Exemplo n.º 1
0
class AlgebraicWeight(WeightCharacter):
    r"""
    A point in weight space corresponding to a locally algebraic character, of
    the form `x \mapsto \chi(x) x^k` where `k` is an integer and `\chi` is a
    Dirichlet character modulo `p^n` for some `n`.

    TESTS::

        sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) # exact
        sage: w == loads(dumps(w))
        True
        sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, Qp(23)).0) # inexact
        sage: w == loads(dumps(w))
        True
        sage: w is loads(dumps(w)) # elements are not globally unique
        False
    """

    def __init__(self, parent, k, chi=None):
        r"""
        Create a locally algebraic weight-character.

        EXAMPLES::

            sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0)
            (13, 29, [2 + 2*29 + ... + O(29^20)])
        """
        WeightCharacter.__init__(self, parent)
        k = ZZ(k)
        self._k = k
        if chi is None: 
            chi = trivial_character(self._p, QQ)
        n = ZZ(chi.conductor())
        if n == 1: 
            n = self._p
        if not n.is_power_of(self._p):
            raise ValueError, "Character must have %s-power conductor" % p
        self._chi = DirichletGroup(n, chi.base_ring())(chi)

    def __call__(self, x):
        r"""
        Evaluate this character at an element of `\ZZ_p^\times`.

        EXAMPLES:

        Exact answers are returned when this is possible::

            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, QQ).0)
            sage: kappa(1)
            1
            sage: kappa(0)
            0
            sage: kappa(12)
            -106993205379072
            sage: kappa(-1)
            -1
            sage: kappa(13 + 4*29 + 11*29^2 + O(29^3))
            9 + 21*29 + 27*29^2 + O(29^3)

        When the character chi is defined over a p-adic field, the results returned are inexact::

            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
            sage: kappa(1)
            1 + O(29^20)
            sage: kappa(0)
            0
            sage: kappa(12)
            17 + 11*29 + 7*29^2 + 4*29^3 + 5*29^4 + 2*29^5 + 13*29^6 + 3*29^7 + 18*29^8 + 21*29^9 + 28*29^10 + 28*29^11 + 28*29^12 + 28*29^13 + 28*29^14 + 28*29^15 + 28*29^16 + 28*29^17 + 28*29^18 + 28*29^19 + O(29^20)
            sage: kappa(12) == -106993205379072
            True
            sage: kappa(-1) == -1
            True
            sage: kappa(13 + 4*29 + 11*29^2 + O(29^3))
            9 + 21*29 + 27*29^2 + O(29^3)
        """
        if isinstance(x, pAdicGenericElement):
            if x.parent().prime() != self._p:
                raise TypeError, "x must be an integer or a %s-adic integer" % self._p
            if self._p**(x.precision_absolute()) < self._chi.conductor():
                raise Exception, "Precision too low"
            xint = x.lift()
        else:
            xint = x
        if (xint % self._p == 0): return 0
        return self._chi(xint) * x**self._k 

    def k(self):
        r"""
        If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a
        Dirichlet character `\chi`, return `k`.

        EXAMPLE::
        
            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
            sage: kappa.k()
            13
        """
        return self._k

    def chi(self):
        r"""
        If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a
        Dirichlet character `\chi`, return `\chi`.
        
        EXAMPLE::
        
            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
            sage: kappa.chi()
            Dirichlet character modulo 29 of conductor 29 mapping 2 |--> 28 + 28*29 + 28*29^2 + ... + O(29^20)
        """
        return self._chi

    def _repr_(self):
        r"""
        String representation of self.

        EXAMPLES::

            sage: pAdicWeightSpace(17)(2)._repr_()
            '2'
            sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0)._repr_()
            '(2, 17, [-1])'
            sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0^2)._repr_()
            '2'
        """
        if self._chi.is_trivial():
            return "%s" % self._k
        else:
            return "(%s, %s, %s)" % (self._k, self._chi.modulus(), self._chi._repr_short_())

    def teichmuller_type(self):
        r"""
        Return the Teichmuller type of this weight-character `\kappa`, which is
        the unique `t \in \ZZ/(p-1)\ZZ` such that `\kappa(\mu) =
        \mu^t` for \mu a `(p-1)`-st root of 1.

        For `p = 2` this doesn't make sense, but we still want the Teichmuller
        type to correspond to the index of the component of weight space in
        which `\kappa` lies, so we return 1 if `\kappa` is odd and 0 otherwise.

        EXAMPLE::

            sage: pAdicWeightSpace(11)(2, DirichletGroup(11,QQ).0).teichmuller_type()
            7
            sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0).teichmuller_type()
            14
            sage: pAdicWeightSpace(2)(3, DirichletGroup(4,QQ).0).teichmuller_type()
            0
        """
        # Special case p == 2
        if self._p == 2:
            if self.is_even():
                return IntegerModRing(2)(0)
            else:
                return IntegerModRing(2)(1)
        m = IntegerModRing(self._p).multiplicative_generator()
        x = [y for y in IntegerModRing(self._chi.modulus()) if y == m and y**(self._p - 1) == 1]
        if len(x) != 1: raise ArithmeticError
        x = x[0]
        f = IntegerModRing(self._p)(self._chi(x)).log(m)
        return IntegerModRing(self._p - 1)(self._k + f)

    def Lvalue(self):
        r"""
        Return the value of the p-adic L-function of `\QQ` evaluated at
        this weight-character. If the character is `x \mapsto x^k \chi(x)`
        where `k > 0` and `\chi` has conductor a power of `p`, this is an
        element of the number field generated by the values of `\chi`, equal to
        the value of the complex L-function `L(1-k, \chi)`. If `\chi` is
        trivial, it is equal to `(1 - p^{k-1})\zeta(1-k)`.

        At present this is not implemented in any other cases, except the
        trivial character (for which the value is `\infty`).

        TODO: Implement this more generally using the Amice transform machinery
        in sage/schemes/elliptic_curves/padic_lseries.py, which should clearly
        be factored out into a separate class.

        EXAMPLES::

            sage: pAdicWeightSpace(7)(4).Lvalue() == (1 - 7^3)*zeta__exact(-3)
            True
            sage: pAdicWeightSpace(7)(5, DirichletGroup(7, Qp(7)).0^4).Lvalue()
            0
            sage: pAdicWeightSpace(7)(6, DirichletGroup(7, Qp(7)).0^4).Lvalue()
            1 + 2*7 + 7^2 + 3*7^3 + 3*7^5 + 4*7^6 + 2*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 6*7^11 + 2*7^12 + 3*7^13 + 5*7^14 + 6*7^15 + 5*7^16 + 3*7^17 + 6*7^18 + O(7^19)
        """
        if self._k > 0:
            return -self._chi.bernoulli(self._k)/self._k
        if self.is_trivial():
            return Infinity
        else:
            raise NotImplementedError, "Don't know how to compute value of this L-function"
Exemplo n.º 2
0
    def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"):
        r"""
        Dimension of the new subspace (or `p`-new subspace) of cusp forms of
        weight `k` and character `\varepsilon`.

        INPUT:

        - ``k`` - an integer (default: 2)

        - ``eps`` - a Dirichlet character

        -  ``p`` - a prime (default: 0); just the `p`-new subspace if given

        - ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Moebius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        EXAMPLES::

            sage: G = DirichletGroup(9)
            sage: eps = G.0^3
            sage: eps.conductor()
            3
            sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]
            sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]]
            [0, 0, 0, 2, 0, 4, 0, 6, 0]
            sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]

        Double check using modular symbols (independent calculation)::

            sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension()  for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]
            sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension()  for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]

        Another example at level 33::

            sage: G = DirichletGroup(33)
            sage: eps = G.1
            sage: eps.conductor()
            11
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]]
            [0, 4, 0]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]]
            [0, 4, 0]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]]
            [2, 0, 6]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]]
            [2, 0, 6]

        """

        if eps == None:
            return GammaH_class.dimension_new_cusp_forms(self, k, p)

        N = self.level()
        eps = DirichletGroup(N)(eps)

        from all import Gamma0

        if eps.is_trivial():
            return Gamma0(N).dimension_new_cusp_forms(k, p)

        from congroup_gammaH import mumu

        if p == 0 or N%p != 0 or eps.conductor().valuation(p) == N.valuation(p):
            D = [eps.conductor()*d for d in divisors(N//eps.conductor())]
            return sum([Gamma1_constructor(M).dimension_cusp_forms(k, eps.restrict(M), algorithm)*mumu(N//M) for M in D])
        eps_p = eps.restrict(N//p)
        old = Gamma1_constructor(N//p).dimension_cusp_forms(k, eps_p, algorithm)
        return self.dimension_cusp_forms(k, eps, algorithm) - 2*old
Exemplo n.º 3
0
    def dimension_new_cusp_forms(self,
                                 k=2,
                                 eps=None,
                                 p=0,
                                 algorithm="CohenOesterle"):
        r"""
        Dimension of the new subspace (or `p`-new subspace) of cusp forms of
        weight `k` and character `\varepsilon`.

        INPUT:

        - ``k`` - an integer (default: 2)

        - ``eps`` - a Dirichlet character

        -  ``p`` - a prime (default: 0); just the `p`-new subspace if given

        - ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Möbius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        EXAMPLES::

            sage: G = DirichletGroup(9)
            sage: eps = G.0^3
            sage: eps.conductor()
            3
            sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]
            sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]]
            [0, 0, 0, 2, 0, 4, 0, 6, 0]
            sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]

        Double check using modular symbols (independent calculation)::

            sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension()  for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]
            sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension()  for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]

        Another example at level 33::

            sage: G = DirichletGroup(33)
            sage: eps = G.1
            sage: eps.conductor()
            11
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]]
            [0, 4, 0]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]]
            [0, 4, 0]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]]
            [2, 0, 6]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]]
            [2, 0, 6]

        """

        if eps is None:
            return GammaH_class.dimension_new_cusp_forms(self, k, p)

        N = self.level()
        eps = DirichletGroup(N, eps.base_ring())(eps)

        if eps.is_trivial():
            from .all import Gamma0
            return Gamma0(N).dimension_new_cusp_forms(k, p)

        from .congroup_gammaH import mumu

        if p == 0 or N % p != 0 or eps.conductor().valuation(p) == N.valuation(
                p):
            D = [eps.conductor() * d for d in divisors(N // eps.conductor())]
            return sum([
                Gamma1_constructor(M).dimension_cusp_forms(
                    k, eps.restrict(M), algorithm) * mumu(N // M) for M in D
            ])
        eps_p = eps.restrict(N // p)
        old = Gamma1_constructor(N // p).dimension_cusp_forms(
            k, eps_p, algorithm)
        return self.dimension_cusp_forms(k, eps, algorithm) - 2 * old
Exemplo n.º 4
0
class AlgebraicWeight(WeightCharacter):
    r"""
    A point in weight space corresponding to a locally algebraic character, of
    the form `x \mapsto \chi(x) x^k` where `k` is an integer and `\chi` is a
    Dirichlet character modulo `p^n` for some `n`.

    TESTS::

        sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) # exact
        sage: w == loads(dumps(w))
        True
        sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, Qp(23)).0) # inexact
        sage: w == loads(dumps(w))
        True
        sage: w is loads(dumps(w)) # elements are not globally unique
        False
    """
    def __init__(self, parent, k, chi=None):
        r"""
        Create a locally algebraic weight-character.

        EXAMPLES::

            sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0)
            (13, 29, [2 + 2*29 + ... + O(29^20)])
        """
        WeightCharacter.__init__(self, parent)
        k = ZZ(k)
        self._k = k
        if chi is None:
            chi = trivial_character(self._p, QQ)
        n = ZZ(chi.conductor())
        if n == 1:
            n = self._p
        if not n.is_power_of(self._p):
            raise ValueError("Character must have %s-power conductor" % p)
        self._chi = DirichletGroup(n, chi.base_ring())(chi)

    def __call__(self, x):
        r"""
        Evaluate this character at an element of `\ZZ_p^\times`.

        EXAMPLES:

        Exact answers are returned when this is possible::

            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, QQ).0)
            sage: kappa(1)
            1
            sage: kappa(0)
            0
            sage: kappa(12)
            -106993205379072
            sage: kappa(-1)
            -1
            sage: kappa(13 + 4*29 + 11*29^2 + O(29^3))
            9 + 21*29 + 27*29^2 + O(29^3)

        When the character chi is defined over a p-adic field, the results returned are inexact::

            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
            sage: kappa(1)
            1 + O(29^20)
            sage: kappa(0)
            0
            sage: kappa(12)
            17 + 11*29 + 7*29^2 + 4*29^3 + 5*29^4 + 2*29^5 + 13*29^6 + 3*29^7 + 18*29^8 + 21*29^9 + 28*29^10 + 28*29^11 + 28*29^12 + 28*29^13 + 28*29^14 + 28*29^15 + 28*29^16 + 28*29^17 + 28*29^18 + 28*29^19 + O(29^20)
            sage: kappa(12) == -106993205379072
            True
            sage: kappa(-1) == -1
            True
            sage: kappa(13 + 4*29 + 11*29^2 + O(29^3))
            9 + 21*29 + 27*29^2 + O(29^3)
        """
        if isinstance(x, pAdicGenericElement):
            if x.parent().prime() != self._p:
                raise TypeError("x must be an integer or a %s-adic integer" %
                                self._p)
            if self._p**(x.precision_absolute()) < self._chi.conductor():
                raise PrecisionError("Precision too low")
            xint = x.lift()
        else:
            xint = x
        if (xint % self._p == 0): return 0
        return self._chi(xint) * x**self._k

    def k(self):
        r"""
        If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a
        Dirichlet character `\chi`, return `k`.

        EXAMPLES::

            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
            sage: kappa.k()
            13
        """
        return self._k

    def chi(self):
        r"""
        If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a
        Dirichlet character `\chi`, return `\chi`.

        EXAMPLES::

            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
            sage: kappa.chi()
            Dirichlet character modulo 29 of conductor 29 mapping 2 |--> 28 + 28*29 + 28*29^2 + ... + O(29^20)
        """
        return self._chi

    def __hash__(self):
        r"""
        TESTS::

            sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0)
            sage: hash(w)
            2363715643371367891  # 64-bit
            -1456525869          # 32-bit
        """
        if self._chi.is_trivial():
            return hash(self._k)
        else:
            return hash((self._k, self._chi.modulus(), self._chi))

    def _repr_(self):
        r"""
        String representation of self.

        EXAMPLES::

            sage: pAdicWeightSpace(17)(2)._repr_()
            '2'
            sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0)._repr_()
            '(2, 17, [-1])'
            sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0^2)._repr_()
            '2'
        """
        if self._chi.is_trivial():
            return "%s" % self._k
        else:
            return "(%s, %s, %s)" % (self._k, self._chi.modulus(),
                                     self._chi._repr_short_())

    def teichmuller_type(self):
        r"""
        Return the Teichmuller type of this weight-character `\kappa`, which is
        the unique `t \in \ZZ/(p-1)\ZZ` such that `\kappa(\mu) =
        \mu^t` for \mu a `(p-1)`-st root of 1.

        For `p = 2` this doesn't make sense, but we still want the Teichmuller
        type to correspond to the index of the component of weight space in
        which `\kappa` lies, so we return 1 if `\kappa` is odd and 0 otherwise.

        EXAMPLES::

            sage: pAdicWeightSpace(11)(2, DirichletGroup(11,QQ).0).teichmuller_type()
            7
            sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0).teichmuller_type()
            14
            sage: pAdicWeightSpace(2)(3, DirichletGroup(4,QQ).0).teichmuller_type()
            0
        """
        # Special case p == 2
        if self._p == 2:
            if self.is_even():
                return IntegerModRing(2)(0)
            else:
                return IntegerModRing(2)(1)
        m = IntegerModRing(self._p).multiplicative_generator()
        x = [
            y for y in IntegerModRing(self._chi.modulus())
            if y == m and y**(self._p - 1) == 1
        ]
        if len(x) != 1: raise ArithmeticError
        x = x[0]
        f = IntegerModRing(self._p)(self._chi(x)).log(m)
        return IntegerModRing(self._p - 1)(self._k + f)

    def Lvalue(self):
        r"""
        Return the value of the p-adic L-function of `\QQ` evaluated at
        this weight-character. If the character is `x \mapsto x^k \chi(x)`
        where `k > 0` and `\chi` has conductor a power of `p`, this is an
        element of the number field generated by the values of `\chi`, equal to
        the value of the complex L-function `L(1-k, \chi)`. If `\chi` is
        trivial, it is equal to `(1 - p^{k-1})\zeta(1-k)`.

        At present this is not implemented in any other cases, except the
        trivial character (for which the value is `\infty`).

        TODO: Implement this more generally using the Amice transform machinery
        in sage/schemes/elliptic_curves/padic_lseries.py, which should clearly
        be factored out into a separate class.

        EXAMPLES::

            sage: pAdicWeightSpace(7)(4).Lvalue() == (1 - 7^3)*zeta__exact(-3)
            True
            sage: pAdicWeightSpace(7)(5, DirichletGroup(7, Qp(7)).0^4).Lvalue()
            0
            sage: pAdicWeightSpace(7)(6, DirichletGroup(7, Qp(7)).0^4).Lvalue()
            1 + 2*7 + 7^2 + 3*7^3 + 3*7^5 + 4*7^6 + 2*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 6*7^11 + 2*7^12 + 3*7^13 + 5*7^14 + 6*7^15 + 5*7^16 + 3*7^17 + 6*7^18 + O(7^19)
        """
        if self._k > 0:
            return -self._chi.bernoulli(self._k) / self._k
        if self.is_trivial():
            return Infinity
        else:
            raise NotImplementedError(
                "Don't know how to compute value of this L-function")