def ncusps(self): r""" Return the number of cusps of this subgroup `\Gamma_1(N)`. EXAMPLES:: sage: [Gamma1(n).ncusps() for n in [1..15]] [1, 2, 2, 3, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 16] sage: [Gamma1(n).ncusps() for n in prime_range(2, 100)] [2, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96] """ n = self.level() if n <= 4: return [None, 1, 2, 2, 3][n] return ZZ(sum([phi(d) * phi(n / d) / ZZ(2) for d in n.divisors()]))
def ncusps(self): r""" Return the number of cusps of this subgroup `\Gamma_1(N)`. EXAMPLES:: sage: [Gamma1(n).ncusps() for n in [1..15]] [1, 2, 2, 3, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 16] sage: [Gamma1(n).ncusps() for n in prime_range(2, 100)] [2, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96] """ n = self.level() if n <= 4: return [None, 1, 2, 2, 3][n] return ZZ(sum([phi(d)*phi(n/d)/ZZ(2) for d in n.divisors()]))
def dimension_eis(self, k=2, eps=None, algorithm="CohenOesterle"): r""" Return the dimension of the space of Eisenstein series forms for self, or the dimension of the subspace corresponding to the given character if one is supplied. INPUT: - ``k`` - an integer (default: 2), the weight. - ``eps`` - either None or a Dirichlet character modulo N, where N is the level of this group. If this is None, then the dimension of the whole space is returned; otherwise, the dimension of the subspace of Eisenstein series of character eps. - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This specifies the method to use in the case of nontrivial character: either the Cohen--Oesterle formula as described in Stein's book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer). AUTHORS: - William Stein - Cohen--Oesterle algorithm - Jordi Quer - algorithm based on GammaH subgroups - David Loeffler (2009) - code refactoring EXAMPLES: The following two computations use different algorithms:: sage: [Gamma1(36).dimension_eis(1,eps) for eps in DirichletGroup(36)] [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0] sage: [Gamma1(36).dimension_eis(1,eps,algorithm="Quer") for eps in DirichletGroup(36)] [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0] So do these:: sage: [Gamma1(48).dimension_eis(3,eps) for eps in DirichletGroup(48)] [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0] sage: [Gamma1(48).dimension_eis(3,eps,algorithm="Quer") for eps in DirichletGroup(48)] [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0] """ from .all import Gamma0 # first deal with special cases if eps is None: return GammaH_class.dimension_eis(self, k) N = self.level() K = eps.base_ring() eps = DirichletGroup(N, K)(eps) if eps.is_trivial(): return Gamma0(N).dimension_eis(k) # Note case of k = 0 and trivial character already dealt with separately, so k <= 0 here is valid: if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k % 2) == 0 and eps.is_odd()): return ZZ(0) if algorithm == "Quer": n = eps.order() dim = ZZ(0) for d in n.divisors(): G = GammaH_constructor(N, (eps**d).kernel()) dim = dim + moebius(d) * G.dimension_eis(k) return dim // phi(n) elif algorithm == "CohenOesterle": from sage.modular.dims import CohenOesterle j = 2 - k # We use the Cohen-Oesterle formula in a subtle way to # compute dim M_k(N,eps) (see Ch. 6 of William Stein's book on # computing with modular forms). alpha = -ZZ( K(Gamma0(N).index() * (j - 1) / ZZ(12)) + CohenOesterle(eps, j)) if k == 1: return alpha else: return alpha - self.dimension_cusp_forms(k, eps) else: #algorithm not in ["CohenOesterle", "Quer"]: raise ValueError("Unrecognised algorithm in dimension_eis")
def dimension_cusp_forms(self, k=2, eps=None, algorithm="CohenOesterle"): r""" Return the dimension of the space of cusp forms for self, or the dimension of the subspace corresponding to the given character if one is supplied. INPUT: - ``k`` - an integer (default: 2), the weight. - ``eps`` - either None or a Dirichlet character modulo N, where N is the level of this group. If this is None, then the dimension of the whole space is returned; otherwise, the dimension of the subspace of forms of character eps. - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This specifies the method to use in the case of nontrivial character: either the Cohen--Oesterle formula as described in Stein's book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer). Ignored for weight 1. EXAMPLES: We compute the same dimension in two different ways :: sage: K = CyclotomicField(3) sage: eps = DirichletGroup(7*43,K).0^2 sage: G = Gamma1(7*43) Via Cohen--Oesterle:: sage: Gamma1(7*43).dimension_cusp_forms(2, eps) 28 Via Quer's method:: sage: Gamma1(7*43).dimension_cusp_forms(2, eps, algorithm="Quer") 28 Some more examples:: sage: G.<eps> = DirichletGroup(9) sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [1..10]] [0, 0, 1, 0, 3, 0, 5, 0, 7, 0] sage: [Gamma1(9).dimension_cusp_forms(k, eps^2) for k in [1..10]] [0, 0, 0, 2, 0, 4, 0, 6, 0, 8] In weight 1, we can sometimes rule out cusp forms existing via Riemann-Roch, but if this does not work, we trigger computation of the cusp forms space via Schaeffer's algorithm:: sage: chi = [u for u in DirichletGroup(40) if u(-1) == -1 and u(21) == 1][0] sage: Gamma1(40).dimension_cusp_forms(1, chi) 0 sage: G = DirichletGroup(57); chi = (G.0) * (G.1)^6 sage: Gamma1(57).dimension_cusp_forms(1, chi) 1 """ from .all import Gamma0 # first deal with special cases if eps is None: return GammaH_class.dimension_cusp_forms(self, k) N = self.level() K = eps.base_ring() eps = DirichletGroup(N, K)(eps) if K.characteristic() != 0: raise NotImplementedError( 'dimension_cusp_forms() is only implemented for rings of characteristic 0' ) if eps.is_trivial(): return Gamma0(N).dimension_cusp_forms(k) if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k % 2) == 0 and eps.is_odd()): return ZZ(0) if k == 1: from sage.modular.modform.weight1 import dimension_wt1_cusp_forms return dimension_wt1_cusp_forms(eps) # now the main part if algorithm == "Quer": n = eps.order() dim = ZZ(0) for d in n.divisors(): G = GammaH_constructor(N, (eps**d).kernel()) dim = dim + moebius(d) * G.dimension_cusp_forms(k) return dim // phi(n) elif algorithm == "CohenOesterle": from sage.modular.dims import CohenOesterle return ZZ( K(Gamma0(N).index() * (k - 1) / ZZ(12)) + CohenOesterle(eps, k)) else: #algorithm not in ["CohenOesterle", "Quer"]: raise ValueError("Unrecognised algorithm in dimension_cusp_forms")
def dimension_eis(self, k=2, eps=None, algorithm="CohenOesterle"): r""" Return the dimension of the space of Eisenstein series forms for self, or the dimension of the subspace corresponding to the given character if one is supplied. INPUT: - ``k`` - an integer (default: 2), the weight. - ``eps`` - either None or a Dirichlet character modulo N, where N is the level of this group. If this is None, then the dimension of the whole space is returned; otherwise, the dimension of the subspace of Eisenstein series of character eps. - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This specifies the method to use in the case of nontrivial character: either the Cohen--Oesterle formula as described in Stein's book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer). AUTHORS: - William Stein - Cohen--Oesterle algorithm - Jordi Quer - algorithm based on GammaH subgroups - David Loeffler (2009) - code refactoring EXAMPLES: The following two computations use different algorithms: :: sage: [Gamma1(36).dimension_eis(1,eps) for eps in DirichletGroup(36)] [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0] sage: [Gamma1(36).dimension_eis(1,eps,algorithm="Quer") for eps in DirichletGroup(36)] [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0] So do these: :: sage: [Gamma1(48).dimension_eis(3,eps) for eps in DirichletGroup(48)] [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0] sage: [Gamma1(48).dimension_eis(3,eps,algorithm="Quer") for eps in DirichletGroup(48)] [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0] """ from all import Gamma0 # first deal with special cases if eps is None: return GammaH_class.dimension_eis(self, k) N = self.level() K = eps.base_ring() eps = DirichletGroup(N, K)(eps) if eps.is_trivial(): return Gamma0(N).dimension_eis(k) # Note case of k = 0 and trivial character already dealt with separately, so k <= 0 here is valid: if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()): return ZZ(0) if algorithm == "Quer": n = eps.order() dim = ZZ(0) for d in n.divisors(): G = GammaH_constructor(N,(eps**d).kernel()) dim = dim + moebius(d)*G.dimension_eis(k) return dim//phi(n) elif algorithm == "CohenOesterle": from sage.modular.dims import CohenOesterle j = 2-k # We use the Cohen-Oesterle formula in a subtle way to # compute dim M_k(N,eps) (see Ch. 6 of William Stein's book on # computing with modular forms). alpha = -ZZ( K(Gamma0(N).index()*(j-1)/ZZ(12)) + CohenOesterle(eps,j) ) if k == 1: return alpha else: return alpha - self.dimension_cusp_forms(k, eps) else: #algorithm not in ["CohenOesterle", "Quer"]: raise ValueError("Unrecognised algorithm in dimension_eis")
def dimension_cusp_forms(self, k=2, eps=None, algorithm="CohenOesterle"): r""" Return the dimension of the space of cusp forms for self, or the dimension of the subspace corresponding to the given character if one is supplied. INPUT: - ``k`` - an integer (default: 2), the weight. - ``eps`` - either None or a Dirichlet character modulo N, where N is the level of this group. If this is None, then the dimension of the whole space is returned; otherwise, the dimension of the subspace of forms of character eps. - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This specifies the method to use in the case of nontrivial character: either the Cohen--Oesterle formula as described in Stein's book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer). EXAMPLES: We compute the same dimension in two different ways :: sage: K = CyclotomicField(3) sage: eps = DirichletGroup(7*43,K).0^2 sage: G = Gamma1(7*43) Via Cohen--Oesterle: :: sage: Gamma1(7*43).dimension_cusp_forms(2, eps) 28 Via Quer's method: :: sage: Gamma1(7*43).dimension_cusp_forms(2, eps, algorithm="Quer") 28 Some more examples: :: sage: G.<eps> = DirichletGroup(9) sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [1..10]] [0, 0, 1, 0, 3, 0, 5, 0, 7, 0] sage: [Gamma1(9).dimension_cusp_forms(k, eps^2) for k in [1..10]] [0, 0, 0, 2, 0, 4, 0, 6, 0, 8] """ from all import Gamma0 # first deal with special cases if eps is None: return GammaH_class.dimension_cusp_forms(self, k) N = self.level() K = eps.base_ring() eps = DirichletGroup(N, K)(eps) if K.characteristic() != 0: raise NotImplementedError('dimension_cusp_forms() is only implemented for rings of characteristic 0') if eps.is_trivial(): return Gamma0(N).dimension_cusp_forms(k) if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()): return ZZ(0) if k == 1: try: n = self.dimension_cusp_forms(1) if n == 0: return ZZ(0) else: # never happens at present raise NotImplementedError("Computations of dimensions of spaces of weight 1 cusp forms not implemented at present") except NotImplementedError: raise # now the main part if algorithm == "Quer": n = eps.order() dim = ZZ(0) for d in n.divisors(): G = GammaH_constructor(N,(eps**d).kernel()) dim = dim + moebius(d)*G.dimension_cusp_forms(k) return dim//phi(n) elif algorithm == "CohenOesterle": from sage.modular.dims import CohenOesterle return ZZ( K(Gamma0(N).index() * (k-1)/ZZ(12)) + CohenOesterle(eps,k) ) else: #algorithm not in ["CohenOesterle", "Quer"]: raise ValueError("Unrecognised algorithm in dimension_cusp_forms")