default_value : int or float, optional
        Used as value for all geometries, if not provided in `shapes`.
    dtype : rasterio or numpy data type, optional
        Used as data type for results, if `out` is not provided.

    Returns
    -------
    out : numpy ndarray
        Results

    Notes
    -----
    Valid data types for `fill`, `default_value`, `out`, `dtype` and
    shape values are rasterio.int16, rasterio.int32, rasterio.uint8,
    rasterio.uint16, rasterio.uint32, rasterio.float32,
    rasterio.float64.

    """

    valid_dtypes = ('int16', 'int32', 'uint8', 'uint16', 'uint32', 'float32',
                    'float64')

    def get_valid_dtype(values):
        values_dtype = values.dtype
        if values_dtype.kind == 'i':
            values_dtype = np.dtype(get_minimum_int_dtype(values))
        if values_dtype.name in valid_dtypes:
            return values_dtype
        return None

    def can_cast_dtype(values, dtype):
        if values.dtype.name == np.dtype(dtype).name:
            return True
        elif values.dtype.kind == 'f':
            return np.allclose(values, values.astype(dtype))
        else:
            return np.array_equal(values, values.astype(dtype))

    if fill != 0:
        fill_array = np.array([fill])
        if get_valid_dtype(fill_array) is None:
            raise ValueError('fill must be one of these types: %s'
                             % (', '.join(valid_dtypes)))
        elif dtype is not None and not can_cast_dtype(fill_array, dtype):
            raise ValueError('fill value cannot be cast to specified dtype')

    if default_value != 1:
        default_value_array = np.array([default_value])
        if get_valid_dtype(default_value_array) is None:
            raise ValueError('default_value must be one of these types: %s'
                             % (', '.join(valid_dtypes)))
        elif dtype is not None and not can_cast_dtype(default_value_array,
                                                      dtype):
            raise ValueError('default_value cannot be cast to specified dtype')

    valid_shapes = []
    shape_values = []
    for index, item in enumerate(shapes):
        try:
            if isinstance(item, (tuple, list)):
                geom, value = item
            else:
                geom = item
                value = default_value
            geom = getattr(geom, '__geo_interface__', None) or geom
            if (not isinstance(geom, dict) or
                'type' not in geom or 'coordinates' not in geom):
                raise ValueError(
                    'Object %r at index %d is not a geometry object' %
                    (geom, index))
            valid_shapes.append((geom, value))
            shape_values.append(value)
        except Exception:
            log.exception('Exception caught, skipping shape %d', index)

    if not valid_shapes:
        raise ValueError('No valid shapes found for rasterize.  Shapes must be '
                         'valid geometry objects')

    shape_values = np.array(shape_values)
    values_dtype = get_valid_dtype(shape_values)
    if values_dtype is None:
        raise ValueError('shape values must be one of these dtypes: %s' %
                         (', '.join(valid_dtypes)))

    if dtype is None:
        dtype = values_dtype
    elif np.dtype(dtype).name not in valid_dtypes:
        raise ValueError('dtype must be one of: %s' % (', '.join(valid_dtypes)))
    elif not can_cast_dtype(shape_values, dtype):
        raise ValueError('shape values could not be cast to specified dtype')

    if output is not None:
        warnings.warn(
            "The 'output' keyword arg has been superceded by 'out' "
            "and will be removed before Rasterio 1.0.",
            FutureWarning,
            stacklevel=2)
    out = out if out is not None else output
    if out is not None:
        if np.dtype(out.dtype).name not in valid_dtypes:
            raise ValueError('Output image dtype must be one of: %s'
                             % (', '.join(valid_dtypes)))
        if not can_cast_dtype(shape_values, out.dtype):
            raise ValueError('shape values cannot be cast to dtype of output '
                             'image')

    elif out_shape is not None:
        out = np.empty(out_shape, dtype=dtype)
        out.fill(fill)
    else:
        raise ValueError('Either an output shape or image must be provided')

    transform = guard_transform(transform)

    with rasterio.drivers():
        _rasterize(valid_shapes, out, transform.to_gdal(), all_touched)

    return out
Exemplo n.º 52
0
def open(path, mode='r', driver=None, width=None, height=None,
         count=None, crs=None, transform=None, dtype=None, nodata=None,
         **kwargs):
    """Open file at ``path`` in ``mode`` 'r' (read), 'r+' (read and
    write), or 'w' (write) and return a dataset Reader or Updater
    object.

    In write mode, a driver name such as "GTiff" or "JPEG" (see GDAL
    docs or ``gdal_translate --help`` on the command line),
    ``width`` (number of pixels per line) and ``height`` (number of
    lines), the ``count`` number of bands in the new file must be
    specified.  Additionally, the data type for bands such as
    ``rasterio.ubyte`` for 8-bit bands or ``rasterio.uint16`` for
    16-bit bands must be specified using the ``dtype`` argument.

    Parameters
    ----------
    mode: string
        "r" (read), "r+" (read/write), or "w" (write)
    driver: string
        driver code specifying the format name (e.g. "GTiff" or
        "JPEG"). See GDAL docs at
        http://www.gdal.org/formats_list.html (optional, required
        for writing).
    width: int
        number of pixels per line
        (optional, required for write)
    height: int
        number of lines
        (optional, required for write)
    count: int > 0
        number of bands
        (optional, required for write)
    dtype: rasterio.dtype
        the data type for bands such as ``rasterio.ubyte`` for
        8-bit bands or ``rasterio.uint16`` for 16-bit bands
        (optional, required for write)
    crs: dict or string
        Coordinate reference system
        (optional, recommended for write)
    transform: Affine instance
        Affine transformation mapping the pixel space to geographic
        space (optional, recommended for writing).
    nodata: number
        Defines pixel value to be interpreted as null/nodata
        (optional, recommended for write)

    Returns
    -------
    A ``DatasetReader`` or ``DatasetUpdater`` object.

    Notes
    -----
    In write mode, you must specify at least ``width``, ``height``,
    ``count`` and ``dtype``.

    A coordinate reference system for raster datasets in write mode
    can be defined by the ``crs`` argument. It takes Proj4 style
    mappings like

    .. code::

      {'proj': 'longlat', 'ellps': 'WGS84', 'datum': 'WGS84',
       'no_defs': True}

    An affine transformation that maps ``col,row`` pixel coordinates
    to ``x,y`` coordinates in the coordinate reference system can be
    specified using the ``transform`` argument. The value should be
    an instance of ``affine.Affine``

    .. code:: python

        >>> from affine import Affine
        >>> Affine(0.5, 0.0, -180.0, 0.0, -0.5, 90.0)

    These coefficients are shown in the figure below.

    .. code::

      | x |   | a  b  c | | c |
      | y | = | d  e  f | | r |
      | 1 |   | 0  0  1 | | 1 |

      a: rate of change of X with respect to increasing column,
         i.e. pixel width
      b: rotation, 0 if the raster is oriented "north up"
      c: X coordinate of the top left corner of the top left pixel
      d: rotation, 0 if the raster is oriented "north up"
      e: rate of change of Y with respect to increasing row,
         usually a negative number (i.e. -1 * pixel height) if
         north-up.
      f: Y coordinate of the top left corner of the top left pixel

    A 6-element sequence of the affine transformation matrix
    coefficients in ``c, a, b, f, d, e`` order, (i.e. GDAL
    geotransform order) will be accepted until 1.0 (deprecated).

    A virtual filesystem can be specified. The ``vfs`` parameter may
    be an Apache Commons VFS style string beginning with "zip://" or
    "tar://"". In this case, the ``path`` must be an absolute path
    within that container.

    """
    if not isinstance(path, string_types):
        raise TypeError("invalid path: {0!r}".format(path))
    if mode and not isinstance(mode, string_types):
        raise TypeError("invalid mode: {0!r}".format(mode))
    if driver and not isinstance(driver, string_types):
        raise TypeError("invalid driver: {0!r}".format(driver))
    if dtype and not check_dtype(dtype):
        raise TypeError("invalid dtype: {0!r}".format(dtype))
    if transform:
        transform = guard_transform(transform)
    elif 'affine' in kwargs:
        affine = kwargs.pop('affine')
        transform = guard_transform(affine)

    # If there is no currently active GDAL/AWS environment, create one.
    defenv()

    # Get AWS credentials if we're attempting to access a raster
    # on S3.
    pth, archive, scheme = parse_path(path)
    if scheme == 's3':
        Env().get_aws_credentials()
        log.debug("AWS credentials have been obtained")

    # Create dataset instances and pass the given env, which will
    # be taken over by the dataset's context manager if it is not
    # None.
    if mode == 'r':
        from rasterio._io import RasterReader
        s = RasterReader(path)
    elif mode == 'r+':
        from rasterio._io import writer
        s = writer(path, mode)
    elif mode == 'r-':
        from rasterio._base import DatasetReader
        s = DatasetReader(path)
    elif mode == 'w':
        from rasterio._io import writer
        s = writer(path, mode, driver=driver,
                   width=width, height=height, count=count,
                   crs=crs, transform=transform, dtype=dtype,
                   nodata=nodata, **kwargs)
    else:
        raise ValueError(
            "mode string must be one of 'r', 'r+', or 'w', not %s" % mode)
    s.start()
    return s
Exemplo n.º 53
0
def reproject(source, destination, src_transform=None, gcps=None,
              src_crs=None, src_nodata=None, dst_transform=None, dst_crs=None,
              dst_nodata=None, resampling=Resampling.nearest,
              init_dest_nodata=True, **kwargs):
    """Reproject a source raster to a destination raster.

    If the source and destination are ndarrays, coordinate reference
    system definitions and affine transformation parameters or ground
    control points (gcps) are required for reprojection.

    If the source and destination are rasterio Bands, shorthand for
    bands of datasets on disk, the coordinate reference systems and
    transforms or GCPs will be read from the appropriate datasets.

    Parameters
    ------------
    source, destination: ndarray or Band
        The source and destination are 2 or 3-D ndarrays, or a single
        or multiple Rasterio Band object. The dimensionality of source
        and destination must match, i.e., for multiband reprojection
        the lengths of the first axes of the source and destination
        must be the same.
    src_transform: affine.Affine(), optional
        Source affine transformation. Required if source and
        destination are ndarrays. Will be derived from source if it is
        a rasterio Band. An error will be raised if this parameter is
        defined together with gcps.
    gcps: sequence of GroundControlPoint, optional
        Ground control points for the source. An error will be raised
        if this parameter is defined together with src_transform.
    src_crs: CRS or dict, optional
        Source coordinate reference system, in rasterio dict format.
        Required if source and destination are ndarrays.
        Will be derived from source if it is a rasterio Band.
        Example: CRS({'init': 'EPSG:4326'})
    src_nodata: int or float, optional
        The source nodata value.Pixels with this value will not be
        used for interpolation. If not set, it will be default to the
        nodata value of the source image if a masked ndarray or
        rasterio band, if available. Must be provided if dst_nodata is
        not None.
    dst_transform: affine.Affine(), optional
        Target affine transformation. Required if source and
        destination are ndarrays. Will be derived from target if it is
        a rasterio Band.
    dst_crs: CRS or dict, optional
        Target coordinate reference system. Required if source and
        destination are ndarrays. Will be derived from target if it
        is a rasterio Band.
    dst_nodata: int or float, optional
        The nodata value used to initialize the destination; it will
        remain in all areas not covered by the reprojected source.
        Defaults to the nodata value of the destination image (if set),
        the value of src_nodata, or 0 (GDAL default).
    resampling: int
        Resampling method to use.  One of the following:
            Resampling.nearest,
            Resampling.bilinear,
            Resampling.cubic,
            Resampling.cubic_spline,
            Resampling.lanczos,
            Resampling.average,
            Resampling.mode
    init_dest_nodata: bool
        Flag to specify initialization of nodata in destination;
        prevents overwrite of previous warps. Defaults to True.
    kwargs:  dict, optional
        Additional arguments passed to transformation function.

    Returns
    ---------
    out: None
        Output is written to destination.
    """
    if src_transform and gcps:
        raise ValueError("src_transform and gcps parameters may not"
                         "be used together.")

    # Resampling guard.
    try:
        Resampling(resampling)
        if resampling == 7:
            raise ValueError
    except ValueError:
        raise ValueError(
            "resampling must be one of: {0}".format(", ".join(
                ['Resampling.{0}'.format(k) for k in
                 Resampling.__members__.keys() if k != 'gauss'])))

    # If working with identity transform, assume it is crs-less data
    # and that translating the matrix very slightly will avoid #674
    eps = 1e-100
    if src_transform and guard_transform(src_transform).is_identity:
        src_transform = src_transform.translation(eps, eps)
    if dst_transform and guard_transform(dst_transform).is_identity:
        dst_transform = dst_transform.translation(eps, eps)

    if src_transform:
        src_transform = guard_transform(src_transform).to_gdal()
    if dst_transform:
        dst_transform = guard_transform(dst_transform).to_gdal()

    # Passing None can cause segfault, use empty dict
    if src_crs is None:
        src_crs = {}
    if dst_crs is None:
        dst_crs = {}

    _reproject(source, destination, src_transform, gcps, src_crs, src_nodata,
               dst_transform, dst_crs, dst_nodata, resampling,
               init_dest_nodata, **kwargs)
Exemplo n.º 54
0
def open(fp, mode='r', driver=None, width=None, height=None, count=None,
         crs=None, transform=None, dtype=None, nodata=None, **kwargs):
    """Open a dataset for reading or writing.

    The dataset may be located in a local file, in a resource located
    by a URL, or contained within a stream of bytes.

    To access a dataset within a zip file without unzipping the archive
    use an Apache VFS style zip:// URL like

      zip://path/to/archive.zip!path/to/example.tif

    In read ('r') or read/write ('r+') mode, no other keyword arguments
    are required: the attributes are supplied by the opened dataset.

    In write mode, a driver name such as "GTiff" or "JPEG" (see GDAL
    docs or ``gdal_translate --help`` on the command line), ``width``
    (number of pixels per line) and ``height`` (number of lines), the
    ``count`` number of bands in the new file must be specified.
    Additionally, the data type for bands such as ``rasterio.ubyte`` for
    8-bit bands or ``rasterio.uint16`` for 16-bit bands must be
    specified using the ``dtype`` argument.

    Parameters
    ----------
    fp: string or file
        A filename or URL, or file object opened in binary mode.
    mode: string
        "r" (read), "r+" (read/write), or "w" (write)
    driver: string
        Driver code specifying the format name (e.g. "GTiff" or
        "JPEG"). See GDAL docs at
        http://www.gdal.org/formats_list.html (optional, required
        for writing).
    width: int
        Number of pixels per line (optional, required for write).
    height: int
        Number of lines (optional, required for write).
    count: int > 0
        Count of bands (optional, required for write).
    dtype: rasterio.dtype
        the data type for bands such as ``rasterio.ubyte`` for
        8-bit bands or ``rasterio.uint16`` for 16-bit bands
        (optional, required for write)
    crs: dict or string
        Coordinate reference system (optional, recommended for write).
    transform: Affine instance
        Affine transformation mapping the pixel space to geographic
        space (optional, recommended for writing).
    nodata: number
        Defines pixel value to be interpreted as null/nodata
        (optional, recommended for write, will be broadcast to all
        bands).

    Returns
    -------
    A ``DatasetReader`` or ``DatasetUpdater`` object.

    Notes
    -----
    In write mode, you must specify at least ``width``, ``height``,
    ``count`` and ``dtype``.

    A coordinate reference system for raster datasets in write mode
    can be defined by the ``crs`` argument. It takes Proj4 style
    mappings like

    .. code::

      {'proj': 'longlat', 'ellps': 'WGS84', 'datum': 'WGS84',
       'no_defs': True}

    An affine transformation that maps ``col,row`` pixel coordinates
    to ``x,y`` coordinates in the coordinate reference system can be
    specified using the ``transform`` argument. The value should be
    an instance of ``affine.Affine``

    .. code:: python

        >>> from affine import Affine
        >>> transform = Affine(0.5, 0.0, -180.0, 0.0, -0.5, 90.0)

    These coefficients are shown in the figure below.

    .. code::

      | x |   | a  b  c | | c |
      | y | = | d  e  f | | r |
      | 1 |   | 0  0  1 | | 1 |

      a: rate of change of X with respect to increasing column,
         i.e. pixel width
      b: rotation, 0 if the raster is oriented "north up"
      c: X coordinate of the top left corner of the top left pixel
      d: rotation, 0 if the raster is oriented "north up"
      e: rate of change of Y with respect to increasing row,
         usually a negative number (i.e. -1 * pixel height) if
         north-up.
      f: Y coordinate of the top left corner of the top left pixel

    A 6-element sequence of the affine transformation matrix
    coefficients in ``c, a, b, f, d, e`` order, (i.e. GDAL
    geotransform order) will be accepted until 1.0 (deprecated).

    A virtual filesystem can be specified. The ``vfs`` parameter may
    be an Apache Commons VFS style string beginning with "zip://" or
    "tar://"". In this case, the ``path`` must be an absolute path
    within that container.
    """
    if not isinstance(fp, string_types):
        if not (hasattr(fp, 'read') or hasattr(fp, 'write')):
            raise TypeError("invalid path or file: {0!r}".format(fp))
    if mode and not isinstance(mode, string_types):
        raise TypeError("invalid mode: {0!r}".format(mode))
    if driver and not isinstance(driver, string_types):
        raise TypeError("invalid driver: {0!r}".format(driver))
    if dtype and not check_dtype(dtype):
        raise TypeError("invalid dtype: {0!r}".format(dtype))
    if nodata is not None:
        nodata = float(nodata)
    if 'affine' in kwargs:
        # DeprecationWarning's are ignored by default
        with warnings.catch_warnings():
            warnings.warn(
                "The 'affine' kwarg in rasterio.open() is deprecated at 1.0 "
                "and only remains to ease the transition.  Please switch to "
                "the 'transform' kwarg.  See "
                "https://github.com/mapbox/rasterio/issues/86 for details.",
                DeprecationWarning,
                stacklevel=2)

            if transform:
                warnings.warn(
                    "Found both 'affine' and 'transform' in rasterio.open() - "
                    "choosing 'transform'")
                transform = transform
            else:
                transform = kwargs.pop('affine')

    if transform:
        transform = guard_transform(transform)

    # Check driver/mode blacklist.
    if driver and is_blacklisted(driver, mode):
        raise RasterioIOError(
            "Blacklisted: file cannot be opened by "
            "driver '{0}' in '{1}' mode".format(driver, mode))

    # Special case for file object argument.
    if mode == 'r' and hasattr(fp, 'read'):

        @contextmanager
        def fp_reader(fp):
            memfile = MemoryFile(fp.read())
            dataset = memfile.open()
            try:
                yield dataset
            finally:
                dataset.close()
                memfile.close()

        return fp_reader(fp)

    elif mode == 'w' and hasattr(fp, 'write'):

        @contextmanager
        def fp_writer(fp):
            memfile = MemoryFile()
            dataset = memfile.open(driver=driver, width=width, height=height,
                                   count=count, crs=crs, transform=transform,
                                   dtype=dtype, nodata=nodata, **kwargs)
            try:
                yield dataset
            finally:
                dataset.close()
                memfile.seek(0)
                fp.write(memfile.read())
                memfile.close()

        return fp_writer(fp)

    else:
        # The 'normal' filename or URL path.
        _, _, scheme = parse_path(fp)

        with Env() as env:
            # Get AWS credentials only if we're attempting to access a
            # raster using the S3 scheme.
            if scheme == 's3':
                env.get_aws_credentials()
                log.debug("AWS credentials have been obtained")

            # Create dataset instances and pass the given env, which will
            # be taken over by the dataset's context manager if it is not
            # None.
            if mode == 'r':
                s = DatasetReader(fp)
            elif mode == 'r-':
                warnings.warn("'r-' mode is deprecated, use 'r'",
                              DeprecationWarning)
                s = DatasetReader(fp)
            elif mode == 'r+':
                s = get_writer_for_path(fp)(fp, mode)
            elif mode == 'w':
                s = get_writer_for_driver(driver)(fp, mode, driver=driver,
                                                  width=width, height=height,
                                                  count=count, crs=crs,
                                                  transform=transform,
                                                  dtype=dtype, nodata=nodata,
                                                  **kwargs)
            else:
                raise ValueError(
                    "mode must be one of 'r', 'r+', or 'w', not %s" % mode)
            return s
Exemplo n.º 55
0
def batch_hist_match_worker(ref_paths,
                            match_proportion,
                            creation_options,
                            bands,
                            color_space,
                            plot,
                            masked=True,
                            dst_suffix='_hist_matched'):
    """Matches the histogram of every image in ref_paths
       to the average histogram across all of the included images.

       Outputs each file with _hist_matched appended to the filename.

       Modified from:
       https://github.com/mapbox/rio-hist/blob/81e3d5f0f59ba1e4e15f8850592a818501957ed2/rio_hist/match.py
    """

    # we need one sample to setup the processing
    src_path = ref_paths[0]

    with rasterio.open(src_path) as src:
        profile = src.profile.copy()
        src_arr = src.read(masked=masked)

        if src_arr.dtype != np.float32:
            raise ("Currently, this only supports float32")

        if masked:
            src_mask, src_fill = calculate_mask(src, src_arr)
            src_arr = src_arr.filled()
        else:
            src_mask, src_fill = None, None

    ref_out = np.zeros([len(ref_paths)] + list(src_arr.shape),
                       dtype=src_arr.dtype)

    # no bands, just masks
    ref_mask_out = np.zeros([len(ref_paths)] + list(src_arr.shape[1:]),
                            dtype=src_arr.dtype)

    n_bands = src_arr.shape[0]

    for i, ref_path in enumerate(ref_paths):
        # import pdb;pdb.set_trace();
        try:
            with rasterio.open(ref_path, 'r') as ref:
                ref_arr = ref.read(masked=masked)

                if masked:
                    ref_mask, ref_fill = calculate_mask(ref, ref_arr)
                    ref_arr = ref_arr.filled()
                else:
                    ref_mask, ref_fill = None, None

                ref_out[i, :, :, :] = ref_arr

                if ref_mask is None:
                    ref_mask_out = None
                else:
                    ref_mask_out[i, :, :] = ref_mask
        except:
            import pdb
            pdb.set_trace()

    bixs = tuple([int(x) - 1 for x in bands.split(',')])

    # arrnorm_raw = ref_out / np.iinfo(ref_out.dtype).max
    ref = ref_out  #[:, bixs, :, :]

    output_paths = []

    print("Matching histograms...")
    for src_path in tqdm(ref_paths):
        with rasterio.open(src_path) as src:
            profile = src.profile.copy()
            src_arr = src.read(masked=masked)

            if masked:
                src_mask, src_fill = calculate_mask(src, src_arr)
                src_arr = src_arr.filled()
            else:
                src_mask, src_fill = None, None

        # src = cs_forward(src_arr, color_space, band_range=range(n_bands))
        src = src_arr

        target = src.copy()
        for i, b in enumerate(bixs):
            logger.debug("Processing band {}".format(b))
            src_band = src[b]
            ref_band = ref[:, b, :, :]

            # Re-apply 2D mask to each band
            if src_mask is not None:
                logger.debug("apply src_mask to band {}".format(b))
                src_band = np.ma.asarray(src_band)
                src_band.mask = src_mask
                src_band.fill_value = src_fill

            if ref_mask_out is not None:
                logger.debug("apply ref_mask to band {}".format(b))
                ref_band = np.ma.asarray(ref_band)
                ref_band.mask = ref_mask_out
                ref_band.fill_value = ref_fill

            target[b] = histogram_match(src_band, ref_band, match_proportion)

        target_rgb = target  # cs_backward(target, color_space)

        # re-apply src_mask to target_rgb and write ndv
        if src_mask is not None:
            logger.debug("apply src_mask to target_rgb")
            if not np.ma.is_masked(target_rgb):
                target_rgb = np.ma.asarray(target_rgb)
            target_rgb.mask = np.array((src_mask, src_mask, src_mask))
            target_rgb.fill_value = src_fill

        profile['count'] = n_bands

        # profile['dtype'] = 'uint8'
        profile['nodata'] = None
        profile['transform'] = guard_transform(profile['transform'])
        profile.update(creation_options)

        input_base_filepath = os.path.splitext(os.path.abspath(src_path))[0]
        dst_path = '{}{}.tif'.format(input_base_filepath, dst_suffix)

        logger.info("Writing raster {}".format(dst_path))
        with rasterio.open(dst_path, 'w', **profile) as dst:
            for b in bixs:
                dst.write(target_rgb[b], b + 1)

            if src_mask is not None:
                gdal_mask = (np.invert(src_mask) * 255).astype('uint8')

                # write to extra band
                dst.write(gdal_mask, bixs[-1] + 2)

        output_paths.append(dst_path)

    return output_paths
Exemplo n.º 56
0
def open(
        path, mode='r', 
        driver=None,
        width=None, height=None,
        count=None,
        crs=None, transform=None,
        dtype=None,
        nodata=None,
        **kwargs):
    """Open file at ``path`` in ``mode`` "r" (read), "r+" (read/write),
    or "w" (write) and return a ``Reader`` or ``Updater`` object.
    
    In write mode, a driver name such as "GTiff" or "JPEG" (see GDAL
    docs or ``gdal_translate --help`` on the command line), ``width``
    (number of pixels per line) and ``height`` (number of lines), the
    ``count`` number of bands in the new file must be specified.
    Additionally, the data type for bands such as ``rasterio.ubyte`` for
    8-bit bands or ``rasterio.uint16`` for 16-bit bands must be
    specified using the ``dtype`` argument.

    A coordinate reference system for raster datasets in write mode can
    be defined by the ``crs`` argument. It takes Proj4 style mappings
    like
    
      {'proj': 'longlat', 'ellps': 'WGS84', 'datum': 'WGS84',
       'no_defs': True}

    An affine transformation that maps ``col,row`` pixel coordinates to
    ``x,y`` coordinates in the coordinate reference system can be
    specified using the ``transform`` argument. The value may be either
    an instance of ``affine.Affine`` or a 6-element sequence of the
    affine transformation matrix coefficients ``a, b, c, d, e, f``.
    These coefficients are shown in the figure below.

      | x |   | a  b  c | | c |
      | y | = | d  e  f | | r |
      | 1 |   | 0  0  1 | | 1 |

    a: rate of change of X with respect to increasing column, i.e.
            pixel width
    b: rotation, 0 if the raster is oriented "north up" 
    c: X coordinate of the top left corner of the top left pixel 
    f: Y coordinate of the top left corner of the top left pixel 
    d: rotation, 0 if the raster is oriented "north up"
    e: rate of change of Y with respect to increasing row, usually
            a negative number i.e. -1 * pixel height
    f: Y coordinate of the top left corner of the top left pixel 

    Finally, additional kwargs are passed to GDAL as driver-specific
    dataset creation parameters.
    """
    if not isinstance(path, string_types):
        raise TypeError("invalid path: %r" % path)
    if mode and not isinstance(mode, string_types):
        raise TypeError("invalid mode: %r" % mode)
    if driver and not isinstance(driver, string_types):
        raise TypeError("invalid driver: %r" % driver)
    if mode in ('r', 'r+'):
        if not os.path.exists(path):
            raise IOError("no such file or directory: %r" % path)
    if transform:
        transform = guard_transform(transform)

    if mode == 'r':
        from rasterio._io import RasterReader
        s = RasterReader(path)
    elif mode == 'r+':
        from rasterio._io import RasterUpdater
        s = RasterUpdater(path, mode)
    elif mode == 'r-':
        from rasterio._base import DatasetReader
        s = DatasetReader(path)
    elif mode == 'w':
        from rasterio._io import RasterUpdater
        s = RasterUpdater(
                path, mode, driver,
                width, height, count, 
                crs, transform, dtype,
                nodata,
                **kwargs)
    else:
        raise ValueError(
            "mode string must be one of 'r', 'r+', or 'w', not %s" % mode)
    s.start()
    return s
Exemplo n.º 57
0
def rasterize(
        shapes, 
        out_shape=None, fill=0, output=None,
        transform=IDENTITY,
        all_touched=False,
        default_value=255):
    """Returns an image array with points, lines, or polygons burned in.

    A different value may be specified for each shape.  The shapes may
    be georeferenced or may have image coordinates. An existing image
    array may be provided, or one may be created. By default, the center
    of image elements determines whether they are updated, but all
    touched elements may be optionally updated.

    :param shapes: an iterator over Fiona style geometry objects (with
    a default value of 255) or an iterator over (geometry, value) pairs.
    Values must be unsigned integer type (uint8).

    :param transform: GDAL style geotransform to be applied to the
    image.

    :param out_shape: shape of created image array
    :param fill: fill value for created image array
    :param output: alternatively, an existing image array

    :param all_touched: if True, will rasterize all pixels touched, 
    otherwise will use GDAL default method.
    :param default_value: value burned in for shapes if not provided as part of shapes.  Must be unsigned integer type (uint8).
    """

    if not isinstance(default_value, int) or (
            default_value > 255 or default_value < 0):
        raise ValueError("default_value %s is not uint8/ubyte" % default_value)

    geoms = []
    for index, entry in enumerate(shapes):
        if isinstance(entry, (tuple, list)):
            geometry, value = entry
            if not isinstance(value, int) or value > 255 or value < 0:
                raise ValueError(
                    "Shape number %i, value '%s' is not uint8/ubyte" % (
                        index, value))
            geoms.append((geometry, value))
        else:
            geoms.append((entry, default_value))
    
    if out_shape is not None:
        out = np.empty(out_shape, dtype=rasterio.ubyte)
        out.fill(fill)
    elif output is not None:
        if np.dtype(output.dtype) != np.dtype(rasterio.ubyte):
            raise ValueError("Output image must be dtype uint8/ubyte")
        out = output
    else:
        raise ValueError("An output image must be provided or specified")
    
    transform = guard_transform(transform)

    with rasterio.drivers():
        _rasterize(geoms, out, transform.to_gdal(), all_touched)
    
    return out
Exemplo n.º 58
0
def open(
        path, mode='r', 
        driver=None,
        width=None, height=None,
        count=None,
        crs=None, transform=None,
        dtype=None,
        nodata=None,
        **kwargs):
    """Open file at ``path`` in ``mode`` "r" (read), "r+" (read/write),
    or "w" (write) and return a ``Reader`` or ``Updater`` object.
    
    In write mode, a driver name such as "GTiff" or "JPEG" (see GDAL
    docs or ``gdal_translate --help`` on the command line), ``width``
    (number of pixels per line) and ``height`` (number of lines), the
    ``count`` number of bands in the new file must be specified.
    Additionally, the data type for bands such as ``rasterio.ubyte`` for
    8-bit bands or ``rasterio.uint16`` for 16-bit bands must be
    specified using the ``dtype`` argument.

    A coordinate reference system for raster datasets in write mode can
    be defined by the ``crs`` argument. It takes Proj4 style mappings
    like
    
      {'proj': 'longlat', 'ellps': 'WGS84', 'datum': 'WGS84',
       'no_defs': True}

    An affine transformation that maps ``col,row`` pixel coordinates to
    ``x,y`` coordinates in the coordinate reference system can be
    specified using the ``transform`` argument. The value may be either
    an instance of ``affine.Affine`` or a 6-element sequence of the
    affine transformation matrix coefficients ``a, b, c, d, e, f``.
    These coefficients are shown in the figure below.

      | x |   | a  b  c | | c |
      | y | = | d  e  f | | r |
      | 1 |   | 0  0  1 | | 1 |

    a: rate of change of X with respect to increasing column, i.e.
            pixel width
    b: rotation, 0 if the raster is oriented "north up" 
    c: X coordinate of the top left corner of the top left pixel 
    f: Y coordinate of the top left corner of the top left pixel 
    d: rotation, 0 if the raster is oriented "north up"
    e: rate of change of Y with respect to increasing row, usually
            a negative number i.e. -1 * pixel height
    f: Y coordinate of the top left corner of the top left pixel 

    A virtual filesystem can be specified. The ``vfs`` parameter may be
    an Apache Commons VFS style string beginning with "zip://" or
    "tar://"". In this case, the ``path`` must be an absolute path
    within that container.

    Finally, additional kwargs are passed to GDAL as driver-specific
    dataset creation parameters.
    """
    if not isinstance(path, string_types):
        raise TypeError("invalid path: %r" % path)
    if mode and not isinstance(mode, string_types):
        raise TypeError("invalid mode: %r" % mode)
    if driver and not isinstance(driver, string_types):
        raise TypeError("invalid driver: %r" % driver)

    if transform:
        transform = guard_transform(transform)
    elif 'affine' in kwargs:
        affine = kwargs.pop('affine')
        transform = guard_transform(affine)

    if mode == 'r':
        from rasterio._io import RasterReader
        s = RasterReader(path)
    elif mode == 'r+':
        from rasterio._io import writer
        s = writer(path, mode)
    elif mode == 'r-':
        from rasterio._base import DatasetReader
        s = DatasetReader(path)
    elif mode == 'w':
        from rasterio._io import writer
        s = writer(path, mode, driver=driver,
                   width=width, height=height, count=count,
                   crs=crs, transform=transform, dtype=dtype,
                   nodata=nodata,
                   **kwargs)
    else:
        raise ValueError(
            "mode string must be one of 'r', 'r+', or 'w', not %s" % mode)
    s.start()
    return s
Exemplo n.º 59
0
                       'uly': uly,
                       'filename': fnames,
                       'lrx': lrx,
                       'lry': lry}, index=range(len(ulx)))

min_x = df.ulx.min()
max_x = df.lrx.max()
min_y = df.lry.min()
max_y = df.uly.max()

# pixel resolution
res_x = geobox.affine[0]
res_y = geobox.affine[4]

# form the affine for the new image
new_aff = guard_transform([min_x, res_x, 0, max_y, 0, res_y])

# get the LR in pixel co-ordinates
lr_x, lr_y = (max_x, min_y) * ~new_aff
cols = int(lr_x)
rows = int(lr_y)

# create a time/band index for the new time series mosaic image
t_df = df['timestamp'].unique()
t_index_df = pandas.DataFrame({'timestamp': t_df,
                               'band_index': numpy.arange(t_df.shape[0])})
n_bands = t_index_df.shape[0]

# join with the original dataframe
new_df = pandas.merge(df, t_index_df, on='timestamp')