class AlgebraicWeight(WeightCharacter): r""" A point in weight space corresponding to a locally algebraic character, of the form `x \mapsto \chi(x) x^k` where `k` is an integer and `\chi` is a Dirichlet character modulo `p^n` for some `n`. TESTS:: sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) # exact sage: w == loads(dumps(w)) True sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, Qp(23)).0) # inexact sage: w == loads(dumps(w)) True sage: w is loads(dumps(w)) # elements are not globally unique False """ def __init__(self, parent, k, chi=None): r""" Create a locally algebraic weight-character. EXAMPLES:: sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0) (13, 29, [2 + 2*29 + ... + O(29^20)]) """ WeightCharacter.__init__(self, parent) k = ZZ(k) self._k = k if chi is None: chi = trivial_character(self._p, QQ) n = ZZ(chi.conductor()) if n == 1: n = self._p if not n.is_power_of(self._p): raise ValueError, "Character must have %s-power conductor" % p self._chi = DirichletGroup(n, chi.base_ring())(chi) def __call__(self, x): r""" Evaluate this character at an element of `\ZZ_p^\times`. EXAMPLES: Exact answers are returned when this is possible:: sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, QQ).0) sage: kappa(1) 1 sage: kappa(0) 0 sage: kappa(12) -106993205379072 sage: kappa(-1) -1 sage: kappa(13 + 4*29 + 11*29^2 + O(29^3)) 9 + 21*29 + 27*29^2 + O(29^3) When the character chi is defined over a p-adic field, the results returned are inexact:: sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) sage: kappa(1) 1 + O(29^20) sage: kappa(0) 0 sage: kappa(12) 17 + 11*29 + 7*29^2 + 4*29^3 + 5*29^4 + 2*29^5 + 13*29^6 + 3*29^7 + 18*29^8 + 21*29^9 + 28*29^10 + 28*29^11 + 28*29^12 + 28*29^13 + 28*29^14 + 28*29^15 + 28*29^16 + 28*29^17 + 28*29^18 + 28*29^19 + O(29^20) sage: kappa(12) == -106993205379072 True sage: kappa(-1) == -1 True sage: kappa(13 + 4*29 + 11*29^2 + O(29^3)) 9 + 21*29 + 27*29^2 + O(29^3) """ if isinstance(x, pAdicGenericElement): if x.parent().prime() != self._p: raise TypeError, "x must be an integer or a %s-adic integer" % self._p if self._p**(x.precision_absolute()) < self._chi.conductor(): raise Exception, "Precision too low" xint = x.lift() else: xint = x if (xint % self._p == 0): return 0 return self._chi(xint) * x**self._k def k(self): r""" If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a Dirichlet character `\chi`, return `k`. EXAMPLE:: sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) sage: kappa.k() 13 """ return self._k def chi(self): r""" If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a Dirichlet character `\chi`, return `\chi`. EXAMPLE:: sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) sage: kappa.chi() Dirichlet character modulo 29 of conductor 29 mapping 2 |--> 28 + 28*29 + 28*29^2 + ... + O(29^20) """ return self._chi def _repr_(self): r""" String representation of self. EXAMPLES:: sage: pAdicWeightSpace(17)(2)._repr_() '2' sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0)._repr_() '(2, 17, [-1])' sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0^2)._repr_() '2' """ if self._chi.is_trivial(): return "%s" % self._k else: return "(%s, %s, %s)" % (self._k, self._chi.modulus(), self._chi._repr_short_()) def teichmuller_type(self): r""" Return the Teichmuller type of this weight-character `\kappa`, which is the unique `t \in \ZZ/(p-1)\ZZ` such that `\kappa(\mu) = \mu^t` for \mu a `(p-1)`-st root of 1. For `p = 2` this doesn't make sense, but we still want the Teichmuller type to correspond to the index of the component of weight space in which `\kappa` lies, so we return 1 if `\kappa` is odd and 0 otherwise. EXAMPLE:: sage: pAdicWeightSpace(11)(2, DirichletGroup(11,QQ).0).teichmuller_type() 7 sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0).teichmuller_type() 14 sage: pAdicWeightSpace(2)(3, DirichletGroup(4,QQ).0).teichmuller_type() 0 """ # Special case p == 2 if self._p == 2: if self.is_even(): return IntegerModRing(2)(0) else: return IntegerModRing(2)(1) m = IntegerModRing(self._p).multiplicative_generator() x = [y for y in IntegerModRing(self._chi.modulus()) if y == m and y**(self._p - 1) == 1] if len(x) != 1: raise ArithmeticError x = x[0] f = IntegerModRing(self._p)(self._chi(x)).log(m) return IntegerModRing(self._p - 1)(self._k + f) def Lvalue(self): r""" Return the value of the p-adic L-function of `\QQ` evaluated at this weight-character. If the character is `x \mapsto x^k \chi(x)` where `k > 0` and `\chi` has conductor a power of `p`, this is an element of the number field generated by the values of `\chi`, equal to the value of the complex L-function `L(1-k, \chi)`. If `\chi` is trivial, it is equal to `(1 - p^{k-1})\zeta(1-k)`. At present this is not implemented in any other cases, except the trivial character (for which the value is `\infty`). TODO: Implement this more generally using the Amice transform machinery in sage/schemes/elliptic_curves/padic_lseries.py, which should clearly be factored out into a separate class. EXAMPLES:: sage: pAdicWeightSpace(7)(4).Lvalue() == (1 - 7^3)*zeta__exact(-3) True sage: pAdicWeightSpace(7)(5, DirichletGroup(7, Qp(7)).0^4).Lvalue() 0 sage: pAdicWeightSpace(7)(6, DirichletGroup(7, Qp(7)).0^4).Lvalue() 1 + 2*7 + 7^2 + 3*7^3 + 3*7^5 + 4*7^6 + 2*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 6*7^11 + 2*7^12 + 3*7^13 + 5*7^14 + 6*7^15 + 5*7^16 + 3*7^17 + 6*7^18 + O(7^19) """ if self._k > 0: return -self._chi.bernoulli(self._k)/self._k if self.is_trivial(): return Infinity else: raise NotImplementedError, "Don't know how to compute value of this L-function"
def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"): r""" Dimension of the new subspace (or `p`-new subspace) of cusp forms of weight `k` and character `\varepsilon`. INPUT: - ``k`` - an integer (default: 2) - ``eps`` - a Dirichlet character - ``p`` - a prime (default: 0); just the `p`-new subspace if given - ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This specifies the method to use in the case of nontrivial character: either the Cohen--Oesterle formula as described in Stein's book, or by Moebius inversion using the subgroups GammaH (a method due to Jordi Quer). EXAMPLES:: sage: G = DirichletGroup(9) sage: eps = G.0^3 sage: eps.conductor() 3 sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]] [0, 0, 0, 2, 0, 4, 0, 6, 0] sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] Double check using modular symbols (independent calculation):: sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension() for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension() for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] Another example at level 33:: sage: G = DirichletGroup(33) sage: eps = G.1 sage: eps.conductor() 11 sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]] [0, 4, 0] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]] [0, 4, 0] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]] [2, 0, 6] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]] [2, 0, 6] """ if eps == None: return GammaH_class.dimension_new_cusp_forms(self, k, p) N = self.level() eps = DirichletGroup(N)(eps) from all import Gamma0 if eps.is_trivial(): return Gamma0(N).dimension_new_cusp_forms(k, p) from congroup_gammaH import mumu if p == 0 or N%p != 0 or eps.conductor().valuation(p) == N.valuation(p): D = [eps.conductor()*d for d in divisors(N//eps.conductor())] return sum([Gamma1_constructor(M).dimension_cusp_forms(k, eps.restrict(M), algorithm)*mumu(N//M) for M in D]) eps_p = eps.restrict(N//p) old = Gamma1_constructor(N//p).dimension_cusp_forms(k, eps_p, algorithm) return self.dimension_cusp_forms(k, eps, algorithm) - 2*old
def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"): r""" Dimension of the new subspace (or `p`-new subspace) of cusp forms of weight `k` and character `\varepsilon`. INPUT: - ``k`` - an integer (default: 2) - ``eps`` - a Dirichlet character - ``p`` - a prime (default: 0); just the `p`-new subspace if given - ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This specifies the method to use in the case of nontrivial character: either the Cohen--Oesterle formula as described in Stein's book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer). EXAMPLES:: sage: G = DirichletGroup(9) sage: eps = G.0^3 sage: eps.conductor() 3 sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]] [0, 0, 0, 2, 0, 4, 0, 6, 0] sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] Double check using modular symbols (independent calculation):: sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension() for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension() for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] Another example at level 33:: sage: G = DirichletGroup(33) sage: eps = G.1 sage: eps.conductor() 11 sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]] [0, 4, 0] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]] [0, 4, 0] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]] [2, 0, 6] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]] [2, 0, 6] """ if eps is None: return GammaH_class.dimension_new_cusp_forms(self, k, p) N = self.level() eps = DirichletGroup(N, eps.base_ring())(eps) if eps.is_trivial(): from .all import Gamma0 return Gamma0(N).dimension_new_cusp_forms(k, p) from .congroup_gammaH import mumu if p == 0 or N % p != 0 or eps.conductor().valuation(p) == N.valuation( p): D = [eps.conductor() * d for d in divisors(N // eps.conductor())] return sum([ Gamma1_constructor(M).dimension_cusp_forms( k, eps.restrict(M), algorithm) * mumu(N // M) for M in D ]) eps_p = eps.restrict(N // p) old = Gamma1_constructor(N // p).dimension_cusp_forms( k, eps_p, algorithm) return self.dimension_cusp_forms(k, eps, algorithm) - 2 * old
class AlgebraicWeight(WeightCharacter): r""" A point in weight space corresponding to a locally algebraic character, of the form `x \mapsto \chi(x) x^k` where `k` is an integer and `\chi` is a Dirichlet character modulo `p^n` for some `n`. TESTS:: sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) # exact sage: w == loads(dumps(w)) True sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, Qp(23)).0) # inexact sage: w == loads(dumps(w)) True sage: w is loads(dumps(w)) # elements are not globally unique False """ def __init__(self, parent, k, chi=None): r""" Create a locally algebraic weight-character. EXAMPLES:: sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0) (13, 29, [2 + 2*29 + ... + O(29^20)]) """ WeightCharacter.__init__(self, parent) k = ZZ(k) self._k = k if chi is None: chi = trivial_character(self._p, QQ) n = ZZ(chi.conductor()) if n == 1: n = self._p if not n.is_power_of(self._p): raise ValueError("Character must have %s-power conductor" % p) self._chi = DirichletGroup(n, chi.base_ring())(chi) def __call__(self, x): r""" Evaluate this character at an element of `\ZZ_p^\times`. EXAMPLES: Exact answers are returned when this is possible:: sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, QQ).0) sage: kappa(1) 1 sage: kappa(0) 0 sage: kappa(12) -106993205379072 sage: kappa(-1) -1 sage: kappa(13 + 4*29 + 11*29^2 + O(29^3)) 9 + 21*29 + 27*29^2 + O(29^3) When the character chi is defined over a p-adic field, the results returned are inexact:: sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) sage: kappa(1) 1 + O(29^20) sage: kappa(0) 0 sage: kappa(12) 17 + 11*29 + 7*29^2 + 4*29^3 + 5*29^4 + 2*29^5 + 13*29^6 + 3*29^7 + 18*29^8 + 21*29^9 + 28*29^10 + 28*29^11 + 28*29^12 + 28*29^13 + 28*29^14 + 28*29^15 + 28*29^16 + 28*29^17 + 28*29^18 + 28*29^19 + O(29^20) sage: kappa(12) == -106993205379072 True sage: kappa(-1) == -1 True sage: kappa(13 + 4*29 + 11*29^2 + O(29^3)) 9 + 21*29 + 27*29^2 + O(29^3) """ if isinstance(x, pAdicGenericElement): if x.parent().prime() != self._p: raise TypeError("x must be an integer or a %s-adic integer" % self._p) if self._p**(x.precision_absolute()) < self._chi.conductor(): raise PrecisionError("Precision too low") xint = x.lift() else: xint = x if (xint % self._p == 0): return 0 return self._chi(xint) * x**self._k def k(self): r""" If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a Dirichlet character `\chi`, return `k`. EXAMPLES:: sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) sage: kappa.k() 13 """ return self._k def chi(self): r""" If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a Dirichlet character `\chi`, return `\chi`. EXAMPLES:: sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14) sage: kappa.chi() Dirichlet character modulo 29 of conductor 29 mapping 2 |--> 28 + 28*29 + 28*29^2 + ... + O(29^20) """ return self._chi def __hash__(self): r""" TESTS:: sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) sage: hash(w) 2363715643371367891 # 64-bit -1456525869 # 32-bit """ if self._chi.is_trivial(): return hash(self._k) else: return hash((self._k, self._chi.modulus(), self._chi)) def _repr_(self): r""" String representation of self. EXAMPLES:: sage: pAdicWeightSpace(17)(2)._repr_() '2' sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0)._repr_() '(2, 17, [-1])' sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0^2)._repr_() '2' """ if self._chi.is_trivial(): return "%s" % self._k else: return "(%s, %s, %s)" % (self._k, self._chi.modulus(), self._chi._repr_short_()) def teichmuller_type(self): r""" Return the Teichmuller type of this weight-character `\kappa`, which is the unique `t \in \ZZ/(p-1)\ZZ` such that `\kappa(\mu) = \mu^t` for \mu a `(p-1)`-st root of 1. For `p = 2` this doesn't make sense, but we still want the Teichmuller type to correspond to the index of the component of weight space in which `\kappa` lies, so we return 1 if `\kappa` is odd and 0 otherwise. EXAMPLES:: sage: pAdicWeightSpace(11)(2, DirichletGroup(11,QQ).0).teichmuller_type() 7 sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0).teichmuller_type() 14 sage: pAdicWeightSpace(2)(3, DirichletGroup(4,QQ).0).teichmuller_type() 0 """ # Special case p == 2 if self._p == 2: if self.is_even(): return IntegerModRing(2)(0) else: return IntegerModRing(2)(1) m = IntegerModRing(self._p).multiplicative_generator() x = [ y for y in IntegerModRing(self._chi.modulus()) if y == m and y**(self._p - 1) == 1 ] if len(x) != 1: raise ArithmeticError x = x[0] f = IntegerModRing(self._p)(self._chi(x)).log(m) return IntegerModRing(self._p - 1)(self._k + f) def Lvalue(self): r""" Return the value of the p-adic L-function of `\QQ` evaluated at this weight-character. If the character is `x \mapsto x^k \chi(x)` where `k > 0` and `\chi` has conductor a power of `p`, this is an element of the number field generated by the values of `\chi`, equal to the value of the complex L-function `L(1-k, \chi)`. If `\chi` is trivial, it is equal to `(1 - p^{k-1})\zeta(1-k)`. At present this is not implemented in any other cases, except the trivial character (for which the value is `\infty`). TODO: Implement this more generally using the Amice transform machinery in sage/schemes/elliptic_curves/padic_lseries.py, which should clearly be factored out into a separate class. EXAMPLES:: sage: pAdicWeightSpace(7)(4).Lvalue() == (1 - 7^3)*zeta__exact(-3) True sage: pAdicWeightSpace(7)(5, DirichletGroup(7, Qp(7)).0^4).Lvalue() 0 sage: pAdicWeightSpace(7)(6, DirichletGroup(7, Qp(7)).0^4).Lvalue() 1 + 2*7 + 7^2 + 3*7^3 + 3*7^5 + 4*7^6 + 2*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 6*7^11 + 2*7^12 + 3*7^13 + 5*7^14 + 6*7^15 + 5*7^16 + 3*7^17 + 6*7^18 + O(7^19) """ if self._k > 0: return -self._chi.bernoulli(self._k) / self._k if self.is_trivial(): return Infinity else: raise NotImplementedError( "Don't know how to compute value of this L-function")