Exemplo n.º 1
0
def test_graphroot(X=None, Y=None, l1=5., l2=10., control=control, mu=1.):

    if X is None or Y is None:
        X = np.load('X.npy')
        Y = np.load('Y.npy')

    p = X.shape[1]
    adj, L = gen_adj(p)
    Dsparse = mask.create_D(adj)
    D = Dsparse.toarray()
    Lsparse = scipy.sparse.lil_matrix(L)

    l1 *= X.shape[0]
    p1 = graphroot.gengrad((X, Y, D))
    p1.assign_penalty(l1=l1, l2=l2, mu=mu)
    t1 = time.time()
    opt1 = regreg.FISTA(p1)
    opt1.fit(tol=control['tol'], max_its=control['max_its'])
    beta1 = opt1.problem.coefs
    t2 = time.time()
    ts1 = t2 - t1

    p2 = graphroot.gengrad_sparse((X, Y, Dsparse))
    p2.assign_penalty(l1=l1, l2=l2, mu=mu)
    t1 = time.time()
    opt2 = regreg.FISTA(p2)
    opt2.fit(tol=control['tol'], max_its=control['max_its'])
    beta2 = opt2.problem.coefs
    t2 = time.time()
    ts2 = t2 - t1

    def f(beta):
        return np.linalg.norm(Y - np.dot(X, beta))**2 / (2) + np.fabs(
            beta).sum() * l1 + l2 * np.sqrt(np.dot(beta, np.dot(L, beta)))

    v = scipy.optimize.fmin_powell(f,
                                   np.zeros(X.shape[1]),
                                   ftol=1.0e-10,
                                   xtol=1.0e-10,
                                   maxfun=100000)
    v = np.asarray(v)
    vs = scipy.optimize.fmin_powell(p1.obj,
                                    np.zeros(X.shape[1]),
                                    ftol=1.0e-10,
                                    xtol=1.0e-10,
                                    maxfun=100000)
    vs = np.asarray(vs)

    print np.round(1000 * beta1) / 1000
    print np.round(1000 * beta2) / 1000
    print np.round(1000 * vs) / 1000
    print np.round(1000 * v) / 1000
    print p1.obj(beta1), p1.obj(vs), f(beta1), f(v)

    print ts1, ts2
Exemplo n.º 2
0
def test_graphroot(X=None,Y=None,l1=5.,l2=10., control=control, mu=1.):

    if X is None or Y is None:
        X = np.load('X.npy')
        Y = np.load('Y.npy')

    p = X.shape[1]
    adj, L = gen_adj(p)
    Dsparse = mask.create_D(adj)
    D = Dsparse.toarray()
    Lsparse = scipy.sparse.lil_matrix(L)

    l1 *= X.shape[0]
    p1 = graphroot.gengrad((X, Y, D))
    p1.assign_penalty(l1=l1,l2=l2,mu=mu)
    t1 = time.time()
    opt1 = regreg.FISTA(p1)
    opt1.fit(tol=control['tol'], max_its=control['max_its'])
    beta1 = opt1.problem.coefs
    t2 = time.time()
    ts1 = t2-t1

    p2 = graphroot.gengrad_sparse((X, Y, Dsparse))
    p2.assign_penalty(l1=l1,l2=l2,mu=mu)
    t1 = time.time()
    opt2 = regreg.FISTA(p2)
    opt2.fit(tol=control['tol'], max_its=control['max_its'])
    beta2 = opt2.problem.coefs
    t2 = time.time()
    ts2 = t2-t1


    def f(beta):
        return np.linalg.norm(Y - np.dot(X, beta))**2/(2) + np.fabs(beta).sum()*l1  + l2 * np.sqrt(np.dot(beta, np.dot(L, beta)))


    
    v = scipy.optimize.fmin_powell(f, np.zeros(X.shape[1]), ftol=1.0e-10, xtol=1.0e-10,maxfun=100000)
    v = np.asarray(v)
    vs = scipy.optimize.fmin_powell(p1.obj, np.zeros(X.shape[1]), ftol=1.0e-10, xtol=1.0e-10,maxfun=100000)
    vs = np.asarray(vs)
    
    print np.round(1000*beta1)/1000
    print np.round(1000*beta2)/1000
    print np.round(1000*vs)/1000
    print np.round(1000*v)/1000
    print p1.obj(beta1), p1.obj(vs), f(beta1), f(v)

    print ts1, ts2
Exemplo n.º 3
0
    def D(self):
        
        if not hasattr(self, '_D'):
            sparse_path = os.path.join(self.bin_dir,self.sparse_matrix_name)

            if os.path.exists(sparse_path):
                self._D = io.loadmat(sparse_path)['D']

            else:
                pprint("Couldn't find the file -- creating D.")
                self.adj = mask.prepare_adj(self.m,numx=1,numy=1,numz=1,numt=1)
                self._D = sparse.csr_matrix(mask.create_D(self.adj))
                pprint(self._D)
                io.savemat(sparse_path, {'D':self.D})
        return self._D