def make_pipeline(state): '''Build the pipeline by constructing stages and connecting them together''' # Build an empty pipeline pipeline = Pipeline(name='md5') # Get a list of paths to all the input files input_files = state.config.get_option('files') # Stages are dependent on the state stages = Stages(state) # The original FASTQ files # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate( task_func=stages.original_files, name='original_files', output=input_files) # Align paired end reads in FASTQ to the reference producing a BAM file pipeline.transform( task_func=stages.md5_checksum, name='md5_checksum', input=output_from('original_files'), filter=suffix(''), output='.md5') return pipeline
def test_newstyle_mkdir (self): test_pipeline = Pipeline("test") test_pipeline.follows(task_which_makes_directories, mkdir(directories), mkdir(tempdir + 'c'), mkdir(tempdir + 'd', tempdir + 'e'), mkdir(tempdir + 'e')) test_pipeline.run(multiprocess = 10, verbose = 0) for d in 'abcde': fullpath = os.path.join(os.path.dirname(__file__), tempdir, d) self.assertTrue(os.path.exists(fullpath))
def test_newstyle_ruffus (self): test_pipeline = Pipeline("test") test_pipeline.parallel(parallel_task, [['A', 1], ['B',3], ['C',3], ['D',4], ['E',4], ['F',4]]) try: test_pipeline.run(multiprocess = 50, verbose = 0) except ruffus.ruffus_exceptions.RethrownJobError: return raise Exception("Missing exception")
def test_newstyle_ruffus(self): test_pipeline = Pipeline("test") test_pipeline.parallel(parallel_task, [["A", 1], ["B", 3], ["C", 3], ["D", 4], ["E", 4], ["F", 4]]) try: test_pipeline.run(multiprocess=50, verbose=0) except ruffus.ruffus_exceptions.RethrownJobError: return raise Exception("Missing exception")
def test_newstyle_task(self): test_pipeline = Pipeline("test") test_pipeline.files(task1, a) save_to_str_logger = t_save_to_str_logger() test_pipeline.run(multiprocess=10, logger=save_to_str_logger, verbose=1) self.assertTrue("@files() was empty" in save_to_str_logger.warning_str) print("\n Warning printed out correctly", file=sys.stderr)
def create_pipeline(self): """ Create new pipeline on the fly without using decorators """ global count_pipelines count_pipelines = count_pipelines + 1 test_pipeline = Pipeline("test %d" % count_pipelines) test_pipeline.transform(task_func=transform1, input=input_file, filter=suffix('.txt'), output='.output', extras=[runtime_data]) test_pipeline.transform(task_func=transform_raise_error, input=input_file, filter=suffix('.txt'), output='.output', extras=[runtime_data]) test_pipeline.split(task_func=split1, input=input_file, output=split1_outputs) test_pipeline.merge(task_func=merge2, input=split1, output=merge2_output) return test_pipeline
def test_newstyle_simpler (self): test_pipeline = Pipeline("test") test_pipeline.originate(task1, input_file_names, extras = [logger_proxy, logging_mutex]) test_pipeline.transform(task2, task1, suffix(".1"), ".2", extras = [logger_proxy, logging_mutex]) test_pipeline.transform(task3, task2, suffix(".2"), ".3", extras = [logger_proxy, logging_mutex]) test_pipeline.merge(task4, task3, final_file_name, extras = [logger_proxy, logging_mutex]) #test_pipeline.merge(task4, task3, final_file_name, extras = {"logger_proxy": logger_proxy, "logging_mutex": logging_mutex}) test_pipeline.run(multiprocess = 500, verbose = 0)
def test_newstyle_no_re_match (self): try: test_pipeline = Pipeline("test") test_pipeline.transform(task_func = task_2, input = None, filter = regex(tempdir + "b"), replace_inputs = inputs(tempdir + "a", tempdir + "b"), output = "task_1.output") test_pipeline.run(multiprocess = 10, verbose = 0) except ruffus.ruffus_exceptions.error_task_transform_inputs_multiple_args: print("\tExpected exception thrown 1") return except ruffus.ruffus_exceptions.error_inputs_multiple_args: print("\tExpected exception thrown 2") return raise Exception("Inputs(...) with multiple arguments should have thrown an exception")
def test_newstyle_ruffus (self): test_pipeline = Pipeline("test") test_pipeline.follows(setup_simulation_data, mkdir(gene_data_dir, simulation_data_dir)) test_pipeline.files(gwas_simulation, generate_simulation_params)\ .follows(setup_simulation_data)\ .follows(mkdir(working_dir, os.path.join(working_dir, "simulation_results"))) test_pipeline.collate(statistical_summary, gwas_simulation, regex(r"simulation_results/(\d+).\d+.simulation_res"), r"\1.mean")\ .posttask(lambda : sys.stdout.write("\nOK\n")) test_pipeline.run(multiprocess = 50, verbose = 0) for oo in "000.mean", "001.mean": results_file_name = os.path.join(working_dir, oo) if not os.path.exists(results_file_name): raise Exception("Missing %s" % results_file_name)
def test_newstyle_no_re_match (self): test_pipeline = Pipeline("test") test_pipeline.originate(task_1, tempdir + "a").mkdir(tempdir) test_pipeline.transform(task_2, task_1, regex("b"), "task_2.output") save_to_str_logger = t_save_to_str_logger() test_pipeline.run(multiprocess = 10, logger = save_to_str_logger, verbose = 1) print(save_to_str_logger.warning_str) self.assertTrue("no file names matched" in save_to_str_logger.warning_str) print("\n Warning printed out correctly", file=sys.stderr)
def make_pipeline2( pipeline_name = "pipeline2"): test_pipeline2 = Pipeline(pipeline_name) test_pipeline2.transform(task_func = task_1_to_1, # task name name = "44_to_55", # placeholder: will be replaced later with set_input() input = None, filter = suffix(".44"), output = ".55") test_pipeline2.merge( task_func = task_m_to_1, input = test_pipeline2["44_to_55"], output = tempdir + "/final.output",) # Set head and tail test_pipeline2.set_tail_tasks([test_pipeline2[task_m_to_1]]) if not DEBUG_do_not_define_head_task: test_pipeline2.set_head_tasks([test_pipeline2["44_to_55"]]) return test_pipeline2
def test_newstyle_ruffus(self): test_pipeline = Pipeline("test") test_pipeline.split(task_func=prepare_files, input=None, output=tempdir + '*.animal')\ .follows(mkdir(tempdir, tempdir + "test"))\ .posttask(lambda: do_write(tempdir + "task.done", "Task 1 Done\n")) test_pipeline.collate(task_func=summarise_by_grouping, input=prepare_files, filter=regex(r'(.*/).*\.(.*)\.animal'), output=r'\1\2.results')\ .posttask(lambda: do_write(tempdir + "task.done", "Task 2 Done\n")) test_pipeline.run(multiprocess=10, verbose=0) check_species_correct()
def test_transform_with_missing_formatter_args_b(self): test_pipeline = Pipeline("test") test_pipeline.originate(task_func = generate_initial_files, output = [os.path.join(tempdir, ff + ".tmp") for ff in "abcd"])\ .mkdir(tempdir) test_pipeline.transform(task_func = transform_with_missing_formatter_args, input = generate_initial_files, filter = formatter(), output = "{path[0]}/{basename[0]}.task1", extras =['echo {dynamic_message} > {some_file}']) s = StringIO() test_pipeline.printout(s, [transform_with_missing_formatter_args], verbose=4, wrap_width = 10000, pipeline= "test") self.assertIn("Missing key = {dynamic_message}", s.getvalue()) #log to stream s = StringIO() logger = t_stream_logger(s) test_pipeline.run([transform_with_missing_formatter_args], verbose=5, pipeline= "test", logger=logger) self.assertIn("Missing key = {dynamic_message}", s.getvalue())
def test_newstyle_mkdir (self): test_pipeline = Pipeline("test") test_pipeline.follows(task_which_makes_directories, mkdir(directories), mkdir(unicode(tempdir + "c")), mkdir(unicode(tempdir + "d"), unicode(tempdir + "e")), mkdir(unicode(tempdir + "e")))\ .posttask(touch_file(unicode(tempdir + "f"))) test_pipeline.originate(task_which_makes_files, [tempdir + "g", tempdir + "h"]) test_pipeline.run(multiprocess = 10, verbose = 0) for d in 'abcdefgh': fullpath = os.path.join(os.path.dirname(__file__), tempdir, d) self.assertTrue(os.path.exists(fullpath))
def test_newstyle_mkdir_run(self): test_pipeline = Pipeline("test") test_pipeline.split(task_func = generate_initial_files1, input = 1, output = [tempdir + "/" + prefix + "_name.tmp1" for prefix in "abcd"]) test_pipeline.transform( task_func = test_transform, input = generate_initial_files1, filter = formatter(), output = "{path[0]}/{basename[0]}.dir/{basename[0]}.tmp2")\ .mkdir(tempdir + "/test1")\ .mkdir(tempdir + "/test2")\ .mkdir(generate_initial_files1, formatter(), ["{path[0]}/{basename[0]}.dir", 3, "{path[0]}/{basename[0]}.dir2"]) test_pipeline.mkdir(test_transform2, tempdir + "/test3")\ .mkdir(generate_initial_files1, formatter(), "{path[0]}/{basename[0]}.dir2") cleanup_tmpdir() pipeline_run([test_transform, test_transform2], verbose=0, multiprocess = 2, pipeline= "main")
outf.write(prefices + ",") def check_combinations_with_replacement3_merged_task(infiles, outfile): with open(outfile, "w") as p: for infile in sorted(infiles): with open(infile) as ii: p.write(ii.read()) def cleanup_tmpdir(): os.system('rm -f %s %s' % (os.path.join(tempdir, '*'), RUFFUS_HISTORY_FILE)) test_pipeline1 = Pipeline("test1") test_pipeline2 = Pipeline("test2") gen_task1 = test_pipeline1.originate(task_func=generate_initial_files1, name="WOWWWEEE", output=[tempdir + "/" + prefix + "_name.tmp1" for prefix in "abcd"]) test_pipeline1.originate(task_func=generate_initial_files2, output=[tempdir + "/e_name.tmp1", tempdir + "/f_name.tmp1"]) test_pipeline1.originate(task_func=generate_initial_files3, output=[tempdir + "/g_name.tmp1", tempdir + "/h_name.tmp1"]) test_pipeline1.product(task_func=check_product_task, input=[tempdir + "/" + prefix + "_name.tmp1" for prefix in "abcd"], filter=formatter(".*/(?P<FILE_PART>.+).tmp1$"), input2=generate_initial_files2, filter2=formatter(), input3=generate_initial_files3,
def make_pipeline(state): '''Build the pipeline by constructing stages and connecting them together''' # Build an empty pipeline pipeline = Pipeline(name='hiplexpipe') # Get a list of paths to all the FASTQ files fastq_files = state.config.get_option('fastqs') # Stages are dependent on the state stages = Stages(state) # The original FASTQ files # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate( task_func=stages.original_fastqs, name='original_fastqs', output=fastq_files) # Align paired end reads in FASTQ to the reference producing a BAM file pipeline.transform( task_func=stages.align_bwa, name='align_bwa', input=output_from('original_fastqs'), # Match the R1 (read 1) FASTQ file and grab the path and sample name. # This will be the first input to the stage. # Hi-Plex example: OHI031002-P02F04_S318_L001_R1_001.fastq filter=formatter('.+/(?P<sample>[a-zA-Z0-9_-]+)_R1_(?P<lib>[a-zA-Z0-9-:]+).fastq.gz'), # Add one more inputs to the stage: # 1. The corresponding R2 FASTQ file # Hi-Plex example: OHI031002-P02F04_S318_L001_R2_001.fastq add_inputs=add_inputs( '{path[0]}/{sample[0]}_R2_{lib[0]}.fastq.gz'), # Add an "extra" argument to the state (beyond the inputs and outputs) # which is the sample name. This is needed within the stage for finding out # sample specific configuration options extras=['{sample[0]}', '{lib[0]}'], # The output file name is the sample name with a .bam extension. output='alignments/{sample[0]}.clipped.bam') # Call variants using undr_rover pipeline.transform( task_func=stages.apply_undr_rover, name='apply_undr_rover', input=output_from('original_fastqs'), # Match the R1 (read 1) FASTQ file and grab the path and sample name. # This will be the first input to the stage. filter=formatter('.+/(?P<sample>[a-zA-Z0-9_-]+)_R1_(?P<lib>[a-zA-Z0-9-:]+).fastq.gz'), add_inputs=add_inputs( '{path[0]}/{sample[0]}_R2_{lib[0]}.fastq.gz'), extras=['{sample[0]}'], # The output file name is the sample name with a .bam extension. output='variants/undr_rover/{sample[0]}.vcf') # Sort the BAM file using Picard pipeline.transform( task_func=stages.sort_bam_picard, name='sort_bam_picard', input=output_from('align_bwa'), filter=suffix('.clipped.bam'), output='.clipped.sort.bam') # High quality and primary alignments pipeline.transform( task_func=stages.primary_bam, name='primary_bam', input=output_from('sort_bam_picard'), filter=suffix('.clipped.sort.bam'), output='.clipped.sort.hq.bam') # index bam file pipeline.transform( task_func=stages.index_sort_bam_picard, name='index_bam', input=output_from('primary_bam'), filter=suffix('.clipped.sort.hq.bam'), output='.clipped.sort.hq.bam.bai') # generate mapping metrics. pipeline.transform( task_func=stages.intersect_bed, name='intersect_bed', input=output_from('primary_bam'), filter=suffix('.clipped.sort.hq.bam'), output='.intersectbed.bam') pipeline.transform( task_func=stages.coverage_bed, name='coverage_bed', input=output_from('intersect_bed'), filter=suffix('.intersectbed.bam'), output='.bedtools_hist_all.txt') pipeline.transform( task_func=stages.genome_reads, name='genome_reads', input=output_from('primary_bam'), filter=suffix('.clipped.sort.hq.bam'), output='.mapped_to_genome.txt') pipeline.transform( task_func=stages.target_reads, name='target_reads', input=output_from('intersect_bed'), filter=suffix('.intersectbed.bam'), output='.mapped_to_target.txt') pipeline.transform( task_func=stages.total_reads, name='total_reads', input=output_from('align_bwa'), filter=suffix('.clipped.bam'), output='.total_raw_reads.txt') # pipeline.transform( # task_func=stages.generate_stats, # name='generate_stats', # input=output_from(['coverage_bed', 'genome_reads', 'target_reads', 'total_reads']), # filter=formatter('.+/(?P<sample>.+).txt'), # extras=['{sample[0]}'], # output='all_sample.summary.txt') ###### GATK VARIANT CALLING ###### # Call variants using GATK (pipeline.transform( task_func=stages.call_haplotypecaller_gatk, name='call_haplotypecaller_gatk', input=output_from('primary_bam'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9-_]+).clipped.sort.hq.bam'), output='variants/gatk/{sample[0]}.g.vcf') .follows('index_sort_bam_picard')) # Combine G.VCF files for all samples using GATK pipeline.merge( task_func=stages.combine_gvcf_gatk, name='combine_gvcf_gatk', input=output_from('call_haplotypecaller_gatk'), output='variants/gatk/ALL.combined.vcf') # Genotype G.VCF files using GATK pipeline.transform( task_func=stages.genotype_gvcf_gatk, name='genotype_gvcf_gatk', input=output_from('combine_gvcf_gatk'), filter=suffix('.combined.vcf'), output='.raw.vcf') # Annotate VCF file using GATK pipeline.transform( task_func=stages.variant_annotator_gatk, name='variant_annotator_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.raw.vcf'), output='.raw.annotate.vcf') # Apply VariantFiltration using GATK pipeline.transform( task_func=stages.apply_variant_filtration_gatk, name='apply_variant_filtration_gatk', input=output_from('variant_annotator_gatk'), filter=suffix('.raw.annotate.vcf'), output='.raw.annotate.filtered.vcf') # Apply VEP (pipeline.transform( task_func=stages.apply_vep, name='apply_vep', input=output_from('apply_variant_filtration_gatk'), filter=suffix('.raw.annotate.filtered.vcf'), output='.raw.annotate.filtered.vep.vcf') .follows('apply_variant_filtration_gatk')) pipeline.transform( task_func=stages.sort_vcfs, name='sort_vcfs', input=output_from('apply_undr_rover'), filter=suffix('.vcf'), output='.sorted.vcf') pipeline.transform( task_func=stages.index_vcfs, name='index_vcfs', input=output_from('sort_vcfs'), filter=suffix('.sorted.vcf'), output='.sorted.vcf.tbi') (pipeline.transform( task_func=stages.concatenate_vcfs, name='sort_vcfs', input=output_from('apply_undr_rover'), filter=suffix('.sorted.vcf'), output='variants/undr_rover/combined_undr_rover.vcf') .follows('index_vcfs')) pipeline.transform( task_func=stages.index_final_vcf, name='index_final_vcf', input=output_from('concatenate_vcfs'), filter=suffix('.vcf'), output='.vcf.tbi') return pipeline
def test_newstyle_simpler(self): test_pipeline = Pipeline("test") test_pipeline.originate(task1, input_file_names, extras=[logger_proxy, logging_mutex]) test_pipeline.transform(task2, task1, suffix(".1"), ".2", extras=[logger_proxy, logging_mutex]) test_pipeline.transform(task3, task2, suffix(".2"), ".3", extras=[logger_proxy, logging_mutex]) test_pipeline.merge(task4, task3, final_file_name, extras=[logger_proxy, logging_mutex]) #test_pipeline.merge(task4, task3, final_file_name, extras = {"logger_proxy": logger_proxy, "logging_mutex": logging_mutex}) test_pipeline.run(multiprocess=500, verbose=0)
"test_active_if/b.3" -> "test_active_if/b.4" "test_active_if/b.4" -> "test_active_if/summary.5" """ expected_inactive_text = """null -> "test_active_if/a.1" "test_active_if/a.1" -> "test_active_if/a.2" "test_active_if/a.2" -> "test_active_if/a.4" null -> "test_active_if/b.1" "test_active_if/b.1" -> "test_active_if/b.2" "test_active_if/b.2" -> "test_active_if/b.4" "test_active_if/b.4" -> "test_active_if/summary.5" """ # alternative syntax test_pipeline = Pipeline("test") test_pipeline.originate(task1, ['test_active_if/a.1', 'test_active_if/b.1'], "an extra_parameter")\ .follows(mkdir("test_active_if")) test_pipeline.transform(task2, task1, suffix(".1"), ".2") test_pipeline.transform(task3, task1, suffix( ".1"), ".3").active_if(lambda: pipeline_active_if) test_pipeline.collate(task4, [task2, task3], regex(r"(.+)\.[23]"), r"\1.4") test_pipeline.merge(task5, task4, "test_active_if/summary.5") class Test_ruffus(unittest.TestCase): def setUp(self): try: shutil.rmtree(tempdir) except: pass
with open(output_file, "w") as oo: pass #--------------------------------------------------------------- # first task @transform(create_initial_file_pairs, suffix(".start"), ".output.1") def first_task(input_files, output_file): with open(output_file, "w"): pass #--------------------------------------------------------------- # second task @transform(first_task, suffix(".output.1"), ".output.2") def second_task(input_files, output_file): with open(output_file, "w"): pass test_pipeline = Pipeline("test") test_pipeline.originate(output = [ [tempdir + 'data/scratch/lg/what/one/two/three/four/five/six/seven/job1.a.start', tempdir + 'job1.b.start'], [tempdir + 'data/scratch/lg/what/one/two/three/four/five/six/seven/job2.a.start', tempdir + 'job2.b.start'], [tempdir + 'data/scratch/lg/what/one/two/three/four/five/six/seven/job3.a.start', tempdir + 'job3.b.start'] ], task_func = create_initial_file_pairs) test_pipeline.transform(task_func = first_task, input = create_initial_file_pairs, filter = suffix(".start"), output = ".output.1") test_pipeline.transform(input = first_task, filter = suffix(".output.1"), output = ".output.2", task_func= second_task) decorator_syntax = 0 oop_syntax = 1 class Test_verbosity(unittest.TestCase): #___________________________________________________________________________ # # test_printout_abbreviated_path1
def test_newstyle_ruffus (self): test_pipeline = Pipeline("test") test_pipeline.split(task_func = split_fasta_file, input = tempdir + "original.fa", output = [tempdir + "files.split.success", tempdir + "files.split.*.fa"])\ .posttask(lambda: verbose_output.write(" Split into %d files\n" % 10)) test_pipeline.transform(task_func = align_sequences, input = split_fasta_file, filter = suffix(".fa"), output = ".aln" # fa -> aln )\ .posttask(lambda: verbose_output.write(" Sequences aligned\n")) test_pipeline.transform(task_func = percentage_identity, input = align_sequences, # find all results from align_sequences filter = suffix(".aln"), # replace suffix with: output = [r".pcid", # .pcid suffix for the result r".pcid_success"] # .pcid_success to indicate job completed )\ .posttask(lambda: verbose_output.write(" %Identity calculated\n")) test_pipeline.merge(task_func = combine_results, input = percentage_identity, output = [tempdir + "all.combine_results", tempdir + "all.combine_results_success"])\ .posttask(lambda: verbose_output.write(" Results recombined\n")) test_pipeline.run(multiprocess = 50, verbose = 0) if not os.path.exists(tempdir + "all.combine_results"): raise Exception("Missing %s" % (tempdir + "all.combine_results"))
def make_pipeline_process(state): # Define empty pipeline pipeline = Pipeline(name='genericpipe') # Get a list of paths to all the directories to be combined for variant calling run_directories = state.config.get_option('runs') #grab files from each of the processed directories in "runs" gatk_files = [] for directory in run_directories: gatk_files.extend(glob.glob(directory + '/variants/gatk/*.g.vcf')) # Stages are dependent on the state stages = Stages(state) # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate(task_func=stages.glob_gatk, name='glob_gatk', output=gatk_files) safe_make_dir('variants') safe_make_dir('variants/gatk') # Combine G.VCF files for all samples using GATK pipeline.merge(task_func=stages.combine_gvcf_gatk, name='combine_gvcf_gatk', input=output_from('glob_gatk'), output='ALL.combined.vcf') # Genotype G.VCF files using GATK pipeline.transform(task_func=stages.genotype_gvcf_gatk, name='genotype_gvcf_gatk', input=output_from('combine_gvcf_gatk'), filter=suffix('.combined.vcf'), output='.raw.vcf') # Apply GT filters to genotyped vcf pipeline.transform(task_func=stages.genotype_filter_gatk, name='genotype_filter_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.raw.vcf'), output='.raw.gt-filter.vcf') # Decompose and normalise multiallelic sites pipeline.transform(task_func=stages.vt_decompose_normalise, name='vt_decompose_normalise', input=output_from('genotype_filter_gatk'), filter=suffix('.raw.gt-filter.vcf'), output='.raw.gt-filter.decomp.norm.vcf') # Annotate VCF file using GATK pipeline.transform(task_func=stages.variant_annotator_gatk, name='variant_annotator_gatk', input=output_from('vt_decompose_normalise'), filter=suffix('.raw.gt-filter.decomp.norm.vcf'), output='.raw.gt-filter.decomp.norm.annotate.vcf') # Filter vcf pipeline.transform( task_func=stages.gatk_filter, name='gatk_filter', input=output_from('variant_annotator_gatk'), filter=suffix('.raw.gt-filter.decomp.norm.annotate.vcf'), output='.raw.gt-filter.decomp.norm.annotate.filter.vcf') #Apply VEP (pipeline.transform( task_func=stages.apply_vep, name='apply_vep', input=output_from('gatk_filter'), filter=suffix('.raw.gt-filter.decomp.norm.annotate.filter.vcf'), output='.raw.gt-filter.decomp.norm.annotate.filter.vep.vcf').follows( 'index_final_vcf')) return pipeline
def make_pipeline1( pipeline_name, # Pipelines need to have a unique name starting_file_names): test_pipeline = Pipeline(pipeline_name) # We can change the starting files later using # set_input() for transform etc. # or set_output() for originate # But it can be more convenient to just pass this to the function making the pipeline # test_pipeline.originate(task_originate, starting_file_names)\ .follows(mkdir(tempdir), mkdir(tempdir + "/testdir", tempdir + "/testdir2"))\ .posttask(touch_file(tempdir + "/testdir/whatever.txt")) test_pipeline.transform( task_func=task_m_to_1, name="add_input", # Lookup Task from function name task_originate() # So long as this is unique in the pipeline input=task_originate, # requires an anchor from 3.7 onwards, see # https://bugs.python.org/issue34982 filter=regex(r"^(.*)"), add_inputs=add_inputs(tempdir + "/testdir/whatever.txt"), output=r"\1.22") test_pipeline.transform( task_func=task_1_to_1, name="22_to_33", # Lookup Task from Task name # Function name is not unique in the pipeline input=output_from("add_input"), filter=suffix(".22"), output=".33") tail_task = test_pipeline.transform( task_func=task_1_to_1, name="33_to_44", # Ask Pipeline to lookup Task from Task name input=test_pipeline["22_to_33"], filter=suffix(".33"), output=".44") # Set the tail task so that users of my sub pipeline can use it as a dependency # without knowing the details of task names # # Use Task() object directly without having to lookup test_pipeline.set_tail_tasks([tail_task]) # If we try to connect a Pipeline without tail tasks defined, we have to # specify the exact task within the Pipeline. # Otherwise Ruffus will not know which task we mean and throw an exception if DEBUG_do_not_define_tail_task: test_pipeline.set_tail_tasks([]) # Set the head task so that users of my sub pipeline send input into it # without knowing the details of task names test_pipeline.set_head_tasks([test_pipeline[task_originate]]) return test_pipeline
def make_pipeline(state): '''Build the pipeline by constructing stages and connecting them together''' # Build an empty pipeline pipeline = Pipeline(name='vcf_annotation') # Get a list of paths to all the FASTQ files vcf_files = state.config.get_option('vcfs') # Stages are dependent on the state stages = Stages(state) # The original VCF files # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate( task_func=stages.original_vcf, name='original_vcf', output=vcf_file) # Decompose VCF using Vt pipeline.transform( task_func=stages.decompose_vcf, name='decompose_vcf', input=output_from('original_vcf'), # This will be the first input to the stage. # We assume the sample name may consist of only alphanumeric # characters. filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).vcf'), # Add an "extra" argument to the state (beyond the inputs and outputs) # which is the VCF file name (e.g. study/family name. # This is needed within the stage for finding out sample specific # configuration options extras=['{sample[0]}'], # The output file name is the sample name with a .bam extension. output='{path[0]}/{sample[0]}.decompose.normalize.vcf') # FILTER COMMON VARIANTS # ADD FILTER COMMON VARIANTS USING VEP # Annotate using VEP pipeline.transform( task_func=stages.annotate_vep, name='annotate_vep', input=output_from('decompose_vcf'), filter=suffix('.vcf'), output='.vep.vcf') # Annotate using SnpEff pipeline.transform( task_func=stages.annotate_snpeff, name='annotate_snpeff', input=output_from('annotate_vep'), filter=suffix('.vcf'), output='.snpeff.vcf') # Mark duplicates in the BAM file using Picard pipeline.transform( task_func=stages.mark_duplicates_picard, name='mark_duplicates_picard', input=output_from('sort_bam_picard'), filter=suffix('.sort.bam'), # XXX should make metricsup an extra output? output=['.sort.dedup.bam', '.metricsdup']) # Generate chromosome intervals using GATK pipeline.transform( task_func=stages.chrom_intervals_gatk, name='chrom_intervals_gatk', input=output_from('mark_duplicates_picard'), filter=suffix('.sort.dedup.bam'), output='.chr.intervals') # Local realignment using GATK (pipeline.transform( task_func=stages.local_realignment_gatk, name='local_realignment_gatk', input=output_from('chrom_intervals_gatk'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).chr.intervals'), add_inputs=add_inputs('{path[0]}/{sample[0]}.sort.dedup.bam'), output='{path[0]}/{sample[0]}.sort.dedup.realn.bam') .follows('mark_duplicates_picard')) # Base recalibration using GATK pipeline.transform( task_func=stages.base_recalibration_gatk, name='base_recalibration_gatk', input=output_from('local_realignment_gatk'), filter=suffix('.sort.dedup.realn.bam'), output=['.recal_data.csv', '.count_cov.log']) # Print reads using GATK (pipeline.transform( task_func=stages.print_reads_gatk, name='print_reads_gatk', input=output_from('base_recalibration_gatk'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).recal_data.csv'), add_inputs=add_inputs('{path[0]}/{sample[0]}.sort.dedup.realn.bam'), output='{path[0]}/{sample[0]}.sort.dedup.realn.recal.bam') .follows('local_realignment_gatk')) # Call variants using GATK pipeline.transform( task_func=stages.call_variants_gatk, name='call_variants_gatk', input=output_from('print_reads_gatk'), filter=suffix('.sort.dedup.realn.recal.bam'), output='.raw.snps.indels.g.vcf') # Combine G.VCF files for all samples using GATK pipeline.merge( task_func=stages.combine_gvcf_gatk, name='combine_gvcf_gatk', input=output_from('call_variants_gatk'), output='PCExomes.mergegvcf.vcf') # Genotype G.VCF files using GATK pipeline.transform( task_func=stages.genotype_gvcf_gatk, name='genotype_gvcf_gatk', input=output_from('combine_gvcf_gatk'), filter=suffix('.mergegvcf.vcf'), output='.genotyped.vcf') # SNP recalibration using GATK pipeline.transform( task_func=stages.snp_recalibrate_gatk, name='snp_recalibrate_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.genotyped.vcf'), output=['.snp_recal', '.snp_tranches', '.snp_plots.R']) # INDEL recalibration using GATK pipeline.transform( task_func=stages.indel_recalibrate_gatk, name='indel_recalibrate_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.genotyped.vcf'), output=['.indel_recal', '.indel_tranches', '.indel_plots.R']) # Apply SNP recalibration using GATK (pipeline.transform( task_func=stages.apply_snp_recalibrate_gatk, name='apply_snp_recalibrate_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.genotyped.vcf'), add_inputs=add_inputs(['PCExomes.snp_recal', 'PCExomes.snp_tranches']), output='.recal_SNP.vcf') .follows('snp_recalibrate_gatk')) # Apply INDEL recalibration using GATK (pipeline.transform( task_func=stages.apply_indel_recalibrate_gatk, name='apply_indel_recalibrate_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.genotyped.vcf'), add_inputs=add_inputs( ['PCExomes.indel_recal', 'PCExomes.indel_tranches']), output='.recal_INDEL.vcf') .follows('indel_recalibrate_gatk')) # Combine variants using GATK (pipeline.transform( task_func=stages.combine_variants_gatk, name='combine_variants_gatk', input=output_from('apply_snp_recalibrate_gatk'), filter=suffix('.recal_SNP.vcf'), add_inputs=add_inputs(['PCExomes.recal_INDEL.vcf']), output='.combined.vcf') .follows('apply_indel_recalibrate_gatk')) # Select variants using GATK pipeline.transform( task_func=stages.select_variants_gatk, name='select_variants_gatk', input=output_from('combine_variants_gatk'), filter=suffix('.combined.vcf'), output='.selected.vcf') return pipeline
extension): raise Exception("Should blow up first") # ___________________________________________________________________________ # # check_regex_out_of_range_regex_reference_error_task # ___________________________________________________________________________ def check_regex_out_of_range_regex_reference_error_task(infiles, outfile, prefix1, prefix2, extension): raise Exception("Should blow up first") test_pipeline = Pipeline("test") test_pipeline.originate(task_func=generate_initial_files1, output=[tempdir + "/" + prefix + "_name.tmp1" for prefix in "abcdefghi"]) test_pipeline.transform(task_func=check_regex_task, input=generate_initial_files1, filter=regex("(.*)/(?P<PREFIX>[abcd])(_name)(.tmp1)"), output=r"\1/\g<PREFIX>\3.tmp2", # output file extras=[r"\2", # extra: prefix = \2 r"\g<PREFIX>", # extra: prefix = \2 r"\4"]) # extra: extension test_pipeline.transform(task_func=check_regex_unmatched_task, input=generate_initial_files1, filter=regex("(.*)/(?P<PREFIX>[abcd])(_name)(.xxx)"), output=r"\1/\g<PREFIXA>\3.tmp2", # output file
outf.write(prefices + ",") def test_combinations_with_replacement3_merged_task(infiles, outfile): with open(outfile, "w") as p: for infile in sorted(infiles): with open(infile) as ii: p.write(ii.read()) def cleanup_tmpdir(): os.system('rm -f %s %s' % (os.path.join(tempdir, '*'), RUFFUS_HISTORY_FILE)) test_pipeline1 = Pipeline("test1") test_pipeline2 = Pipeline("test2") gen_task1 = test_pipeline1.originate( task_func=generate_initial_files1, name="WOWWWEEE", output=[tempdir + "/" + prefix + "_name.tmp1" for prefix in "abcd"]) test_pipeline1.originate( task_func=generate_initial_files2, output=[tempdir + "/e_name.tmp1", tempdir + "/f_name.tmp1"]) test_pipeline1.originate( task_func=generate_initial_files3, output=[tempdir + "/g_name.tmp1", tempdir + "/h_name.tmp1"]) test_pipeline1.product( task_func=test_product_task, input=[tempdir + "/" + prefix + "_name.tmp1" for prefix in "abcd"], filter=formatter(".*/(?P<FILE_PART>.+).tmp1$"),
def test_newstyle_collate(self): """ As above but create pipeline on the fly using object orientated syntax rather than decorators """ # # Create pipeline on the fly, joining up tasks # test_pipeline = Pipeline("test") test_pipeline.originate(task_func = generate_initial_files, output = original_files)\ .mkdir(tempdir, tempdir+"/test") test_pipeline.subdivide( task_func = split_fasta_file, input = generate_initial_files, filter = regex(r".*\/original_(\d+).fa"), # match original files output = [tempdir + r"/files.split.\1.success", # flag file for each original file tempdir + r"/files.split.\1.*.fa"], # glob pattern extras = [r"\1"])\ .posttask(lambda: sys.stderr.write("\tSplit into %d files each\n" % JOBS_PER_TASK)) test_pipeline.transform(task_func = align_sequences, input = split_fasta_file, filter = suffix(".fa"), output = ".aln") \ .posttask(lambda: sys.stderr.write("\tSequences aligned\n")) test_pipeline.transform(task_func = percentage_identity, input = align_sequences, # find all results from align_sequences filter = suffix(".aln"), # replace suffix with: output = [r".pcid", # .pcid suffix for the result r".pcid_success"] # .pcid_success to indicate job completed )\ .posttask(lambda: sys.stderr.write("\t%Identity calculated\n")) test_pipeline.collate(task_func = combine_results, input = percentage_identity, filter = regex(r".*files.split\.(\d+)\.\d+.pcid"), output = [tempdir + r"/\1.all.combine_results", tempdir + r"/\1.all.combine_results_success"])\ .posttask(lambda: sys.stderr.write("\tResults recombined\n")) # # Cleanup, printout and run # self.cleanup_tmpdir() s = StringIO() test_pipeline.printout(s, [combine_results], verbose=5, wrap_width=10000) self.assertTrue( re.search('Job needs update:.*Missing files.*', s.getvalue(), re.DOTALL) is not None) test_pipeline.run(verbose=0)
def create_pipeline(self): # each pipeline has a different name global cnt_pipelines cnt_pipelines = cnt_pipelines + 1 test_pipeline = Pipeline("test %d" % cnt_pipelines) test_pipeline.originate(task_func=generate_initial_files1, output=[tempdir + prefix + "_name.tmp1" for prefix in "abcd"]) test_pipeline.originate(task_func=generate_initial_files2, output=[tempdir + "e_name.tmp1", tempdir + "f_name.tmp1"]) test_pipeline.originate(task_func=generate_initial_files3, output=[tempdir + "g_name.tmp1", tempdir + "h_name.tmp1"]) test_pipeline.originate(task_func=generate_initial_files4, output=tempdir + "i_name.tmp1") test_pipeline.collate(task_func=check_task2, input=[generate_initial_files1, generate_initial_files2, generate_initial_files3, generate_initial_files4], filter=formatter(), output="{path[0]}/all.tmp2") test_pipeline.transform(task_func=check_task3, input=check_task2, filter=suffix(".tmp2"), output=".tmp3") test_pipeline.transform(task_func=check_task4, input=check_task3, filter=suffix(".tmp3"), output=".tmp4") return test_pipeline
def test_newstyle_ruffus (self): test_pipeline = Pipeline("test") test_pipeline.files(create_random_numbers, None, tempdir + "random_numbers.list")\ .follows(mkdir(tempdir)) test_pipeline.split(task_func = step_4_split_numbers_into_chunks, input = tempdir + "random_numbers.list", output = tempdir + "*.chunks")\ .follows(create_random_numbers) test_pipeline.transform(task_func = step_5_calculate_sum_of_squares, input = step_4_split_numbers_into_chunks, filter = suffix(".chunks"), output = ".sums") test_pipeline.merge(task_func = step_6_calculate_variance, input = step_5_calculate_sum_of_squares, output = os.path.join(tempdir, "variance.result"))\ .posttask(lambda: sys.stdout.write(" hooray\n"))\ .posttask(print_hooray_again, print_whoppee_again, touch_file(os.path.join(tempdir, "done"))) test_pipeline.run(multiprocess = 50, verbose = 0) output_file = os.path.join(tempdir, "variance.result") if not os.path.exists (output_file): raise Exception("Missing %s" % output_file)
def make_pipeline1(pipeline_name, # Pipelines need to have a unique name starting_file_names): test_pipeline = Pipeline(pipeline_name) # We can change the starting files later using # set_input() for transform etc. # or set_output() for originate # But it can be more convenient to just pass this to the function making the pipeline # test_pipeline.originate(task_originate, starting_file_names)\ .follows(mkdir(tempdir), mkdir(tempdir + "/testdir", tempdir + "/testdir2"))\ .posttask(touch_file(tempdir + "/testdir/whatever.txt")) test_pipeline.transform(task_func = task_m_to_1, name = "add_input", # Lookup Task from function name task_originate() # So long as this is unique in the pipeline input = task_originate, filter = regex(r"(.*)"), add_inputs = add_inputs(tempdir + "/testdir/whatever.txt"), output = r"\1.22") test_pipeline.transform(task_func = task_1_to_1, name = "22_to_33", # Lookup Task from Task name # Function name is not unique in the pipeline input = output_from("add_input"), filter = suffix(".22"), output = ".33") tail_task = test_pipeline.transform(task_func = task_1_to_1, name = "33_to_44", # Ask Pipeline to lookup Task from Task name input = test_pipeline["22_to_33"], filter = suffix(".33"), output = ".44") # Set the tail task so that users of my sub pipeline can use it as a dependency # without knowing the details of task names # # Use Task() object directly without having to lookup test_pipeline.set_tail_tasks([tail_task]) # If we try to connect a Pipeline without tail tasks defined, we have to # specify the exact task within the Pipeline. # Otherwise Ruffus will not know which task we mean and throw an exception if DEBUG_do_not_define_tail_task: test_pipeline.set_tail_tasks([]) # Set the head task so that users of my sub pipeline send input into it # without knowing the details of task names test_pipeline.set_head_tasks([test_pipeline[task_originate]]) return test_pipeline
def test_newstyle_ruffus (self): test_pipeline = Pipeline("test") test_pipeline.originate(start_task, ["a.1", "b.1"]) test_pipeline.transform(same_file_name_task, start_task, suffix(".1"), ".1") test_pipeline.transform(linked_file_name_task, start_task, suffix(".1"), ".linked.1") test_pipeline.transform(final_task, [linked_file_name_task, same_file_name_task], suffix(".1"), ".3") test_pipeline.run(log_exceptions = True, verbose = 0)
def test_newstyle_collate(self): """ As above but create pipeline on the fly using object orientated syntax rather than decorators """ # # Create pipeline on the fly, joining up tasks # test_pipeline = Pipeline("test") test_pipeline.originate(task_func=generate_initial_files, output=original_files)\ .mkdir(tempdir, tempdir+"/test") test_pipeline.subdivide(task_func=split_fasta_file, input=generate_initial_files, # match original files filter=regex(r".*\/original_(\d+).fa"), output=[tempdir + r"/files.split.\1.success", # flag file for each original file tempdir + r"/files.split.\1.*.fa"], # glob pattern extras=[r"\1"])\ .posttask(lambda: sys.stderr.write("\tSplit into %d files each\n" % JOBS_PER_TASK)) test_pipeline.transform(task_func=align_sequences, input=split_fasta_file, filter=suffix(".fa"), output=".aln") \ .posttask(lambda: sys.stderr.write("\tSequences aligned\n")) test_pipeline.transform(task_func=percentage_identity, input=align_sequences, # find all results from align_sequences # replace suffix with: filter=suffix(".aln"), output=[r".pcid", # .pcid suffix for the result r".pcid_success"] # .pcid_success to indicate job completed )\ .posttask(lambda: sys.stderr.write("\t%Identity calculated\n")) test_pipeline.collate(task_func=combine_results, input=percentage_identity, filter=regex(r".*files.split\.(\d+)\.\d+.pcid"), output=[tempdir + r"/\1.all.combine_results", tempdir + r"/\1.all.combine_results_success"])\ .posttask(lambda: sys.stderr.write("\tResults recombined\n")) # # Cleanup, printout and run # self.cleanup_tmpdir() s = StringIO() test_pipeline.printout(s, [combine_results], verbose=5, wrap_width=10000) self.assertTrue(re.search( 'Job needs update:.*Missing files.*', s.getvalue(), re.DOTALL) is not None) test_pipeline.run(verbose=0)
def make_pipeline(state): '''Build the pipeline by constructing stages and connecting them together''' # Build an empty pipeline pipeline = Pipeline(name='complexo') # Get a list of paths to all the FASTQ files fastq_files = state.config.get_option('fastqs') # Stages are dependent on the state stages = Stages(state) # The original FASTQ files # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate( task_func=stages.original_fastqs, name='original_fastqs', output=fastq_files) # Align paired end reads in FASTQ to the reference producing a BAM file pipeline.transform( task_func=stages.align_bwa, name='align_bwa', input=output_from('original_fastqs'), # Match the R1 (read 1) FASTQ file and grab the path and sample name. # This will be the first input to the stage. # We assume the sample name may consist of only alphanumeric # characters. filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+)_R1.fastq.gz'), # Add one more inputs to the stage: # 1. The corresponding R2 FASTQ file add_inputs=add_inputs('{path[0]}/{sample[0]}_R2.fastq.gz'), # Add an "extra" argument to the state (beyond the inputs and outputs) # which is the sample name. This is needed within the stage for finding out # sample specific configuration options extras=['{sample[0]}'], # The output file name is the sample name with a .bam extension. output='{path[0]}/{sample[0]}.bam') # Sort the BAM file using Picard pipeline.transform( task_func=stages.sort_bam_picard, name='sort_bam_picard', input=output_from('align_bwa'), filter=suffix('.bam'), output='.sort.bam') # Mark duplicates in the BAM file using Picard pipeline.transform( task_func=stages.mark_duplicates_picard, name='mark_duplicates_picard', input=output_from('sort_bam_picard'), filter=suffix('.sort.bam'), # XXX should make metricsup an extra output? output=['.sort.dedup.bam', '.metricsdup']) # Generate chromosome intervals using GATK pipeline.transform( task_func=stages.chrom_intervals_gatk, name='chrom_intervals_gatk', input=output_from('mark_duplicates_picard'), filter=suffix('.sort.dedup.bam'), output='.chr.intervals') # Local realignment using GATK (pipeline.transform( task_func=stages.local_realignment_gatk, name='local_realignment_gatk', input=output_from('chrom_intervals_gatk'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).chr.intervals'), add_inputs=add_inputs('{path[0]}/{sample[0]}.sort.dedup.bam'), output='{path[0]}/{sample[0]}.sort.dedup.realn.bam') .follows('mark_duplicates_picard')) # Base recalibration using GATK pipeline.transform( task_func=stages.base_recalibration_gatk, name='base_recalibration_gatk', input=output_from('local_realignment_gatk'), filter=suffix('.sort.dedup.realn.bam'), output=['.recal_data.csv', '.count_cov.log']) # Print reads using GATK (pipeline.transform( task_func=stages.print_reads_gatk, name='print_reads_gatk', input=output_from('base_recalibration_gatk'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).recal_data.csv'), add_inputs=add_inputs('{path[0]}/{sample[0]}.sort.dedup.realn.bam'), output='{path[0]}/{sample[0]}.sort.dedup.realn.recal.bam') .follows('local_realignment_gatk')) # Call variants using GATK pipeline.transform( task_func=stages.call_variants_gatk, name='call_variants_gatk', input=output_from('print_reads_gatk'), filter=suffix('.sort.dedup.realn.recal.bam'), output='.raw.snps.indels.g.vcf') # Combine G.VCF files for all samples using GATK pipeline.merge( task_func=stages.combine_gvcf_gatk, name='combine_gvcf_gatk', input=output_from('call_variants_gatk'), output='PCExomes.mergegvcf.vcf') # Genotype G.VCF files using GATK pipeline.transform( task_func=stages.genotype_gvcf_gatk, name='genotype_gvcf_gatk', input=output_from('combine_gvcf_gatk'), filter=suffix('.mergegvcf.vcf'), output='.genotyped.vcf') # SNP recalibration using GATK pipeline.transform( task_func=stages.snp_recalibrate_gatk, name='snp_recalibrate_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.genotyped.vcf'), output=['.snp_recal', '.snp_tranches', '.snp_plots.R']) # INDEL recalibration using GATK pipeline.transform( task_func=stages.indel_recalibrate_gatk, name='indel_recalibrate_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.genotyped.vcf'), output=['.indel_recal', '.indel_tranches', '.indel_plots.R']) # Apply SNP recalibration using GATK (pipeline.transform( task_func=stages.apply_snp_recalibrate_gatk, name='apply_snp_recalibrate_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.genotyped.vcf'), add_inputs=add_inputs(['PCExomes.snp_recal', 'PCExomes.snp_tranches']), output='.recal_SNP.vcf') .follows('snp_recalibrate_gatk')) # Apply INDEL recalibration using GATK (pipeline.transform( task_func=stages.apply_indel_recalibrate_gatk, name='apply_indel_recalibrate_gatk', input=output_from('genotype_gvcf_gatk'), filter=suffix('.genotyped.vcf'), add_inputs=add_inputs(['PCExomes.indel_recal', 'PCExomes.indel_tranches']), output='.recal_INDEL.vcf') .follows('indel_recalibrate_gatk')) # Combine variants using GATK (pipeline.transform( task_func=stages.combine_variants_gatk, name='combine_variants_gatk', input=output_from('apply_snp_recalibrate_gatk'), filter=suffix('.recal_SNP.vcf'), add_inputs=add_inputs(['PCExomes.recal_INDEL.vcf']), output='.combined.vcf') .follows('apply_indel_recalibrate_gatk')) # Select variants using GATK pipeline.transform( task_func=stages.select_variants_gatk, name='select_variants_gatk', input=output_from('combine_variants_gatk'), filter=suffix('.combined.vcf'), output='.selected.vcf') return pipeline
@transform(create_initial_file_pairs, suffix(".start"), ".output.1") def first_task(input_files, output_file): with open(output_file, "w"): pass # --------------------------------------------------------------- # second task @transform(first_task, suffix(".output.1"), ".output.2") def second_task(input_files, output_file): with open(output_file, "w"): pass test_pipeline = Pipeline("test") test_pipeline.originate(output=[ [ tempdir + 'data/scratch/lg/what/one/two/three/four/five/six/seven/job1.a.start', tempdir + 'job1.b.start' ], [ tempdir + 'data/scratch/lg/what/one/two/three/four/five/six/seven/job2.a.start', tempdir + 'job2.b.start' ], [ tempdir + 'data/scratch/lg/what/one/two/three/four/five/six/seven/job3.a.start', tempdir + 'job3.b.start'
def make_pipeline(state): '''Build the pipeline by constructing stages and connecting them together''' # Build an empty pipeline pipeline = Pipeline(name='test_pipeline') # Get a list of paths to all the FASTQ files input_files = state.config.get_option('files') # Stages are dependent on the state stages = Stages(state) # The original files # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate( task_func=stages.original_files, name='original_files', output=input_files) pipeline.transform( task_func=stages.stage1, name='stage1', input=output_from('original_files'), filter=suffix('.0'), output='.1') pipeline.transform( task_func=stages.stage2, name='stage2', input=output_from('stage1'), filter=suffix('.1'), output='.2') pipeline.transform( task_func=stages.stage3, name='stage3', input=output_from('stage2'), filter=suffix('.2'), output='.3') pipeline.transform( task_func=stages.stage4, name='stage4', input=output_from('stage3'), filter=suffix('.3'), output='.4') pipeline.transform( task_func=stages.stage5, name='stage5', input=output_from('stage4'), filter=suffix('.4'), output='.5') return pipeline
def make_pipeline(state): '''Build the pipeline by constructing stages and connecting them together''' # Build an empty pipeline pipeline = Pipeline(name='crpipe') # Get a list of paths to all the FASTQ files fastq_files = state.config.get_option('fastqs') # Find the path to the reference genome reference_file = state.config.get_option('reference') # Stages are dependent on the state stages = Stages(state) # The original FASTQ files # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate( task_func=stages.original_fastqs, name='original_fastqs', output=fastq_files) # Convert FASTQ file to FASTA using fastx toolkit # pipeline.transform( # task_func=stages.fastq_to_fasta, # name='fastq_to_fasta', # input=output_from('original_fastqs'), # filter=suffix('.fastq.gz'), # output='.fasta') # The original reference file # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate( task_func=stages.original_reference, name='original_reference', output=reference_file) # Run fastQC on the FASTQ files pipeline.transform( task_func=stages.fastqc, name='fastqc', input=output_from('original_fastqs'), filter=suffix('.fastq.gz'), output='_fastqc') # Index the reference using BWA pipeline.transform( task_func=stages.index_reference_bwa, name='index_reference_bwa', input=output_from('original_reference'), filter=suffix('.fa'), output=['.fa.amb', '.fa.ann', '.fa.pac', '.fa.sa', '.fa.bwt']) # Index the reference using samtools pipeline.transform( task_func=stages.index_reference_samtools, name='index_reference_samtools', input=output_from('original_reference'), filter=suffix('.fa'), output='.fa.fai') # Index the reference using bowtie 2 pipeline.transform( task_func=stages.index_reference_bowtie2, name='index_reference_bowtie2', input=output_from('original_reference'), filter=formatter('.+/(?P<refname>[a-zA-Z0-9]+\.fa)'), output=['{path[0]}/{refname[0]}.1.bt2', '{path[0]}/{refname[0]}.2.bt2', '{path[0]}/{refname[0]}.3.bt2', '{path[0]}/{refname[0]}.4.bt2', '{path[0]}/{refname[0]}.rev.1.bt2', '{path[0]}/{refname[0]}.rev.2.bt2'], extras=['{path[0]}/{refname[0]}']) # Create a FASTA sequence dictionary for the reference using picard pipeline.transform( task_func=stages.reference_dictionary_picard, name='reference_dictionary_picard', input=output_from('original_reference'), filter=suffix('.fa'), output='.dict') # Align paired end reads in FASTQ to the reference producing a BAM file (pipeline.transform( task_func=stages.align_bwa, name='align_bwa', input=output_from('original_fastqs'), # Match the R1 (read 1) FASTQ file and grab the path and sample name. # This will be the first input to the stage. # We assume the sample name may consist of only alphanumeric # characters. filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+)_R1.fastq.gz'), # Add two more inputs to the stage: # 1. The corresponding R2 FASTQ file # 2. The reference genome file add_inputs=add_inputs(['{path[0]}/{sample[0]}_R2.fastq.gz', reference_file]), # Add an "extra" argument to the state (beyond the inputs and outputs) # which is the sample name. This is needed within the stage for finding out # sample specific configuration options extras=['{sample[0]}'], # The output file name is the sample name with a .bam extension. output='{path[0]}/{sample[0]}.bam') # Ensure the reference is indexed before we run this stage .follows('index_reference_bwa') .follows('index_reference_samtools')) # Sort alignment with sambamba pipeline.transform( task_func=stages.sort_bam_sambamba, name='sort_alignment', input=output_from('align_bwa'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).bam'), output='{path[0]}/{sample[0]}.sorted.bam') # Extract MMR genes from the sorted BAM file pipeline.transform( task_func=stages.extract_genes_bedtools, name='extract_genes_bedtools', input=output_from('sort_alignment'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).sorted.bam'), output='{path[0]}/{sample[0]}.mmr.bam') # Extract selected chromosomes from the sorted BAM file pipeline.transform( task_func=stages.extract_chromosomes_samtools, name='extract_chromosomes_samtools', input=output_from('sort_alignment'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).sorted.bam'), output='{path[0]}/{sample[0]}.chroms.bam') # Index the MMR genes bam file with samtools pipeline.transform( task_func=stages.index_bam, name='index_mmr_alignment', input=output_from('extract_genes_bedtools'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).mmr.bam'), output='{path[0]}/{sample[0]}.mmr.bam.bai') # Compute depth of coverage of the alignment with GATK DepthOfCoverage #pipeline.transform( # task_func=stages.alignment_coverage_gatk, # name='alignment_coverage_gatk', # input=output_from('sort_alignment'), # filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).sorted.bam'), # add_inputs=add_inputs([reference_file]), # output='{path[0]}/{sample[0]}.coverage_summary', # extras=['{path[0]}/{sample[0]}_coverage']) # Index the alignment with samtools pipeline.transform( task_func=stages.index_bam, name='index_alignment', input=output_from('sort_alignment'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).sorted.bam'), output='{path[0]}/{sample[0]}.sorted.bam.bai') # Generate alignment stats with bamtools pipeline.transform( task_func=stages.bamtools_stats, name='bamtools_stats', input=output_from('align_bwa'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).bam'), output='{path[0]}/{sample[0]}.stats.txt') # Extract the discordant paired-end alignments pipeline.transform( task_func=stages.extract_discordant_alignments, name='extract_discordant_alignments', input=output_from('align_bwa'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).bam'), output='{path[0]}/{sample[0]}.discordants.unsorted.bam') # Extract split-read alignments pipeline.transform( task_func=stages.extract_split_read_alignments, name='extract_split_read_alignments', input=output_from('align_bwa'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).bam'), output='{path[0]}/{sample[0]}.splitters.unsorted.bam') # Sort discordant reads. # Samtools annoyingly takes the prefix of the output bam name as its argument. # So we pass this as an extra argument. However Ruffus needs to know the full name # of the output bam file, so we pass that as the normal output parameter. pipeline.transform( task_func=stages.sort_bam, name='sort_discordants', input=output_from('extract_discordant_alignments'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).discordants.unsorted.bam'), extras=['{path[0]}/{sample[0]}.discordants'], output='{path[0]}/{sample[0]}.discordants.bam') # Index the sorted discordant bam with samtools # pipeline.transform( # task_func=stages.index_bam, # name='index_discordants', # input=output_from('sort_discordants'), # filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).discordants.bam'), # output='{path[0]}/{sample[0]}.discordants.bam.bai') # Sort discordant reads # Samtools annoyingly takes the prefix of the output bam name as its argument. # So we pass this as an extra argument. However Ruffus needs to know the full name # of the output bam file, so we pass that as the normal output parameter. pipeline.transform( task_func=stages.sort_bam, name='sort_splitters', input=output_from('extract_split_read_alignments'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).splitters.unsorted.bam'), extras=['{path[0]}/{sample[0]}.splitters'], output='{path[0]}/{sample[0]}.splitters.bam') # Index the sorted splitters bam with samtools # pipeline.transform( # task_func=stages.index_bam, # name='index_splitters', # input=output_from('sort_splitters'), # filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).splitters.bam'), # output='{path[0]}/{sample[0]}.splitters.bam.bai') # Call structural variants with lumpy (pipeline.transform( task_func=stages.structural_variants_lumpy, name='structural_variants_lumpy', input=output_from('sort_alignment'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).sorted.bam'), add_inputs=add_inputs(['{path[0]}/{sample[0]}.splitters.bam', '{path[0]}/{sample[0]}.discordants.bam']), output='{path[0]}/{sample[0]}.lumpy.vcf') .follows('sort_splitters') .follows('sort_discordants') .follows('index_alignment')) # Call genotypes on lumpy output using SVTyper #(pipeline.transform( # task_func=stages.genotype_svtyper, # name='genotype_svtyper', # input=output_from('structural_variants_lumpy'), # filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).lumpy.vcf'), # add_inputs=add_inputs(['{path[0]}/{sample[0]}.sorted.bam', '{path[0]}/{sample[0]}.splitters.bam']), # output='{path[0]}/{sample[0]}.svtyper.vcf') # .follows('align_bwa') # .follows('sort_splitters') # .follows('index_alignment') # .follows('index_splitters') # .follows('index_discordants')) # Call SVs with Socrates (pipeline.transform( task_func=stages.structural_variants_socrates, name='structural_variants_socrates', input=output_from('sort_alignment'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).sorted.bam'), # output goes to {path[0]}/socrates/ output='{path[0]}/socrates/results_Socrates_paired_{sample[0]}.sorted_long_sc_l25_q5_m5_i95.txt', extras=['{path[0]}']) .follows('index_reference_bowtie2')) # Join both read pair files using gustaf_mate_joining #pipeline.transform( # task_func=stages.gustaf_mate_joining, # name='gustaf_mate_joining', # input=output_from('fastq_to_fasta'), # # Match the R1 (read 1) FASTA file and grab the path and sample name. # # This will be the first input to the stage. # # We assume the sample name may consist of only alphanumeric # # characters. # filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+)_R1.fasta'), # # Add one more input to the stage: # # 1. The corresponding R2 FASTA file # add_inputs=add_inputs(['{path[0]}/{sample[0]}_R2.fasta']), # output='{path[0]}/{sample[0]}.joined_mates.fasta') # Call structural variants with pindel (pipeline.transform( task_func=stages.structural_variants_pindel, name='structural_variants_pindel', input=output_from('sort_alignment'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9]+).sorted.bam'), add_inputs=add_inputs(['{path[0]}/{sample[0]}.pindel_config.txt', reference_file]), output='{path[0]}/{sample[0]}.pindel') .follows('index_reference_bwa') .follows('index_reference_samtools')) return pipeline
def test_newstyle_ruffus (self): test_pipeline = Pipeline("test") test_pipeline.originate(task_func = make_start, output = [tempdir + 'start']) test_pipeline.split(task_func = split_start, input = make_start, output = tempdir + '*.split') test_pipeline.subdivide(task_func = subdivide_start, input = split_start, filter = formatter(), output = tempdir + '{basename[0]}_*.subdivided', extras = [tempdir + '{basename[0]}']) expected_files_after_1_runs = ["start", "0.split", "0_0.subdivided"] expected_files_after_2_runs = ["1.split", "0_1.subdivided", "1_0.subdivided"] expected_files_after_3_runs = ["2.split", "0_2.subdivided", "1_1.subdivided", "2_0.subdivided"] expected_files_after_4_runs = ["3.split", "0_3.subdivided", "1_2.subdivided", "2_1.subdivided", "3_0.subdivided"] print(" Run pipeline normally...") test_pipeline.run(multiprocess = 10, verbose=0) self.check_file_exists_or_not_as_expected(expected_files_after_1_runs, expected_files_after_2_runs) print(" Check that running again does nothing. (All up to date).") test_pipeline.run(multiprocess = 10, verbose=0) self.check_file_exists_or_not_as_expected(expected_files_after_1_runs, expected_files_after_2_runs) print(" Running again with forced tasks to generate more files...") test_pipeline.run(forcedtorun_tasks = ["test::make_start"], multiprocess = 10, verbose=0) self.check_file_exists_or_not_as_expected(expected_files_after_1_runs + expected_files_after_2_runs, expected_files_after_3_runs) print(" Check that running again does nothing. (All up to date).") test_pipeline.run(multiprocess = 10, verbose=0) self.check_file_exists_or_not_as_expected(expected_files_after_1_runs + expected_files_after_2_runs, expected_files_after_3_runs) print(" Running again with forced tasks to generate even more files...") test_pipeline.run(forcedtorun_tasks = make_start, multiprocess = 10, verbose=0) self.check_file_exists_or_not_as_expected(expected_files_after_1_runs + expected_files_after_2_runs + expected_files_after_3_runs, expected_files_after_4_runs) print(" Check that running again does nothing. (All up to date).") test_pipeline.run(multiprocess = 10, verbose=0) self.check_file_exists_or_not_as_expected(expected_files_after_1_runs + expected_files_after_2_runs + expected_files_after_3_runs, expected_files_after_4_runs)
def test_newstyle_task(self): test_pipeline = Pipeline("test") test_pipeline.files(task1, [[None, tempdir + "a.1"], [None, tempdir + "b.1"]])\ .follows(mkdir(tempdir)) test_pipeline.files(task2, [[None, tempdir + "c.1"], [None, tempdir + "d.1"]])\ .follows(mkdir(tempdir)) test_pipeline.transform(task_func=task3, input=task1, filter=regex(r"(.+)"), replace_inputs=ruffus.inputs( ((r"\1"), task2, "test_transform_inputs.*y")), output=r"\1.output") test_pipeline.merge(task4, (task3), tempdir + "final.output") test_pipeline.run([task4], multiprocess=10, verbose=0) correct_output = "{tempdir}a.1.output:test_transform_inputs.py,{tempdir}a.1,{tempdir}c.1,{tempdir}d.1;{tempdir}b.1.output:test_transform_inputs.py,{tempdir}b.1,{tempdir}c.1,{tempdir}d.1;".format( tempdir=tempdir) with open(tempdir + "final.output") as ff: real_output = ff.read() self.assertEqual(correct_output, real_output)
def test_newstyle_graphviz_dot(self): test_pipeline = Pipeline("test") test_pipeline.check_if_uptodate (Up_to_date_task1, lambda : (False, "")) test_pipeline.follows(Up_to_date_task2, Up_to_date_task1)\ .check_if_uptodate (lambda : (False, ""))\ .graphviz(URL='"http://cnn.com"', fillcolor = '"#FFCCCC"', color = '"#FF0000"', pencolor='"#FF0000"', fontcolor='"#4B6000"', label_suffix = "???", label_prefix = "What is this?<BR/> ", label = "<What <FONT COLOR=\"red\">is</FONT>this>", shape= "component", height = 1.5, peripheries = 5, style="dashed") test_pipeline.follows(Up_to_date_task3, Up_to_date_task2)\ .check_if_uptodate (lambda : (False, "")) test_pipeline.follows(Up_to_date_final_target, Up_to_date_task3)\ .check_if_uptodate (lambda : (False, "")) test_pipeline.follows(Explicitly_specified_task, Up_to_date_task1)\ .check_if_uptodate (lambda : (False, "")) test_pipeline.follows(Task_to_run1, Explicitly_specified_task) test_pipeline.follows(Task_to_run2, Task_to_run1) test_pipeline.follows(Task_to_run3, Task_to_run2) test_pipeline.follows(Up_to_date_task_forced_to_rerun, Task_to_run2)\ .check_if_uptodate (lambda : (False, "")) test_pipeline.follows(Final_target, Up_to_date_task_forced_to_rerun, Task_to_run3) test_pipeline.follows(Downstream_task1_ignored, Final_target) test_pipeline.follows(Downstream_task2_ignored, Final_target) if sys.hexversion >= 0x03000000: # everything is unicode in python3 s = BytesIO() else: s = StringIO() test_pipeline.printout_graph ( s, # use flowchart file name extension to decide flowchart format # e.g. svg, jpg etc. "dot", [Final_target, Up_to_date_final_target]) self.assertTrue('[URL="http://cnn.com", color="#FF0000", fillcolor="#FFCCCC", fontcolor="#4B6000", height=1.5, label=<What is this?<BR/> What <FONT COLOR="red">is</FONT>this???>, pencolor="#FF0000", peripheries=5, shape=component, style=dashed]' in s.getvalue().decode())
def test_newstyle_ruffus(self): test_pipeline = Pipeline("test") test_pipeline.files(create_random_numbers, None, tempdir + "random_numbers.list")\ .follows(mkdir(tempdir)) test_pipeline.split(task_func=step_4_split_numbers_into_chunks, input=tempdir + "random_numbers.list", output=tempdir + "*.chunks")\ .follows(create_random_numbers) test_pipeline.transform(task_func=step_5_calculate_sum_of_squares, input=step_4_split_numbers_into_chunks, filter=suffix(".chunks"), output=".sums") test_pipeline.merge(task_func=step_6_calculate_variance, input=step_5_calculate_sum_of_squares, output=os.path.join(tempdir, "variance.result"))\ .posttask(lambda: sys.stdout.write(" hooray\n"))\ .posttask(print_hooray_again, print_whoppee_again, touch_file(os.path.join(tempdir, "done"))) test_pipeline.run(multiprocess=50, verbose=0) output_file = os.path.join(tempdir, "variance.result") if not os.path.exists(output_file): raise Exception("Missing %s" % output_file)
def test_newstyle_task (self): """ Same as above but construct a new pipeline on the fly without decorators """ test_pipeline = Pipeline("test") test_pipeline.files(task1, None, tempdir + 'a.1')\ .follows(mkdir(tempdir)) test_pipeline.transform(task_func = task2, input = task1, filter = regex(r".*"), output = tempdir + 'b.1') test_pipeline.files(task3, task2, tempdir + 'c.1') test_pipeline.files(task4, [[None, tempdir + 'd.1'], [None, tempdir + 'e.1']])\ .follows(task3) test_pipeline.files(task5, task4, tempdir + "f.1") test_pipeline.run(multiprocess = 10, verbose = 0)
def make_pipeline_map(state): '''Build the pipeline by constructing stages and connecting them together''' # Build an empty pipeline pipeline = Pipeline(name='genericpipe') # Stages are dependent on the state stages = Stages(state) safe_make_dir('alignments') safe_make_dir('metrics') safe_make_dir('metrics/amplicon') safe_make_dir('metrics/summary') # The original FASTQ files fastq_files = glob.glob('fastqs/*') # This is a dummy stage. It is useful because it makes a node in the # pipeline graph, and gives the pipeline an obvious starting point. pipeline.originate(task_func=stages.original_fastqs, name='original_fastqs', output=fastq_files) # Align paired end reads in FASTQ to the reference producing a BAM file pipeline.transform( task_func=stages.align_bwa, name='align_bwa', input=output_from('original_fastqs'), # Match the R1 (read 1) FASTQ file and grab the path and sample name. # This will be the first input to the stage. filter=formatter('fastqs/(?P<sample>[a-zA-Z0-9_-]+)_R1.fastq.gz'), # Add one more inputs to the stage: # 1. The corresponding R2 FASTQ file add_inputs=add_inputs('fastqs/{sample[0]}_R2.fastq.gz'), # Add an "extra" argument to the state (beyond the inputs and outputs) # which is the sample name. This is needed within the stage for finding out # sample specific configuration options extras=['{sample[0]}'], # The output file name is the sample name with a .bam extension. output='alignments/{sample[0]}.sort.hq.bam') # generate mapping metrics. pipeline.transform( task_func=stages.generate_amplicon_metrics, name='generate_amplicon_metrics', input=output_from('align_bwa'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9_-]+).sort.hq.bam'), output='metrics/amplicon/{sample[0]}.amplicon-metrics.txt', extras=['{sample[0]}']) pipeline.transform( task_func=stages.intersect_bed, name='intersect_bed', input=output_from('align_bwa'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9_-]+).sort.hq.bam'), output='metrics/summary/{sample[0]}.intersectbed.bam') pipeline.transform(task_func=stages.coverage_bed, name='coverage_bed', input=output_from('intersect_bed'), filter=suffix('.intersectbed.bam'), output='.bedtools_hist_all.txt') pipeline.transform( task_func=stages.genome_reads, name='genome_reads', input=output_from('align_bwa'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9_-]+).sort.hq.bam'), output='metrics/summary/{sample[0]}.mapped_to_genome.txt') pipeline.transform(task_func=stages.target_reads, name='target_reads', input=output_from('intersect_bed'), filter=suffix('.intersectbed.bam'), output='.mapped_to_target.txt') pipeline.transform( task_func=stages.total_reads, name='total_reads', input=output_from('align_bwa'), filter=formatter('.+/(?P<sample>[a-zA-Z0-9_-]+).sort.hq.bam'), output='metrics/summary/{sample[0]}.total_raw_reads.txt') pipeline.collate( task_func=stages.generate_stats, name='generate_stats', input=output_from('coverage_bed', 'genome_reads', 'target_reads', 'total_reads'), #filter=regex(r'.+/(.+BS\d{4,6}.+)\..+\.txt'), filter=regex( r'.+/(.+)\.(bedtools_hist_all|mapped_to_genome|mapped_to_target|total_raw_reads)\.txt' ), output=r'metrics/summary/all_sample.summary.\1.txt', extras=[r'\1', 'all_sample.summary.txt']) summary_file = 'all_sample.summary.txt' (pipeline.originate(task_func=stages.grab_summary_file, name='grab_summary_file', output=summary_file).follows('generate_stats')) pipeline.transform(task_func=stages.filter_stats, name='filter_stats', input=output_from('grab_summary_file'), filter=suffix('.summary.txt'), output='.passed.summary.txt', extras=['all_sample.failed.summary.txt']) return pipeline