def test_graphroot(X=None, Y=None, l1=5., l2=10., control=control, mu=1.): if X is None or Y is None: X = np.load('X.npy') Y = np.load('Y.npy') p = X.shape[1] adj, L = gen_adj(p) Dsparse = mask.create_D(adj) D = Dsparse.toarray() Lsparse = scipy.sparse.lil_matrix(L) l1 *= X.shape[0] p1 = graphroot.gengrad((X, Y, D)) p1.assign_penalty(l1=l1, l2=l2, mu=mu) t1 = time.time() opt1 = regreg.FISTA(p1) opt1.fit(tol=control['tol'], max_its=control['max_its']) beta1 = opt1.problem.coefs t2 = time.time() ts1 = t2 - t1 p2 = graphroot.gengrad_sparse((X, Y, Dsparse)) p2.assign_penalty(l1=l1, l2=l2, mu=mu) t1 = time.time() opt2 = regreg.FISTA(p2) opt2.fit(tol=control['tol'], max_its=control['max_its']) beta2 = opt2.problem.coefs t2 = time.time() ts2 = t2 - t1 def f(beta): return np.linalg.norm(Y - np.dot(X, beta))**2 / (2) + np.fabs( beta).sum() * l1 + l2 * np.sqrt(np.dot(beta, np.dot(L, beta))) v = scipy.optimize.fmin_powell(f, np.zeros(X.shape[1]), ftol=1.0e-10, xtol=1.0e-10, maxfun=100000) v = np.asarray(v) vs = scipy.optimize.fmin_powell(p1.obj, np.zeros(X.shape[1]), ftol=1.0e-10, xtol=1.0e-10, maxfun=100000) vs = np.asarray(vs) print np.round(1000 * beta1) / 1000 print np.round(1000 * beta2) / 1000 print np.round(1000 * vs) / 1000 print np.round(1000 * v) / 1000 print p1.obj(beta1), p1.obj(vs), f(beta1), f(v) print ts1, ts2
def test_graphroot(X=None,Y=None,l1=5.,l2=10., control=control, mu=1.): if X is None or Y is None: X = np.load('X.npy') Y = np.load('Y.npy') p = X.shape[1] adj, L = gen_adj(p) Dsparse = mask.create_D(adj) D = Dsparse.toarray() Lsparse = scipy.sparse.lil_matrix(L) l1 *= X.shape[0] p1 = graphroot.gengrad((X, Y, D)) p1.assign_penalty(l1=l1,l2=l2,mu=mu) t1 = time.time() opt1 = regreg.FISTA(p1) opt1.fit(tol=control['tol'], max_its=control['max_its']) beta1 = opt1.problem.coefs t2 = time.time() ts1 = t2-t1 p2 = graphroot.gengrad_sparse((X, Y, Dsparse)) p2.assign_penalty(l1=l1,l2=l2,mu=mu) t1 = time.time() opt2 = regreg.FISTA(p2) opt2.fit(tol=control['tol'], max_its=control['max_its']) beta2 = opt2.problem.coefs t2 = time.time() ts2 = t2-t1 def f(beta): return np.linalg.norm(Y - np.dot(X, beta))**2/(2) + np.fabs(beta).sum()*l1 + l2 * np.sqrt(np.dot(beta, np.dot(L, beta))) v = scipy.optimize.fmin_powell(f, np.zeros(X.shape[1]), ftol=1.0e-10, xtol=1.0e-10,maxfun=100000) v = np.asarray(v) vs = scipy.optimize.fmin_powell(p1.obj, np.zeros(X.shape[1]), ftol=1.0e-10, xtol=1.0e-10,maxfun=100000) vs = np.asarray(vs) print np.round(1000*beta1)/1000 print np.round(1000*beta2)/1000 print np.round(1000*vs)/1000 print np.round(1000*v)/1000 print p1.obj(beta1), p1.obj(vs), f(beta1), f(v) print ts1, ts2
def D(self): if not hasattr(self, '_D'): sparse_path = os.path.join(self.bin_dir,self.sparse_matrix_name) if os.path.exists(sparse_path): self._D = io.loadmat(sparse_path)['D'] else: pprint("Couldn't find the file -- creating D.") self.adj = mask.prepare_adj(self.m,numx=1,numy=1,numz=1,numt=1) self._D = sparse.csr_matrix(mask.create_D(self.adj)) pprint(self._D) io.savemat(sparse_path, {'D':self.D}) return self._D