Exemplo n.º 1
0
    def __init__(self, n):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: G = groups.matrix.BinaryDihedral(4)
            sage: TestSuite(G).run()
        """
        self._n = n

        if n % 2 == 0:
            R = CyclotomicField(2 * n)
            zeta = R.gen()
            i = R.gen()**(n // 2)
        else:
            R = CyclotomicField(4 * n)
            zeta = R.gen()**2
            i = R.gen()**n

        MS = MatrixSpace(R, 2)
        zero = R.zero()
        gens = [MS([zeta, zero, zero, ~zeta]), MS([zero, i, i, zero])]

        from sage.libs.gap.libgap import libgap
        gap_gens = [libgap(matrix_gen) for matrix_gen in gens]
        gap_group = libgap.Group(gap_gens)

        FinitelyGeneratedMatrixGroup_gap.__init__(self,
                                                  ZZ(2),
                                                  R,
                                                  gap_group,
                                                  category=Groups().Finite())
Exemplo n.º 2
0
    def __init__(self, n):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: G = groups.matrix.BinaryDihedral(4)
            sage: TestSuite(G).run()
        """
        self._n = n

        if n % 2 == 0:
            R = CyclotomicField(2*n)
            zeta = R.gen()
            i = R.gen()**(n//2)
        else:
            R = CyclotomicField(4*n)
            zeta = R.gen()**2
            i = R.gen()**n

        MS = MatrixSpace(R, 2)
        zero = R.zero()
        gens = [ MS([zeta, zero, zero, ~zeta]), MS([zero, i, i, zero]) ]

        from sage.libs.gap.libgap import libgap
        gap_gens = [libgap(matrix_gen) for matrix_gen in gens]
        gap_group = libgap.Group(gap_gens)

        FinitelyGeneratedMatrixGroup_gap.__init__(self, ZZ(2), R, gap_group, category=Groups().Finite())
Exemplo n.º 3
0
    def to_matrix(self):
        """
        Return a matrix of ``self``.

        The colors are mapped to roots of unity.

        EXAMPLES::

            sage: C = ColoredPermutations(4, 3)
            sage: s1,s2,t = C.gens()
            sage: x = s1*s2*t*s2; x.one_line_form()
            [(1, 2), (0, 1), (0, 3)]
            sage: M = x.to_matrix(); M
            [    0     1     0]
            [zeta4     0     0]
            [    0     0     1]

        The matrix multiplication is in the *opposite* order::

            sage: M == s2.to_matrix()*t.to_matrix()*s2.to_matrix()*s1.to_matrix()
            True
        """
        Cp = CyclotomicField(self.parent()._m)
        g = Cp.gen()
        D = diagonal_matrix(Cp, [g**i for i in self._colors])
        return self._perm.to_matrix() * D
Exemplo n.º 4
0
    def to_matrix(self):
        """
        Return a matrix of ``self``.

        The colors are mapped to roots of unity.

        EXAMPLES::

            sage: C = ColoredPermutations(4, 3)
            sage: s1,s2,t = C.gens()
            sage: x = s1*s2*t*s2; x.one_line_form()
            [(1, 2), (0, 1), (0, 3)]
            sage: M = x.to_matrix(); M
            [    0     1     0]
            [zeta4     0     0]
            [    0     0     1]

        The matrix multiplication is in the *opposite* order::

            sage: M == s2.to_matrix()*t.to_matrix()*s2.to_matrix()*s1.to_matrix()
            True
        """
        Cp = CyclotomicField(self.parent()._m)
        g = Cp.gen()
        D = diagonal_matrix(Cp, [g ** i for i in self._colors])
        return self._perm.to_matrix() * D
Exemplo n.º 5
0
def _calcMatrixTrans(calc, tS, tT, lS, lT):
	"""
	See `calcMatrixTrans()` for the main documentation.
	This is the lower-level function which is wrapped through `persistent_cache`.
	This makes the cache more flexible about different parameters
	`R` to `calcMatrixTrans()`.
	"""

	try:
		ms = calc.calcMatrixTrans(tS, tT, lS, lT)
	except Exception:
		print (calc.params, calc.curlS, tS, tT, lS, lT)
		raise

	# Each matrix is for a zeta**i factor, where zeta is the n-th root of unity.
	# And n = calc.matrixCountTrans.
	assert len(ms) == calc.matrixCountTrans
	order = len(ms)

	K = CyclotomicField(order)
	zeta = K.gen()
	Kcoords = zeta.coordinates_in_terms_of_powers()

	assert len(K.power_basis()) == K.degree()
	new_ms = [matrix(QQ, ms[0].nrows(), ms[0].ncols()) for i in range(K.degree())]
	for l in range(order):
		coords = Kcoords(zeta**l)
		for i,m in enumerate(coords):
			new_ms[i] += ms[l] * m
	ms = new_ms

	denom = calc.matrixRowDenomTrans
	denom, ms = reduceNRow(denom=denom, mats=ms)

	return denom, order, ms
    def to_cyclotomic_field(self, R=None):
        r"""
        Return this element as an element of a cyclotomic field.

        EXAMPLES::

            sage: UCF = UniversalCyclotomicField()

            sage: UCF.gen(3).to_cyclotomic_field()
            zeta3
            sage: UCF.gen(3,2).to_cyclotomic_field()
            -zeta3 - 1

            sage: CF = CyclotomicField(5)
            sage: CF(E(5)) # indirect doctest
            zeta5

            sage: CF = CyclotomicField(7)
            sage: CF(E(5)) # indirect doctest
            Traceback (most recent call last):
            ...
            TypeError: Cannot coerce zeta5 into Cyclotomic Field of order 7 and
            degree 6

            sage: CF = CyclotomicField(10)
            sage: CF(E(5)) # indirect doctest
            zeta10^2

        Matrices are correctly dealt with::

            sage: M = Matrix(UCF,2,[E(3),E(4),E(5),E(6)]); M
            [   E(3)    E(4)]
            [   E(5) -E(3)^2]

            sage: Matrix(CyclotomicField(60),M) # indirect doctest
            [zeta60^10 - 1     zeta60^15]
            [    zeta60^12     zeta60^10]

        Using a non-standard embedding::

            sage: CF = CyclotomicField(5,embedding=CC(exp(4*pi*i/5)))
            sage: x = E(5)
            sage: CC(x)
            0.309016994374947 + 0.951056516295154*I
            sage: CC(CF(x))
            0.309016994374947 + 0.951056516295154*I
        """
        from sage.rings.number_field.number_field import CyclotomicField
        k = self._obj.Conductor().sage()
        Rcan = CyclotomicField(k)
        if R is None:
            R = Rcan
        obj = self._obj
        if obj.IsRat():
            return R(obj.sage())
        zeta = Rcan.gen()
        coeffs = obj.CoeffsCyc(k).sage()
        return R(sum(coeffs[a] * zeta**a for a in range(1,k)))
    def to_cyclotomic_field(self, R=None):
        r"""
        Return this element as an element of a cyclotomic field.

        EXAMPLES::

            sage: UCF = UniversalCyclotomicField()

            sage: UCF.gen(3).to_cyclotomic_field()
            zeta3
            sage: UCF.gen(3,2).to_cyclotomic_field()
            -zeta3 - 1

            sage: CF = CyclotomicField(5)
            sage: CF(E(5)) # indirect doctest
            zeta5

            sage: CF = CyclotomicField(7)
            sage: CF(E(5)) # indirect doctest
            Traceback (most recent call last):
            ...
            TypeError: Cannot coerce zeta5 into Cyclotomic Field of order 7 and
            degree 6

            sage: CF = CyclotomicField(10)
            sage: CF(E(5)) # indirect doctest
            zeta10^2

        Matrices are correctly dealt with::

            sage: M = Matrix(UCF,2,[E(3),E(4),E(5),E(6)]); M
            [   E(3)    E(4)]
            [   E(5) -E(3)^2]

            sage: Matrix(CyclotomicField(60),M) # indirect doctest
            [zeta60^10 - 1     zeta60^15]
            [    zeta60^12     zeta60^10]

        Using a non-standard embedding::

            sage: CF = CyclotomicField(5,embedding=CC(exp(4*pi*i/5)))
            sage: x = E(5)
            sage: CC(x)
            0.309016994374947 + 0.951056516295154*I
            sage: CC(CF(x))
            0.309016994374947 + 0.951056516295154*I
        """
        from sage.rings.number_field.number_field import CyclotomicField
        k = self._obj.Conductor().sage()
        Rcan = CyclotomicField(k)
        if R is None:
            R = Rcan
        obj = self._obj
        if obj.IsRat():
            return R(obj.sage())
        zeta = Rcan.gen()
        coeffs = obj.CoeffsCyc(k).sage()
        return R(sum(coeffs[a] * zeta**a for a in range(1, k)))
Exemplo n.º 8
0
    def _rank(self, K) :
        
        if K is QQ or K in NumberFields() :
            return len(_jacobi_forms_by_taylor_expansion_coords(self.__index, self.__weight, 0))

            ## This is the formula used by Poor and Yuen in Paramodular cusp forms
            if self.__weight == 2 :
                delta = len(self.__index.divisors()) // 2 - 1
            else :
                delta = 0
                
            return sum( ModularForms(1, self.__weight + 2 * j).dimension() + j**2 // (4 * self.__index)
                        for j in xrange(self.__index + 1) ) \
                   + delta
            

            ## This is the formula given by Skoruppa in 
            ## Jacobi forms of critical weight and Weil representations
            ##FIXME: There is some mistake here
            if self.__weight % 2 != 0 :
                ## Otherwise the space X(i**(n - 2 k)) is different
                ## See: Skoruppa, Jacobi forms of critical weight and Weil representations
                raise NotImplementedError
            
            m = self.__index
            K = CyclotomicField(24 * m, 'zeta')
            zeta = K.gen(0)
            
            quadform = lambda x : 6 * x**2
            bilinform = lambda x,y : quadform(x + y) - quadform(x) - quadform(y)
            
            T = diagonal_matrix([zeta**quadform(i) for i in xrange(2*m)])
            S =   sum(zeta**(-quadform(x)) for x in xrange(2 * m)) / (2 * m) \
                * matrix([[zeta**(-bilinform(j,i)) for j in xrange(2*m)] for i in xrange(2*m)])
            subspace_matrix_1 = matrix( [ [1 if j == i or j == 2*m - i else 0 for j in xrange(m + 1) ]
                                        for i in xrange(2*m)] )
            subspace_matrix_2 = zero_matrix(ZZ, m + 1, 2*m)
            subspace_matrix_2.set_block(0,0,identity_matrix(m+1))
            
            T = subspace_matrix_2 * T * subspace_matrix_1
            S = subspace_matrix_2 * S * subspace_matrix_1
            
            sqrt3 = (zeta**(4*m) - zeta**(-4*m)) * zeta**(-6*m) 
            rank =   (self.__weight - 1/2 - 1) / 2 * (m + 1) \
                   + 1/8 * (   zeta**(3*m * (2*self.__weight - 1)) * S.trace()
                             + zeta**(3*m * (1 - 2*self.__weight)) * S.trace().conjugate() ) \
                   + 2/(3*sqrt3) * (   zeta**(4 * m * self.__weight) * (S*T).trace()
                                     + zeta**(-4 * m * self.__weight) * (S*T).trace().conjugate() ) \
                   - sum((j**2 % (m+1))/(m+1) -1/2 for j in range(0,m+1))
            
            if self.__weight > 5 / 2 :
                return rank
            else :
                raise NotImplementedError
            
        raise NotImplementedError
Exemplo n.º 9
0
def sage_character_to_magma(chi,N=None,magma=None):
    if magma is None:
        magma = sage.interfaces.magma
    if N is None:
        N = chi.modulus()
    else:
        N = ZZ(N)
        chi = chi.extend(N)
    G = chi.parent()
    order = chi.order()
    gens = G.unit_gens()
    ElGm = magma.DirichletGroupFull(N)
    Kcyc = CyclotomicField(ElGm.BaseRing().CyclotomicOrder(),names='z')
    phi = ElGm.BaseRing().sage().hom([Kcyc.gen()])
    target = [chi(g) for g in gens]
    for chim in ElGm.Elements():
        if chim.Order().sage() == order:
            this = [phi(chim.Evaluate(g).sage()) for g in gens]
            if all((u == v for u, v in zip(this, target))):
                return chim
    raise RuntimeError("Should not get to this point")
Exemplo n.º 10
0
def toCyclPowerBase(M, order):
	"""
	Let's

		K = CyclotomicField(order).

	INPUT:

	- `M` -- A matrix over the cyclomotic field `K`.

	- `order` -- The order of `K`, the cyclomotic field.

	OUTPUT:

	- A list of matrices `ms` in power base where every matrix
	  is a factor to `zeta**i` where `zeta = K.gen()`
	  and `len(ms) == K.degree()`.

	"""

	K = CyclotomicField(order)
	zeta = K.gen()
	Kcoords = zeta.coordinates_in_terms_of_powers()

	assert len(K.power_basis()) == K.degree()
	ms = [matrix(QQ,M.nrows(),M.ncols()) for i in range(K.degree())]
	for y in range(M.nrows()):
		for x in range(M.ncols()):
			try:
				v_ = M[y,x]
				v = K(v_)
				coords = Kcoords(v)
			except TypeError:
				print "type of {1} ({2}) is not valid in Cyclomotic field of order {0}".format(order, M[y,x], type(M[y,x]))
				raise
			assert len(coords) == K.degree()
			for i in range(K.degree()):
				ms[i][y,x] = coords[i]
	return ms
Exemplo n.º 11
0
    def molien_series(self, chi=None, return_series=True, prec=20, variable='t'):
        r"""
        Compute the Molien series of this finite group with respect to the
        character ``chi``. It can be returned either as a rational function
        in one variable or a power series in one variable. The base field
        must be a finite field, the rationals, or a cyclotomic field.

        Note that the base field characteristic cannot divide the group
        order (i.e., the non-modular case).

        ALGORITHM:

        For a finite group `G` in characteristic zero we construct the Molien series as

        .. MATH::

            \frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\text{det}(I-tg)},

        where `I` is the identity matrix and `t` an indeterminate.

        For characteristic `p` not dividing the order of `G`, let `k` be the base field
        and `N` the order of `G`. Define `\lambda` as a primitive `N`-th root of unity over `k`
        and `\omega` as a primitive `N`-th root of unity over `\QQ`. For each `g \in G`
        define `k_i(g)` to be the positive integer such that
        `e_i = \lambda^{k_i(g)}` for each eigenvalue `e_i` of `g`. Then the Molien series
        is computed as

        .. MATH::

            \frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\prod_{i=1}^n(1 - t\omega^{k_i(g)})},

        where `t` is an indeterminant. [Dec1998]_

        INPUT:

        - ``chi`` -- (default: trivial character) a linear group character of this group

        - ``return_series`` -- boolean (default: ``True``) if ``True``, then returns
          the Molien series as a power series, ``False`` as a rational function

        - ``prec`` -- integer (default: 20); power series default precision

        - ``variable`` -- string (default: ``'t'``); Variable name for the Molien series

        OUTPUT: single variable rational function or power series with integer coefficients

        EXAMPLES::

            sage: MatrixGroup(matrix(QQ,2,2,[1,1,0,1])).molien_series()
            Traceback (most recent call last):
            ...
            NotImplementedError: only implemented for finite groups
            sage: MatrixGroup(matrix(GF(3),2,2,[1,1,0,1])).molien_series()
            Traceback (most recent call last):
            ...
            NotImplementedError: characteristic cannot divide group order

        Tetrahedral Group::

            sage: K.<i> = CyclotomicField(4)
            sage: Tetra =  MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [0,i, -i,0])
            sage: Tetra.molien_series(prec=30)
            1 + t^8 + 2*t^12 + t^16 + 2*t^20 + 3*t^24 + 2*t^28 + O(t^30)
            sage: mol = Tetra.molien_series(return_series=False); mol
            (t^8 - t^4 + 1)/(t^16 - t^12 - t^4 + 1)
            sage: mol.parent()
            Fraction Field of Univariate Polynomial Ring in t over Integer Ring
            sage: chi = Tetra.character(Tetra.character_table()[1])
            sage: Tetra.molien_series(chi, prec=30, variable='u')
            u^6 + u^14 + 2*u^18 + u^22 + 2*u^26 + 3*u^30 + 2*u^34 + O(u^36)
            sage: chi = Tetra.character(Tetra.character_table()[2])
            sage: Tetra.molien_series(chi)
            t^10 + t^14 + t^18 + 2*t^22 + 2*t^26 + O(t^30)

        ::

            sage: S3 = MatrixGroup(SymmetricGroup(3))
            sage: mol = S3.molien_series(prec=10); mol
            1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 7*t^6 + 8*t^7 + 10*t^8 + 12*t^9 + O(t^10)
            sage: mol.parent()
            Power Series Ring in t over Integer Ring

        Octahedral Group::

            sage: K.<v> = CyclotomicField(8)
            sage: a = v-v^3 #sqrt(2)
            sage: i = v^2
            sage: Octa = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [(1+i)/a,0, 0,(1-i)/a])
            sage: Octa.molien_series(prec=30)
            1 + t^8 + t^12 + t^16 + t^18 + t^20 + 2*t^24 + t^26 + t^28 + O(t^30)

        Icosahedral Group::

            sage: K.<v> = CyclotomicField(10)
            sage: z5 = v^2
            sage: i = z5^5
            sage: a = 2*z5^3 + 2*z5^2 + 1 #sqrt(5)
            sage: Ico = MatrixGroup([[z5^3,0, 0,z5^2], [0,1, -1,0], [(z5^4-z5)/a, (z5^2-z5^3)/a, (z5^2-z5^3)/a, -(z5^4-z5)/a]])
            sage: Ico.molien_series(prec=40)
            1 + t^12 + t^20 + t^24 + t^30 + t^32 + t^36 + O(t^40)

        ::

            sage: G = MatrixGroup(CyclicPermutationGroup(3))
            sage: chi = G.character(G.character_table()[1])
            sage: G.molien_series(chi, prec=10)
            t + 2*t^2 + 3*t^3 + 5*t^4 + 7*t^5 + 9*t^6 + 12*t^7 + 15*t^8 + 18*t^9 + 22*t^10 + O(t^11)

        ::

            sage: K = GF(5)
            sage: S = MatrixGroup(SymmetricGroup(4))
            sage: G = MatrixGroup([matrix(K,4,4,[K(y) for u in m.list() for y in u])for m in S.gens()])
            sage: G.molien_series(return_series=False)
            1/(t^10 - t^9 - t^8 + 2*t^5 - t^2 - t + 1)

        ::

            sage: i = GF(7)(3)
            sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
            sage: chi = G.character(G.character_table()[4])
            sage: G.molien_series(chi)
            3*t^5 + 6*t^11 + 9*t^17 + 12*t^23 + O(t^25)
        """
        if not self.is_finite():
            raise NotImplementedError("only implemented for finite groups")
        if chi is None:
            chi = self.trivial_character()
        M = self.matrix_space()
        R = FractionField(self.base_ring())
        N = self.order()
        if R.characteristic() == 0:
            P = PolynomialRing(R, variable)
            t = P.gen()
            #it is possible the character is over a larger cyclotomic field
            K = chi.values()[0].parent()
            if K.degree() != 1:
                if R.degree() != 1:
                    L = K.composite_fields(R)[0]
                else:
                    L = K
            else:
                L = R
            mol = P(0)
            for g in self:
                mol += L(chi(g)) / (M.identity_matrix()-t*g.matrix()).det().change_ring(L)
        elif R.characteristic().divides(N):
            raise NotImplementedError("characteristic cannot divide group order")
        else: #char p>0
            #find primitive Nth roots of unity over base ring and QQ
            F = cyclotomic_polynomial(N).change_ring(R)
            w = F.roots(ring=R.algebraic_closure(), multiplicities=False)[0]
            #don't need to extend further in this case since the order of
            #the roots of unity in the character divide the order of the group
            L = CyclotomicField(N, 'v')
            v = L.gen()
            #construct Molien series
            P = PolynomialRing(L, variable)
            t = P.gen()
            mol = P(0)
            for g in self:
                #construct Phi
                phi = L(chi(g))
                for e in g.matrix().eigenvalues():
                    #find power such that w**n  = e
                    n = 1
                    while w**n != e and n < N+1:
                        n += 1
                    #raise v to that power
                    phi *= (1-t*v**n)
                mol += P(1)/phi
        #We know the coefficients will be integers
        mol = mol.numerator().change_ring(ZZ) / mol.denominator().change_ring(ZZ)
        #divide by group order
        mol /= N
        if return_series:
            PS = PowerSeriesRing(ZZ, variable, default_prec=prec)
            return PS(mol)
        return mol
Exemplo n.º 12
0
    def molien_series(self,
                      chi=None,
                      return_series=True,
                      prec=20,
                      variable='t'):
        r"""
        Compute the Molien series of this finite group with respect to the
        character ``chi``. It can be returned either as a rational function
        in one variable or a power series in one variable. The base field
        must be a finite field, the rationals, or a cyclotomic field.

        Note that the base field characteristic cannot divide the group
        order (i.e., the non-modular case).

        ALGORITHM:

        For a finite group `G` in characteristic zero we construct the Molien series as

        .. MATH::

            \frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\text{det}(I-tg)},

        where `I` is the identity matrix and `t` an indeterminate.

        For characteristic `p` not dividing the order of `G`, let `k` be the base field
        and `N` the order of `G`. Define `\lambda` as a primitive `N`-th root of unity over `k`
        and `\omega` as a primitive `N`-th root of unity over `\QQ`. For each `g \in G`
        define `k_i(g)` to be the positive integer such that
        `e_i = \lambda^{k_i(g)}` for each eigenvalue `e_i` of `g`. Then the Molien series
        is computed as

        .. MATH::

            \frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\prod_{i=1}^n(1 - t\omega^{k_i(g)})},

        where `t` is an indeterminant. [Dec1998]_

        INPUT:

        - ``chi`` -- (default: trivial character) a linear group character of this group

        - ``return_series`` -- boolean (default: ``True``) if ``True``, then returns
          the Molien series as a power series, ``False`` as a rational function

        - ``prec`` -- integer (default: 20); power series default precision

        - ``variable`` -- string (default: ``'t'``); Variable name for the Molien series

        OUTPUT: single variable rational function or power series with integer coefficients

        EXAMPLES::

            sage: MatrixGroup(matrix(QQ,2,2,[1,1,0,1])).molien_series()
            Traceback (most recent call last):
            ...
            NotImplementedError: only implemented for finite groups
            sage: MatrixGroup(matrix(GF(3),2,2,[1,1,0,1])).molien_series()
            Traceback (most recent call last):
            ...
            NotImplementedError: characteristic cannot divide group order

        Tetrahedral Group::

            sage: K.<i> = CyclotomicField(4)
            sage: Tetra =  MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [0,i, -i,0])
            sage: Tetra.molien_series(prec=30)
            1 + t^8 + 2*t^12 + t^16 + 2*t^20 + 3*t^24 + 2*t^28 + O(t^30)
            sage: mol = Tetra.molien_series(return_series=False); mol
            (t^8 - t^4 + 1)/(t^16 - t^12 - t^4 + 1)
            sage: mol.parent()
            Fraction Field of Univariate Polynomial Ring in t over Integer Ring
            sage: chi = Tetra.character(Tetra.character_table()[1])
            sage: Tetra.molien_series(chi, prec=30, variable='u')
            u^6 + u^14 + 2*u^18 + u^22 + 2*u^26 + 3*u^30 + 2*u^34 + O(u^36)
            sage: chi = Tetra.character(Tetra.character_table()[2])
            sage: Tetra.molien_series(chi)
            t^10 + t^14 + t^18 + 2*t^22 + 2*t^26 + O(t^30)

        ::

            sage: S3 = MatrixGroup(SymmetricGroup(3))
            sage: mol = S3.molien_series(prec=10); mol
            1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 7*t^6 + 8*t^7 + 10*t^8 + 12*t^9 + O(t^10)
            sage: mol.parent()
            Power Series Ring in t over Integer Ring

        Octahedral Group::

            sage: K.<v> = CyclotomicField(8)
            sage: a = v-v^3 #sqrt(2)
            sage: i = v^2
            sage: Octa = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [(1+i)/a,0, 0,(1-i)/a])
            sage: Octa.molien_series(prec=30)
            1 + t^8 + t^12 + t^16 + t^18 + t^20 + 2*t^24 + t^26 + t^28 + O(t^30)

        Icosahedral Group::

            sage: K.<v> = CyclotomicField(10)
            sage: z5 = v^2
            sage: i = z5^5
            sage: a = 2*z5^3 + 2*z5^2 + 1 #sqrt(5)
            sage: Ico = MatrixGroup([[z5^3,0, 0,z5^2], [0,1, -1,0], [(z5^4-z5)/a, (z5^2-z5^3)/a, (z5^2-z5^3)/a, -(z5^4-z5)/a]])
            sage: Ico.molien_series(prec=40)
            1 + t^12 + t^20 + t^24 + t^30 + t^32 + t^36 + O(t^40)

        ::

            sage: G = MatrixGroup(CyclicPermutationGroup(3))
            sage: chi = G.character(G.character_table()[1])
            sage: G.molien_series(chi, prec=10)
            t + 2*t^2 + 3*t^3 + 5*t^4 + 7*t^5 + 9*t^6 + 12*t^7 + 15*t^8 + 18*t^9 + 22*t^10 + O(t^11)

        ::

            sage: K = GF(5)
            sage: S = MatrixGroup(SymmetricGroup(4))
            sage: G = MatrixGroup([matrix(K,4,4,[K(y) for u in m.list() for y in u])for m in S.gens()])
            sage: G.molien_series(return_series=False)
            1/(t^10 - t^9 - t^8 + 2*t^5 - t^2 - t + 1)

        ::

            sage: i = GF(7)(3)
            sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
            sage: chi = G.character(G.character_table()[4])
            sage: G.molien_series(chi)
            3*t^5 + 6*t^11 + 9*t^17 + 12*t^23 + O(t^25)
        """
        if not self.is_finite():
            raise NotImplementedError("only implemented for finite groups")
        if chi is None:
            chi = self.trivial_character()
        M = self.matrix_space()
        R = FractionField(self.base_ring())
        N = self.order()
        if R.characteristic() == 0:
            P = PolynomialRing(R, variable)
            t = P.gen()
            #it is possible the character is over a larger cyclotomic field
            K = chi.values()[0].parent()
            if K.degree() != 1:
                if R.degree() != 1:
                    L = K.composite_fields(R)[0]
                else:
                    L = K
            else:
                L = R
            mol = P(0)
            for g in self:
                mol += L(chi(g)) / (M.identity_matrix() -
                                    t * g.matrix()).det().change_ring(L)
        elif R.characteristic().divides(N):
            raise NotImplementedError(
                "characteristic cannot divide group order")
        else:  #char p>0
            #find primitive Nth roots of unity over base ring and QQ
            F = cyclotomic_polynomial(N).change_ring(R)
            w = F.roots(ring=R.algebraic_closure(), multiplicities=False)[0]
            #don't need to extend further in this case since the order of
            #the roots of unity in the character divide the order of the group
            L = CyclotomicField(N, 'v')
            v = L.gen()
            #construct Molien series
            P = PolynomialRing(L, variable)
            t = P.gen()
            mol = P(0)
            for g in self:
                #construct Phi
                phi = L(chi(g))
                for e in g.matrix().eigenvalues():
                    #find power such that w**n  = e
                    n = 1
                    while w**n != e and n < N + 1:
                        n += 1
                    #raise v to that power
                    phi *= (1 - t * v**n)
                mol += P(1) / phi
        #We know the coefficients will be integers
        mol = mol.numerator().change_ring(ZZ) / mol.denominator().change_ring(
            ZZ)
        #divide by group order
        mol /= N
        if return_series:
            PS = PowerSeriesRing(ZZ, variable, default_prec=prec)
            return PS(mol)
        return mol
Exemplo n.º 13
0
def attack(m, q, r=4, sigma=3.0, subfield_only=False):
    K = CyclotomicField(m, 'z')
    z = K.gen()
    OK = K.ring_of_integers()
    G = K.galois_group()

    n = euler_phi(m)
    mprime = m / r
    nprime = euler_phi(mprime)
    Gprime = [tau for tau in G if tau(z**r) == z**r]

    R = PolynomialRing(IntegerRing(), 'a')
    a = R.gen()
    phim = a**n + 1
    D = DiscreteGaussianDistributionIntegerSampler(sigma)

    print "sampling f,g"
    while True:
        f = sum([D() * z**i for i in range(n)])
        fx = sum([f[i] * a**i for i in range(n)])

        res = inverse(fx, phim, q)
        if res[0]:
            f_inv = sum([res[1][i] * z**i for i in range(n)])
            print "f_inv * f = %s (mod %d)" % ((f * f_inv).mod(q), q)
            break

    g = sum([D() * z**i for i in range(n)])
    print "done sampling f, g"

    #h = [g*f^{-1)]_q
    h = (g * f_inv).mod(q)

    lognorm_f = log(f.vector().norm(), 2)
    lognorm_g = log(g.vector().norm(), 2)

    print "f*h - g = %s" % (f * h - g).mod(q)
    print "log q = ", log(q, 2).n(precision)
    print "log |f| = %s, log |g| = %s" % (lognorm_f.n(precision),
                                          lognorm_g.n(precision))
    print "log |(f,g)| = ", log(
        sqrt(f.vector().norm()**2 + g.vector().norm()**2), 2).n(precision)

    print "begin computing N(f), N(g), N(h), Tr(h), fbar"
    fprime = norm(f, Gprime)
    gprime = norm(g, Gprime)
    hprime = norm(h, Gprime).mod(q)
    htr = trace(h, Gprime)
    fbar = prod([tau(f) for tau in Gprime[1:]])
    print "end computing N(f), N(g), N(h), Tr(h), fbar"

    lognorm_fp = log(fprime.vector().norm(), 2)
    lognorm_gp = log(gprime.vector().norm(), 2)

    print "%d * log |f| - log |f'| = %s" % (r, r * lognorm_f.n(precision) -
                                            lognorm_fp.n(precision))
    print "log |(f', g')| = ", log(
        sqrt(fprime.vector().norm()**2 + gprime.vector().norm()**2),
        2).n(precision)
    print "log |N(f), Tr(g fbar)| = ", log(
        sqrt(fprime.vector().norm()**2 +
             trace(g * fbar, Gprime).vector().norm()**2), 2).n(precision)

    #(fprime, gprime) lies in the lattice \Lambda_hprime^q
    print "f'*h' - g' = %s " % (hprime * fprime - gprime).mod(q)
    print "N(f) Tr(h) - Tr(g fbar) = %s" % (htr * fprime -
                                            trace(g * fbar, Gprime)).mod(q)

    if not subfield_only:
        ntru_full = NTRU(h, K, q)
        full_sv = ntru_full.shortest_vector()

        print "log |v| = %s" % log(full_sv.norm(), 2).n(precision)

    ntru_subfield = NTRU_subfield(hprime, q, nprime, r)
    ntru_trace_subfield = NTRU_subfield(htr, q, nprime, r)

    print "begin computing Shortest Vector of subfield lattice"
    norm_sv = ntru_subfield.shortest_vector()
    tr_sv = ntru_trace_subfield.shortest_vector()
    print "end computing Shortest Vector of subfield lattice"

    norm_xp = sum(
        [coerce(Integer, norm_sv[i]) * z**(r * i) for i in range(nprime)])
    tr_xp = sum(
        [coerce(Integer, tr_sv[i]) * z**(r * i) for i in range(nprime)])

    print "Norm map: log |(x',y')| = ", log(norm_sv.norm(), 2).n(precision)
    print "Trace map: log |(x', y')| = ", log(tr_sv.norm(), 2).n(precision)
    #test if xprime belongs to <fprime>
    mat = []
    for i in range(nprime):
        coordinate = (fprime * z**(r * i)).vector().list()
        mat.append([coordinate[r * j] for j in range(nprime)])
    FL = IntegerLattice(mat)
    print norm_sv[:nprime] in FL
    print tr_sv[:nprime] in FL

    norm_x = norm_xp
    norm_y = mod_q(norm_x * h, q)

    tr_x = tr_xp
    tr_y = mod_q(tr_x * h, q)

    print "Norm map: log |(x,y)| = ", log(
        sqrt(norm_x.vector().norm()**2 + norm_y.vector().norm()**2),
        2).n(precision)
    print "Trace map: log |(x,y)| = ", log(
        sqrt(tr_x.vector().norm()**2 + tr_y.vector().norm()**2),
        2).n(precision)
Exemplo n.º 14
0
def Omega_ge(a, exponents):
    r"""
    Return `\Omega_{\ge}` of the expression specified by the input.

    To be more precise, calculate

    .. MATH::

        \Omega_{\ge} \frac{\mu^a}{
        (1 - z_0 \mu^{e_0}) \dots (1 - z_{n-1} \mu^{e_{n-1}})}

    and return its numerator and a factorization of its denominator.
    Note that `z_0`, ..., `z_{n-1}` only appear in the output, but not in the
    input.

    INPUT:

    - ``a`` -- an integer

    - ``exponents`` -- a tuple of integers

    OUTPUT:

    A pair representing a quotient as follows: Its first component is the
    numerator as a Laurent polynomial, its second component a factorization
    of the denominator as a tuple of Laurent polynomials, where each
    Laurent polynomial `z` represents a factor `1 - z`.

    The parents of these Laurent polynomials is always a
    Laurent polynomial ring in `z_0`, ..., `z_{n-1}` over `\ZZ`, where
    `n` is the length of ``exponents``.

    EXAMPLES::

        sage: from sage.rings.polynomial.omega import Omega_ge
        sage: Omega_ge(0, (1, -2))
        (1, (z0, z0^2*z1))
        sage: Omega_ge(0, (1, -3))
        (1, (z0, z0^3*z1))
        sage: Omega_ge(0, (1, -4))
        (1, (z0, z0^4*z1))

        sage: Omega_ge(0, (2, -1))
        (z0*z1 + 1, (z0, z0*z1^2))
        sage: Omega_ge(0, (3, -1))
        (z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3))
        sage: Omega_ge(0, (4, -1))
        (z0*z1^3 + z0*z1^2 + z0*z1 + 1, (z0, z0*z1^4))

        sage: Omega_ge(0, (1, 1, -2))
        (-z0^2*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2))
        sage: Omega_ge(0, (2, -1, -1))
        (z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2))
        sage: Omega_ge(0, (2, 1, -1))
        (-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))

    ::

        sage: Omega_ge(0, (2, -2))
        (-z0*z1 + 1, (z0, z0*z1, z0*z1))
        sage: Omega_ge(0, (2, -3))
        (z0^2*z1 + 1, (z0, z0^3*z1^2))
        sage: Omega_ge(0, (3, 1, -3))
        (-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2
         + z0^2*z2^2 - 2*z0*z2 + 1,
         (z0, z1, z0*z2, z0*z2, z0*z2, z1^3*z2))

    ::

        sage: Omega_ge(0, (3, 6, -1))
        (-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 +
         z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 -
         z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1,
         (z0, z1, z0*z2^3, z1*z2^6))

    TESTS::

        sage: Omega_ge(0, (2, 2, 1, 1, 1, -1, -1))[0].number_of_terms()  # long time
        1695
        sage: Omega_ge(0, (2, 2, 1, 1, 1, 1, 1, -1, -1))[0].number_of_terms()  # not tested (too long, 1 min)
        27837

    ::

        sage: Omega_ge(1, (2,))
        (1, (z0,))
    """
    import logging
    logger = logging.getLogger(__name__)
    logger.info('Omega_ge: a=%s, exponents=%s', a, exponents)

    from sage.arith.all import lcm, srange
    from sage.rings.integer_ring import ZZ
    from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing
    from sage.rings.number_field.number_field import CyclotomicField

    if not exponents or any(e == 0 for e in exponents):
        raise NotImplementedError

    rou = sorted(set(abs(e) for e in exponents) - set([1]))
    ellcm = lcm(rou)
    B = CyclotomicField(ellcm, 'zeta')
    zeta = B.gen()
    z_names = tuple('z{}'.format(i) for i in range(len(exponents)))
    L = LaurentPolynomialRing(B, ('t', ) + z_names, len(z_names) + 1)
    t = L.gens()[0]
    Z = LaurentPolynomialRing(ZZ, z_names, len(z_names))
    powers = {i: L(zeta**(ellcm // i)) for i in rou}
    powers[2] = L(-1)
    powers[1] = L(1)
    exponents_and_values = tuple(
        (e, tuple(powers[abs(e)]**j * z for j in srange(abs(e))))
        for z, e in zip(L.gens()[1:], exponents))
    x = tuple(v for e, v in exponents_and_values if e > 0)
    y = tuple(v for e, v in exponents_and_values if e < 0)

    def subs_power(expression, var, exponent):
        r"""
        Substitute ``var^exponent`` by ``var`` in ``expression``.

        It is assumed that ``var`` only occurs with exponents
        divisible by ``exponent``.
        """
        p = tuple(var.dict().popitem()[0]).index(
            1)  # var is the p-th generator

        def subs_e(e):
            e = list(e)
            assert e[p] % exponent == 0
            e[p] = e[p] // exponent
            return tuple(e)

        parent = expression.parent()
        result = parent(
            {subs_e(e): c
             for e, c in iteritems(expression.dict())})
        return result

    def de_power(expression):
        expression = Z(expression)
        for e, var in zip(exponents, Z.gens()):
            if abs(e) == 1:
                continue
            expression = subs_power(expression, var, abs(e))
        return expression

    logger.debug('Omega_ge: preparing denominator')
    factors_denominator = tuple(
        de_power(1 - factor) for factor in _Omega_factors_denominator_(x, y))

    logger.debug('Omega_ge: preparing numerator')
    numerator = de_power(_Omega_numerator_(a, x, y, t))

    logger.info('Omega_ge: completed')
    return numerator, factors_denominator
Exemplo n.º 15
0
def Omega_ge(a, exponents):
    r"""
    Return `\Omega_{\ge}` of the expression specified by the input.

    To be more precise, calculate

    .. MATH::

        \Omega_{\ge} \frac{\mu^a}{
        (1 - z_0 \mu^{e_0}) \dots (1 - z_{n-1} \mu^{e_{n-1}})}

    and return its numerator and a factorization of its denominator.
    Note that `z_0`, ..., `z_{n-1}` only appear in the output, but not in the
    input.

    INPUT:

    - ``a`` -- an integer

    - ``exponents`` -- a tuple of integers

    OUTPUT:

    A pair representing a quotient as follows: Its first component is the
    numerator as a Laurent polynomial, its second component a factorization
    of the denominator as a tuple of Laurent polynomials, where each
    Laurent polynomial `z` represents a factor `1 - z`.

    The parents of these Laurent polynomials is always a
    Laurent polynomial ring in `z_0`, ..., `z_{n-1}` over `\ZZ`, where
    `n` is the length of ``exponents``.

    EXAMPLES::

        sage: from sage.rings.polynomial.omega import Omega_ge
        sage: Omega_ge(0, (1, -2))
        (1, (z0, z0^2*z1))
        sage: Omega_ge(0, (1, -3))
        (1, (z0, z0^3*z1))
        sage: Omega_ge(0, (1, -4))
        (1, (z0, z0^4*z1))

        sage: Omega_ge(0, (2, -1))
        (z0*z1 + 1, (z0, z0*z1^2))
        sage: Omega_ge(0, (3, -1))
        (z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3))
        sage: Omega_ge(0, (4, -1))
        (z0*z1^3 + z0*z1^2 + z0*z1 + 1, (z0, z0*z1^4))

        sage: Omega_ge(0, (1, 1, -2))
        (-z0^2*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2))
        sage: Omega_ge(0, (2, -1, -1))
        (z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2))
        sage: Omega_ge(0, (2, 1, -1))
        (-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))

    ::

        sage: Omega_ge(0, (2, -2))
        (-z0*z1 + 1, (z0, z0*z1, z0*z1))
        sage: Omega_ge(0, (2, -3))
        (z0^2*z1 + 1, (z0, z0^3*z1^2))
        sage: Omega_ge(0, (3, 1, -3))
        (-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2
         + z0^2*z2^2 - 2*z0*z2 + 1,
         (z0, z1, z0*z2, z0*z2, z0*z2, z1^3*z2))

    ::

        sage: Omega_ge(0, (3, 6, -1))
        (-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 +
         z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 -
         z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1,
         (z0, z1, z0*z2^3, z1*z2^6))

    TESTS::

        sage: Omega_ge(0, (2, 2, 1, 1, 1, 1, 1, -1, -1))[0].number_of_terms()  # long time
        27837

    ::

        sage: Omega_ge(1, (2,))
        (1, (z0,))
    """
    import logging
    logger = logging.getLogger(__name__)
    logger.info('Omega_ge: a=%s, exponents=%s', a, exponents)

    from sage.arith.all import lcm, srange
    from sage.rings.integer_ring import ZZ
    from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing
    from sage.rings.number_field.number_field import CyclotomicField

    if not exponents or any(e == 0 for e in exponents):
        raise NotImplementedError

    rou = sorted(set(abs(e) for e in exponents) - set([1]))
    ellcm = lcm(rou)
    B = CyclotomicField(ellcm, 'zeta')
    zeta = B.gen()
    z_names = tuple('z{}'.format(i) for i in range(len(exponents)))
    L = LaurentPolynomialRing(B, ('t',) + z_names, len(z_names) + 1)
    t = L.gens()[0]
    Z = LaurentPolynomialRing(ZZ, z_names, len(z_names))
    powers = {i: L(zeta**(ellcm//i)) for i in rou}
    powers[2] = L(-1)
    powers[1] = L(1)
    exponents_and_values = tuple(
        (e, tuple(powers[abs(e)]**j * z for j in srange(abs(e))))
        for z, e in zip(L.gens()[1:], exponents))
    x = tuple(v for e, v in exponents_and_values if e > 0)
    y = tuple(v for e, v in exponents_and_values if e < 0)

    def subs_power(expression, var, exponent):
        r"""
        Substitute ``var^exponent`` by ``var`` in ``expression``.

        It is assumed that ``var`` only occurs with exponents
        divisible by ``exponent``.
        """
        p = tuple(var.dict().popitem()[0]).index(1)  # var is the p-th generator
        def subs_e(e):
            e = list(e)
            assert e[p] % exponent == 0
            e[p] = e[p] // exponent
            return tuple(e)
        parent = expression.parent()
        result = parent({subs_e(e): c for e, c in iteritems(expression.dict())})
        return result

    def de_power(expression):
        expression = Z(expression)
        for e, var in zip(exponents, Z.gens()):
            if abs(e) == 1:
                continue
            expression = subs_power(expression, var, abs(e))
        return expression

    logger.debug('Omega_ge: preparing denominator')
    factors_denominator = tuple(de_power(1 - factor)
                                for factor in _Omega_factors_denominator_(x, y))

    logger.debug('Omega_ge: preparing numerator')
    numerator = de_power(_Omega_numerator_(a, x, y, t))

    logger.info('Omega_ge: completed')
    return numerator, factors_denominator