Exemplo n.º 1
0
def binning(data, quantity, show_plot=False, save_plot=False):
    """
    Calculate autocorrelation time, mean and error for a quantity using the binning method.

    The bins become uncorrelated when the error approaches a constant.
    These uncorrelated bins can be used for jackknife resampling.
    """
    original_length = len(data)
    errors = []
    errors.append((original_length, calculate_error(data)))
    while len(data) > 128:
        data = np.asarray([(a + b) / 2 for a, b in zip(data[::2], data[1::2])])
        errors.append((len(data), calculate_error(data)))
    autocorrelation_time = 0.5 * ((errors[-1][1] / errors[0][1])**2 - 1)
    if np.isnan(autocorrelation_time) or autocorrelation_time <= 0:
        autocorrelation_time = 1

    if show_plot:
        # plt.title(r'${0}$'.format('\mathrm{' + quantity.replace(' ', '\ ') + '\ Error}'))
        plt.xlabel(r'$\mathrm{Number\ of\ Data\ Points}$')
        plt.ylabel(r'$\mathrm{Error}$')
        plt.xlim(original_length, 1)
        plt.ylim(ymin=0, ymax=max(errors, key=lambda x: x[1])[1] * 1.15)
        plt.semilogx([e[0] for e in errors], [e[1] for e in errors], basex=2)
        sns.despine()
        if save_plot:
            plt.savefig("{0}/{1}_{2}_binning_error.pdf".format(SAVE_LOCATION, time.strftime("%Y%m%d%H%M%S", time.localtime(time.time())), quantity.replace(" ", "_"), bbox_inches='tight'))
        plt.show()

    return np.mean(data), errors[-1][1], autocorrelation_time, data
Exemplo n.º 2
0
def scatter(x, y, equal=False, xlabel=None, ylabel=None, xinvert=False, yinvert=False):
    """
    Plot a scatter with simple formatting options
    """
    plt.scatter(x, y, 200, color=[0.3, 0.3, 0.3], edgecolors="white", linewidth=1, zorder=2)
    sns.despine()
    if xlabel:
        plt.xlabel(xlabel)
    if ylabel:
        plt.ylabel(ylabel)
    if equal:
        plt.axes().set_aspect("equal")
        plt.plot([0, max([x.max(), y.max()])], [0, max([x.max(), y.max()])], color=[0.6, 0.6, 0.6], zorder=1)
        bmin = min([x.min(), y.min()])
        bmax = max([x.max(), y.max()])
        rng = abs(bmax - bmin)
        plt.xlim([bmin - rng * 0.05, bmax + rng * 0.05])
        plt.ylim([bmin - rng * 0.05, bmax + rng * 0.05])
    else:
        xrng = abs(x.max() - x.min())
        yrng = abs(y.max() - y.min())
        plt.xlim([x.min() - xrng * 0.05, x.max() + xrng * 0.05])
        plt.ylim([y.min() - yrng * 0.05, y.max() + yrng * 0.05])
    if xinvert:
        plt.gca().invert_xaxis()
    if yinvert:
        plt.gca().invert_yaxis()
def plot_by_groups(df, plot_dir, af_key, config):
    """Plot allele frequencies of grouped/paired samples.
    """
    out_file = os.path.join(plot_dir, "cohort-group-af-comparison.pdf")
    df["sample_label"] = df.apply(lambda row: "%s\n%s" % (row["group_class"], row["sample"]), axis=1)
    sns.despine()
    sns.set(style="white")
    with PdfPages(out_file) as pdf_out:
        for (cohort, group), cur_df in df.groupby(["cohort", "group"]):
            labels = sorted(list(cur_df["sample_label"].unique()))
            labels.reverse()
            cur_df["sample_label"].categories = labels
            g = sns.violinplot(x=af_key, y="sample_label", data=cur_df, inner=None, bw=.1)
            #sns.swarmplot(x=af_key, y="sample_label", data=cur_df, color="w", alpha=.5)
            try:
                group = int(group)
            except ValueError:
                pass
            g.set_title("%s: %s" % (cohort, group))
            g = _af_violinplot_shared(g)
            pdf_out.savefig(g.figure)
            if config and (cohort, group) in config.group_detailed:
                out_dir = utils.safe_makedir(os.path.join(plot_dir, "detailed"))
                out_file = os.path.join(out_dir, "group-%s-%s.png" % (cohort, group))
                g.figure.savefig(out_file)
            plt.clf()
    return out_file
Exemplo n.º 4
0
def data_collapse(data_set, quantity, critical_temperature, critical_exponent1, nu, name1, save=False, heat_capacity_correction=0):
    """Perform a data collapse with a given set of critical exponents. Used to see how the exact result collapses."""
    scaling_functions = {}
    for lattice_size, data in sorted(data_set.items()):
        for v in data:
            t = (v[0] - critical_temperature) / critical_temperature
            scaling_variable = lattice_size**(1 / nu) * t
            if critical_exponent1 == 0:
                v_tilde = np.log(lattice_size) * (v[1] + heat_capacity_correction)
            else:
                v_tilde = lattice_size**(critical_exponent1 / nu) * (v[1] + heat_capacity_correction)
            v_tilde_error = lattice_size**(critical_exponent1 / nu) * v[2]
            scaling_functions.setdefault(lattice_size, []).append((scaling_variable, v_tilde, v_tilde_error))
    for lattice_size, data in sorted(scaling_functions.items()):
        plt.xlabel(r'$L^{(1 / \nu)}t$')
        plt.ylabel(r'${0}$'.format('\mathrm{' + quantity.replace(' ', '\ ') + '\ Scaling\ Function}'))
        sns.despine()
        plt.errorbar([k[0] for k in data], [k[1] for k in data], [k[2] for k in data], linestyle='None', marker='o', label=r"${0}$".format(str(lattice_size) + '\mathrm{\ by\ }' + str(lattice_size) + "\mathrm{\ Lattice}"))
    print("{0} = {1}, nu = {2}".format(name1, critical_exponent1, nu))
    plt.legend(loc='best')
    sns.despine()
    if save:
        plt.savefig("{0}/{1}_{2}_data_collapse.pdf".format(SAVE_LOCATION, time.strftime("%Y%m%d%H%M%S", time.localtime(time.time())), quantity.replace(" ", "_"), bbox_inches='tight'))

    plt.show()
Exemplo n.º 5
0
def tuning(x, y, err=None, smooth=None, ylabel=None, pal=None):
    """
    Plot a tuning curve
    """
    if smooth is not None:
        xs, ys = smoothfit(x, y, smooth)
        plt.plot(xs, ys, linewidth=4, color="black", zorder=1)
    else:
        ys = asarray([0])
    if pal is None:
        pal = sns.color_palette("husl", n_colors=len(x) + 6)
        pal = pal[2 : 2 + len(x)][::-1]
    plt.scatter(x, y, s=300, linewidth=0, color=pal, zorder=2)
    if err is not None:
        plt.errorbar(x, y, yerr=err, linestyle="None", ecolor="black", zorder=1)
    plt.xlabel("Wall distance (mm)")
    plt.ylabel(ylabel)
    plt.xlim([-2.5, 32.5])
    errTmp = err
    errTmp[isnan(err)] = 0
    rng = max([nanmax(ys), nanmax(y + errTmp)])
    plt.ylim([0 - rng * 0.1, rng + rng * 0.1])
    plt.yticks(linspace(0, rng, 3))
    plt.xticks(range(0, 40, 10))
    sns.despine()
    return rng
Exemplo n.º 6
0
def dist_small_multiples(df, figsize=(20, 20)):
    """
    Small multiples plots of the distribution of a dataframe's variables.
    """
    import math

    sns.set_style("white")

    num_plots = len(df.columns)
    n = int(math.ceil(math.sqrt(num_plots)))

    fig = plt.figure(figsize=figsize)
    axes = [plt.subplot(n, n, i) for i in range(1, num_plots + 1)]

    i = 0
    for k, v in df.iteritems():
        ax = axes[i]
        sns.kdeplot(v, shade=True, ax=ax, legend=False)
        sns.rugplot(v, ax=ax, c=sns.color_palette("husl", 3)[0])
        [label.set_visible(False) for label in ax.get_yticklabels()]
        ax.xaxis.set_ticks([v.min(), v.max()])
        ax.set_title(k)
        i += 1
    sns.despine(left=True, trim=True, fig=fig)
    plt.tight_layout()
    return fig, axes
Exemplo n.º 7
0
def PlotIOCurve(stRaster, rasterKey, figPath=[]):
	""" Plot the IO curves for the spikes in stRaster.        
	:param stRaster: dict of pandas.DataFrame of spike times for each cycle, for each intensity 
	:type stRaster: dict of pandas.DataFrame
	:param rasterKey: Raster key with intensity in dB following '_'
	:type rasterKey: str
	:param figPath: Directory location for plots to be saved
	:type figPath: str
	:returns: tuningCurves: pandas.DataFrame with frequency, intensity, response rate and standard deviation 
	"""
	tuning = []
	sortedKeys = sorted(stRaster.keys())
	for traceKey in sortedKeys:
		spl = int(traceKey.split('_')[-1])
		raster = stRaster[traceKey]
		res = ResponseStats( raster )
		tuning.append({'intensity': spl, 'response': res[0], 'responseSTD': res[1]})
	tuningCurves = pd.DataFrame(tuning)
	testNum = int(rasterKey.split('_')[-1])
	tuningCurves.plot(x='intensity', y='response', yerr='responseSTD', capthick=1, label='test '+str(testNum))
	plt.legend(loc='upper left', fontsize=12, frameon=True)
	sns.despine()
	plt.grid(False)
	plt.xlabel('Intensity (dB)', size=14)
	plt.ylabel('Response Rate (Hz)', size=14)
	plt.tick_params(axis='both', which='major', labelsize=14)
	title = rasterKey.split('_')[0]+'_'+rasterKey.split('_')[1]+'_'+rasterKey.split('_')[2]
	plt.title(title, size=14)
	if len(figPath)>0: 
		plt.savefig(figPath + 'ioCurves_' + title +'.png')
	return tuningCurves
Exemplo n.º 8
0
def plot_dist_matrix(matrix, fasta_names, heatmap_out, dendrogram_out):
    """Cluster the distance matrix hierarchically and plot using seaborn.
    Average linkage method is used."""
    # Load required modules for plotting
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import seaborn as sns
    import pandas as pd
    from scipy.cluster.hierarchy import dendrogram, linkage

    # Create
    pdm = pd.DataFrame(matrix, index=fasta_names, columns=fasta_names)

    # Plot heatmap
    figsizex = max(10, len(fasta_names) / 4)
    clustergrid = sns.clustermap(pdm, metric='euclidean', method='average',
            figsize=(figsizex, figsizex))
    clustergrid.savefig(heatmap_out)

    # Plot dendrogram
    sns.set_style('white')
    figsizey = max(10, len(fasta_names) / 8)
    f, ax = plt.subplots(figsize=(figsizex, figsizey))
    link = linkage(pdm, metric='euclidean', method='average')
    dendrogram(link, labels=pdm.index, ax=ax)
    no_spine = {'left': True, 'bottom': True, 'right': True, 'top': True}
    sns.despine(**no_spine)
    plt.xticks(rotation=90)
    f.tight_layout()
    plt.savefig(dendrogram_out)
Exemplo n.º 9
0
    def plot_data(self):
        wanted_vars = [
            ("initial_length", "Birth length", r"\si{\micro\metre}"),
            ("final_length", "Division length", r"\si{\micro\metre}"),
            ("added_length", "Added length", r"\si{\micro\metre}"),
            # ("elong_rate", "Linear elongation rate", r"\si{\micro\metre\per\hour}"),
            ("growth_rate", "Exponential growth rate", r"\si{\per\hour}"),
            ("doubling_time", "Interdivision time", r"\si{\hour}"),
            ("asymmetry", "Division asymmetry", None),
            ("slope", r"Slope, $a$", None),
        ]

        if not os.path.exists("noise"):
            os.mkdir("noise")

#        fig = plt.figure(figsize=(3.5, 2.4 * len(wanted_vars)))
#        rows, cols, ax_num = len(wanted_vars), 2, 1
        for var, label, unit in wanted_vars:
#            ax = fig.add_subplot(rows, cols, ax_num)
            fig = plt.figure(figsize=(3.34, 2.4))
            if var == "slope":
                ax = fig.add_subplot(111)
                ax.plot([0.5, 3.5], [1, 1], "k--")
            else:
                ax = fig.add_subplot(121)
            sns.despine(ax=ax)

            self.plot_variable(var, ax)
            if unit:
                ylabel = "{0} ({1})".format(label, unit)
            else:
                ylabel = label
            ax.set_ylabel(ylabel)
#            if ax_num == 1:
#                self.add_legend(ax)
#            elif ax_num == rows * cols - 1:
#                ax.set_xticklabels(self.datalabels, rotation=90)
#            ax_num += 1
            self.add_legend(ax)
            ax.set_xticklabels(self.datalabels, rotation=90)

            if var != "slope":
    #            ax = fig.add_subplot(rows, cols, ax_num)
                ax = fig.add_subplot(122)
                sns.despine(ax=ax)
                self.plot_variable(var, ax, cv=True)
                ax.set_ylabel(r"CV {0} (\si{{\percent}})".format(label.lower()))
    #            if ax_num == 2:
    #                self.add_legend(ax)
    #            elif ax_num == rows * cols:
    #                ax.set_xticklabels(self.datalabels, rotation=90)
    #            ax_num += 1
                self.add_legend(ax)
                ax.set_xticklabels(self.datalabels, rotation=90)

            fig.tight_layout()
            fig.savefig(
                "noise/{0}.pdf".format(var),
                transparent=True
            )
def DUPLICATE_remove(data, distance_threshold, graph=False):
    sizeFormat=pixelFormat * pixelSize
    poly=overlapping_grid(nrow, ncol, overlap_region,
                            [sizeFormat, sizeFormat])
    result=np.zeros(data.shape[0], dtype=bool)
    for i in xrange(data.shape[0]):
        result[i]=poly.contains(Point(data[i, 2], data[i, 3]))
    data_to_evaluate=data[result.ravel(), :]
    output=data[np.invert(result.ravel()), :]
    # Calculate Nearest Neighbors distance
    distance, indexes=DISTANCE_spatial(
        data_to_evaluate, data_to_evaluate, neighbors=2)
    if graph:
        sns.plt.grid(False)
        sns.distplot(distance)
        plt.title("%d spots to evaluate" % data_to_evaluate.shape[0])
        sns.despine()
        sns.plt.show()
    # Find which spots is below the distance_threshold
    mask_to_keep=distance > distance_threshold
    to_keep=[]
    to_exclude=[]
    for source in xrange(len(indexes)):
        target=indexes[source]
        if indexes[target] == source and distance[source] < distance_threshold and source not in to_exclude:
            to_keep.append(source)
            to_exclude.append(target)
    mask_to_keep[to_keep]=True
    print str(len(to_exclude)) + ' spots discarded'
    data_to_evaluate=data_to_evaluate[mask_to_keep, :]
    output=np.row_stack((output, data_to_evaluate))
    return output
def Cluster_plot(v1, v2, min_bin, min_eps, distances, total_HSC, save_plot):
    bins=np.linspace(min_bin, max(v1 + v2), int(max(v1 + v2) / 2))
    # V1 length clusters
    # V2 length clusters
    fig=plt.figure()
    ax=fig.add_subplot(111)
    fig.suptitle('Cluster size: %d total HSC' %
                 sum(total_HSC), fontsize=14, fontweight='bold')
    info_title="Close HSC clusters: %d (%d um)   Far HSC cluster: %d (%d um)" % (
        len(v1), distances[0], len(v2), distances[1])
    ax.set_title(info_title)
    ax.set_xlabel('Cells per cluster')
    ax.set_ylabel('Nb of cluster')
    c1=int(sum(v1) / float(total_HSC[0]) * 100)
    c2=int(sum(v2) / float(total_HSC[1]) * 100)
    sns.plt.grid(False)
    plt.hist(v1, bins, alpha=0.5, label='Close HSC clusters: ' +
             ' - ' + str(c1) + '%')
    plt.hist(v2, bins, alpha=0.5, label='Far HSC clusters: ' +
             ' - ' + str(c2) + '%')
    plt.legend(loc='upper right')
    sns.despine()
    if save_plot:
        suffix=str(min_bin) + 'pts_' + str(min_eps) + 'perc'
        savefig("data//" + sample + "//clustering_" + suffix + ".png")
    else:
        plt.show()
Exemplo n.º 12
0
def fig2(ppl, fname):
  '''For each contact, plot number of characters sent and received. (UNUSED)'''
  sns.lmplot("lensent", "lenrec",ppl) 
  plt.xlabel('Characters Sent')
  plt.ylabel('Characters Received')
  sns.despine()
  savefig(fname)
Exemplo n.º 13
0
def traceplot(traces, thin, burn):
    '''
    Plot parameter estimates for different levels of the model
    into the same plots. Black lines are individual observers
    and red lines are mean estimates.
    '''
    variables = ['Slope1', 'Slope2', 'Offset', 'Split']
    for i, var in enumerate(variables):
        plt.subplot(2, 2, i + 1)
        vals = get_values(traces, var, thin, burn)
        dim = (vals.min() - vals.std(), vals.max() + vals.std())
        x = plt.linspace(*dim, num=1000)
        for v in vals.T:
            a = gaussian_kde(v)
            y = a.evaluate(x)
            y = y / y.max()
            plt.plot(x, y, 'k', alpha=.5)
        try:
            vals = get_values(traces, 'Mean_' + var, thin, burn)
            a = gaussian_kde(vals)
            y = a.evaluate(x)
            y = y / y.max()
            plt.plot(x, y, 'r', alpha=.75)
        except KeyError:
            pass
        plt.ylim([0, 1.1])
        plt.yticks([0])
        sns.despine(offset=5, trim=True)
        plt.title(var)
Exemplo n.º 14
0
def show_binomial():
    """Show an example of binomial distributions"""
    
    bd1 = stats.binom(20, 0.5)
    bd2 = stats.binom(20, 0.7)
    bd3 = stats.binom(40, 0.5)
    
    k = np.arange(40)
    
    sns.set_context('paper')
    sns.set_style('ticks')
    mystyle.set(14)
    
    markersize = 8
    plt.plot(k, bd1.pmf(k), 'o-b', ms=markersize)
    plt.hold(True)
    plt.plot(k, bd2.pmf(k), 'd-r', ms=markersize)
    plt.plot(k, bd3.pmf(k), 's-g', ms=markersize)
    plt.title('Binomial distribuition')
    plt.legend(['p=0.5 and n=20', 'p=0.7 and n=20', 'p=0.5 and n=40'])
    plt.xlabel('X')
    plt.ylabel('P(X)')
    sns.despine()
    
    mystyle.printout_plain('Binomial_distribution_pmf.png')
    
    plt.show()
Exemplo n.º 15
0
    def plot(self, event, logliks, logsumexps, modality_colors,
             renamed=''):
        modality = logsumexps.idxmax()

        sns.violinplot(event.dropna(), bw=0.2, ax=self.ax_violin,
                       color=modality_colors[modality])

        self.ax_violin.set_ylim(0, 1)
        self.ax_violin.set_title('Guess: {}'.format(modality))
        self.ax_violin.set_xticks([])
        self.ax_violin.set_yticks([0, 0.5, 1])
        # self.ax_violin.set_xlabel(renamed)

        for name, loglik in logliks.iteritems():
            # print name,
            self.ax_loglik.plot(loglik, 'o-', label=name,
                                color=modality_colors[name])
            self.ax_loglik.legend(loc='best')
        self.ax_loglik.set_title('Log likelihoods at different '
                                 'parameterizations')
        self.ax_loglik.grid()
        self.ax_loglik.set_xlabel('phantom', color='white')

        for i, (name, height) in enumerate(logsumexps.iteritems()):
            self.ax_bayesfactor.bar(i, height, label=name,
                                    color=modality_colors[name])
        self.ax_bayesfactor.set_title('$\log$ Bayes factors')
        self.ax_bayesfactor.set_xticks([])
        self.ax_bayesfactor.grid()
        self.fig.tight_layout()
        self.fig.text(0.5, .025, '{} ({})'.format(event.name, renamed),
                      fontsize=10, ha='center', va='bottom')
        sns.despine()
        return self
Exemplo n.º 16
0
def plot_quantity_range(data_range, quantity, exact=None, show_plot=True, save=False):
    """Plot quantity over a temperature range."""
    for lattice_size, data in sorted(data_range.items()):
        plt.errorbar([d[0] for d in data], [d[1] for d in data], [d[2] for d in data], linestyle='None', label=r"${0}$".format(str(lattice_size) + '\mathrm{\ by\ }' + str(lattice_size) + "\mathrm{\ Lattice}"), marker='o')
    if exact is not None:
        plt.plot([e[0] for e in exact], [e[1] for e in exact], label=r'$\mathrm{Thermodynamic\ Limit}$')

    # We put all data together so it is easy to find the maximum and minimum values.
    # print(list(data_range.values()))
    zipped_data = list(itertools.chain(*data_range.values()))
    x_data_range = sorted(list(set(m[0] for m in zipped_data)))
    min_x = x_data_range[0]
    max_x = x_data_range[-1]
    x_step = x_data_range[1] - x_data_range[0]
    plt.xlim(min_x - x_step, max_x + x_step)
    data_min = min(zipped_data, key=lambda x: x[1])[1]
    data_max = max(zipped_data, key=lambda x: x[1])[1]
    if data_max <= 0:
        plt.ylim(ymin=1.15 * data_min, ymax=0.85 * data_max)
    else:
        plt.ylim(ymin=0, ymax=data_max * 1.15)
    plt.xlabel(r'$T$')
    plt.ylabel(r'${0}$'.format('\mathrm{' + quantity.replace(' ', '\ ') + '}'))
    plt.legend(loc="best")
    sns.despine()
    if save:
        plt.savefig("{0}/{1}_{2}.pdf".format(SAVE_LOCATION, time.strftime("%Y%m%d%H%M%S", time.localtime(time.time())), quantity.replace(" ", "_"), bbox_inches='tight'))
    if show_plot:
        plt.show()
Exemplo n.º 17
0
def plot_af_diffs(all_audio_diffs):
    """
    Plots the mean album audio features differences as a function
    of recommendation rank. Does this for all individual audio features.

    Args:
        all_audio_diffs: list of dataframes as returned from get_af_diffs
    Returns:
        None
    """

    plt.close('all')
    fig = plt.figure()
    colors = sns.color_palette('Set1', 10)
    for i, feature_name in enumerate(FEATURE_NAMES):
        temp = [seed[feature_name] for seed in all_audio_diffs]
        df = pd.concat(temp)
        df.index.name = 'recc_rank'
        mean_diff = df.groupby(df.index).mean()[:].values.flatten()
        sem_diff = df.groupby(df.index).sem()[:].values.flatten()
        ax = fig.add_subplot(3, 3, i+1)
        plot_indiv_diff(ax, mean_diff, sem_diff,
                        LABEL_DICT[feature_name],
                        colors[i])
        if i != 6:
            # ax.xaxis.set_major_formatter(NullFormatter())
            # ax.yaxis.set_major_formatter(NullFormatter())
            pass
        else:
            ax.set_xlabel('Recommendation rank')
            # ax.set_ylabel('# of instances')

    sns.despine(offset=5, trim=True)
    plt.tight_layout()
Exemplo n.º 18
0
def testFilterLinearCoh(n_iterations=5):
    cohs = np.array([-0.512, -0.256, -0.128, -0.064, -0.032,
                     0, 0.032, 0.064, 0.128, 0.256, 0.512])

    inputs = []
    for coh in cohs:
        for j in xrange(n_iterations):
            seed = [np.random.randint(999), np.random.randint(999)]
            if np.sign(coh) == 1:
                direction = 0
            else:
                direction = 180
            inputs.append(
                gd.generateDots(seed, 0, 0, 5, 60, direction, np.abs(coh), 5))
    pool = multiprocessing.Pool()
    out = pool.map(filterDots, inputs)
    pool.close()

    data = np.array(out)
    summed_me = np.sum(data, axis=1)
    mean_me = np.mean(summed_me.reshape(-1, n_iterations), axis=1)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    colors = b2mpl.get_map('Set1', 'Qualitative', 3).mpl_colors
    ax.add_line(plt.Line2D(cohs, mean_me, color=colors[0]))
    ax.set_xlabel('Motion strength (proportion coh)')
    ax.set_ylabel('Total motion energy')
    ax.set_xlim(-.61, .61)
    ax.set_ylim(np.min(mean_me) * 1.2, np.max(mean_me) * 1.2)
    sns.despine(offset=5, trim=True)
    plt.tight_layout()

    return cohs, mean_me
Exemplo n.º 19
0
def testFilterSpeedBandwidth(n_iterations=5):
    speeds = np.arange(1, 9.5, 0.5)
    inputs = []
    for speed in speeds:
        for j in xrange(n_iterations):
            seed = [np.random.randint(999), np.random.randint(999)]
            inputs.append(
                gd.generateDots(seed, 0, 0, 5, 60, 0, 1, speed))
    pool = multiprocessing.Pool()
    out = pool.map(filterDots, inputs)
    pool.close()

    data = np.array(out)
    summed_me = np.sum(data, axis=1)
    mean_me = np.mean(summed_me.reshape(-1, n_iterations), axis=1)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    colors = b2mpl.get_map('Set1', 'Qualitative', 3).mpl_colors
    ax.add_line(plt.Line2D(speeds, mean_me, color=colors[0]))
    ax.set_xlabel('Motion speed (degrees per s))')
    ax.set_ylabel('Total motion energy')

    majorLocator = MultipleLocator(1)
    ax.xaxis.set_major_locator(majorLocator)

    majorLocator = MultipleLocator(50)
    ax.yaxis.set_major_locator(majorLocator)

    ax.set_xlim(1, 9)
    ax.set_ylim(np.min(mean_me) - 10, np.max(mean_me) + 10)
    sns.despine(offset=5, trim=True)
    plt.tight_layout()

    return speeds, mean_me
Exemplo n.º 20
0
def plot_sorted_tc(sorted_tc, savepath, savefig=True):
    """Plots sorted tuning curves from a single trajectory for a session.

    Parameters
    ----------
    sorted_tc : list of lists
        Where each inner list contains the tuning curve (floats) for an individual
        neuron.
    savepath : str
        Location and filename for the saved plot.
    savefig : boolean
        Default is True and will save the plot to the specified location.
        False shows with plot without saving it.

    """
    fig, ax = plt.subplots()
    heatmap = ax.pcolor(sorted_tc, cmap='YlGn')
    plt.ylim(0, len(sorted_tc))
    plt.xlim(0, len(sorted_tc[0]))
    plt.ylabel('Neuron number')
    plt.xlabel('Location (cm)')
    sns.despine()

    if savefig:
        plt.savefig(savepath, dpi=300, bbox_inches='tight')
        plt.close()
    else:
        plt.show()
Exemplo n.º 21
0
def plot_bydurations(durations, savepath, savefig=True):
    """Plots duration for each trial separated by trajectories. Behavior only.

        Parameters
        ----------
        durations : dict
            With u, shortcut, novel, num_sessions as keys.
            Each value is a list of durations (float) for a each session.
        savepath : str
            Location and filename for the saved plot.
        savefig : boolean
            Default is True and will save the plot to the specified location. False
            shows with plot without saving it.

        """
    ax = sns.boxplot(data=[durations['u'], durations['shortcut'], durations['novel']])
    sns.color_palette("hls", 18)
    ax.set(xticklabels=['U', 'Shortcut', 'Novel'])
    plt.ylabel('Duration of trial (s)')
    plt.xlabel('sessions=' + str(durations['num_sessions']))
    plt.ylim(0, 140)
    sns.despine()

    if savefig:
        plt.savefig(savepath, dpi=300, bbox_inches='tight')
        plt.close()
    else:
        plt.show()
Exemplo n.º 22
0
def main():
    runResults = []
    # Traverse files, extract matrix, architecture and params
    for f in [f for f in os.listdir(".") if os.path.isfile(f)]:
        if f.startswith("run_Spmv"):
            runResults.append(RunResult(f))

    df = pd.DataFrame([[r.prj, r.matrix, r.gflops_est] for r in runResults])
    grouped = df.groupby(0)
    groups = []
    names = []
    for name, group in grouped:
        group.set_index(1, inplace=True)
        # group.sort_index(inplace=True)
        groups.append(group[2])
        names.append(name)

    new_df = pd.concat(groups, axis=1)
    new_df.columns = names

    sns.set_style("white")
    sns.set_palette(sns.color_palette("cubehelix", 13))
    bar = new_df.plot(kind="bar")
    sns.despine()
    fig = bar.get_figure()
    fig.set_size_inches(15, 15)
    fig.tight_layout()
    fig.savefig("est_gflops.pdf")
	def PlotBBNResponseCurve(self, bbnResponseProb, measure, unit=[], filePath=[], attn=False):
		""" Plots measure for multiple frequencies and intensities an a contour plot.        
		:param stResponseProb: DataFrames results of Bayesian response analysis for multiple tone stimulus intensities
		:type stResponseProb: pandas DataFrame 
		:param measure: Bayesian response analysis measure ['resProb', 'vocalResMag', 'vocalResMag_MLE', 'effectSize', 'effectSize_MLE', 'spontRate', 'spontRateSTD', 'responseLatency', 'responseLatencySTD', 'responseDuration']
		:type measure: integer [0-9]
		:param unit: Unique identifier for cell
		:type unit: str
		:param filePath: Path to directory where results will be saved
		:type filePath: str
		:returns: Handle to plot
		"""		
		measureName = ['resProb', 'vocalResMag', 'vocalResMag_MLE', 'effectSize', 'effectSize_MLE', 'spontRate', 'spontRateSTD', 'responseLatency', 'responseLatencySTD', 'responseDuration']
		tuningData = bbnResponseProb
		sns.set_palette(sns.color_palette("bright", 8))
		sns.set_context(rc={"figure.figsize": (5, 3)})
		sns.set_style("white")
		sns.set_style("ticks")
		if attn: ax = bbnResponseProb.loc[::-1,measure].fillna(0).plot(figsize=(6,4))
		else: ax = bbnResponseProb.loc[:,measure].fillna(0).plot(figsize=(6,4))
		sns.despine()
		plt.grid(False)
		plt.title(unit, fontsize=14)
		plt.xlabel('SPL (dB)', fontsize=12)
		plt.ylabel(measureName[measure], fontsize=12)
		plt.ylim(0.5,1.0)
# 		plt.gca().invert_xaxis()
		if len(filePath)>0:
			plt.savefig(self.dirPath + filePath + 'bbn_'+measureName[measure]+'_'+unit+'.pdf')        
			plt.close()
		else: plt.show()
		return ax
	def PlotFrequencyTuningCurves(self, stResponseProb, measure, unit=[], filePath=[]):
		""" Plots measure for multiple frequencies, with a trace for each tone intensity.        
		:param stResponseProb: DataFrames results of Bayesian response analysis for multiple tone stimulus intensities
		:type stResponseProb: pandas DataFrame 
		:param measure: Bayesian response analysis measure ['resProb', 'vocalResMag', 'vocalResMag_MLE', 'effectSize', 'effectSize_MLE', 'spontRate', 'spontRateSTD', 'responseLatency', 'responseLatencySTD', 'responseDuration']
		:type measure: int [0-9]
		:param unit: Unique identifier for cell
		:type unit: str
		:param filePath: Path to directory where results will be saved
		:type filePath: str
		:returns: Handle to plot
		"""		
		measureName = ['resProb', 'vocalResMag', 'vocalResMag_MLE', 'effectSize', 'effectSize_MLE', 'spontRate', 'spontRateSTD', 'responseLatency', 'responseLatencySTD', 'responseDuration']
		tuningData = stResponseProb
# 		sns.set_palette(sns.color_palette("bright", 8))
		attn = stResponseProb.keys()[0]
		firstFreq = stResponseProb[attn].index.tolist()[1]
		sns.set_style("white")
		sns.set_style("ticks")
		ax = stResponseProb.loc[:,firstFreq:,measure].fillna(0).plot(figsize=(6,4))
		sns.despine()
		plt.grid(False)
		plt.title(unit, fontsize=14)
		plt.xlabel('Frequency (kHz)', fontsize=12)
		plt.ylabel(measureName[measure], fontsize=12)
		plt.tick_params(axis='both', which='major', labelsize=14)
		if len(filePath)>0:
			plt.savefig(self.dirPath + filePath + 'freqTuning_'+measureName[measure]+'_'+unit+'.pdf')        
			plt.close()
		else: plt.show()
		return ax
	def PlotSTResponseEst(self, stResponseDF, label, duration=250, firstFreq=1):
		""" Plots response rate estimate for multiple frequencies and intensities as a contour plot.        
		:param stResponseDF: DataFrames results of Bayesian response analysis for multiple tone stimulus intensities
		:type stResponseDF: pandas DataFrame 
		:param label: Figure name
		:type label: str
		:param duration: Duration of recording window
		:type duration: float
		:param firstFreq: Set to skip first (spurious) entry 
		:type firstFreq: int
		:returns: Handle to plot
		"""		
		stResponseE = np.array(stResponseDF)
		freqs = np.array(stResponseDF.index.tolist())[1:].astype(np.float)
		sns.set_context(rc={"figure.figsize": (8, 4)})
		maxRes = np.max(abs(stResponseE[firstFreq:,:]))
		spontRate = np.average(stResponseE[firstFreq:,-1])
		ax = plt.imshow(stResponseE[firstFreq:,:], vmax=maxRes+spontRate, vmin=-maxRes+spontRate, extent=[0,duration,min(freqs),max(freqs)], aspect='auto', interpolation='nearest', origin='lower', cmap = cm.bwr)
		sns.despine()
		plt.grid(False)
		plt.title(label)
		plt.xlabel('Time (ms)')
		plt.ylabel('Frequency (kHz)')
		plt.colorbar()
		return ax
Exemplo n.º 26
0
    def plot_reduced_space(self, binned_reduced, modalities_assignments,
                           ax=None, title=None, xlabel='', ylabel=''):
        if ax is None:
            fig, ax = plt.subplots(figsize=(8, 8))

        # For easy aliasing
        X = binned_reduced

        # import pdb
        # pdb.set_trace()

        for modality, df in X.groupby(modalities_assignments, axis=0):
            color = self.modalities_colors[modality]
            ax.plot(df.ix[:, 0], df.ix[:, 1], 'o', color=color, alpha=0.25,
                    label=modality)

        sns.despine()
        xmax, ymax = X.max()
        ax.set_xlim(0, 1.05 * xmax)
        ax.set_ylim(0, 1.05 * ymax)
        ax.set_xlabel(xlabel)
        ax.set_ylabel(ylabel)
        ax.legend()
        if title is not None:
            ax.set_title(title)
Exemplo n.º 27
0
def plot_e_score_dist(df, data_name, filepath):
    # The Expect value (E) is a parameter that describes the number of hits
    # one can "expect" to see by chance when searching a database of a
    # particular size. It decreases exponentially as the Score (S) of the
    # match increases. Essentially, the E value describes the random
    # background noise. For example, an E value of 1 assigned to a hit can be
    # interpreted as meaning that in a database of the current size one might
    # expect to see 1 match with a similar score simply by chance.

    # The lower the E-value, or the closer it is to zero, the more
    # "significant" the match is. However, keep in mind that virtually
    # identical short alignments have relatively high E values. This is
    # because the calculation of the E value takes into account the length of
    # the query sequence. These high E values make sense because shorter
    # sequences have a higher probability of occurring in the database purely
    # by chance. For more details please see the calculations in the BLAST
    # Course: http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
    fig, ax = plt.subplots(1, 1) # figsize=(5, 6))
    sns.despine()  # Removes the boxes around the plots.
    plot_data = df.evalue
    MIN, MAX = min(plot_data), max(plot_data)
    plot_data.plot.hist(ax=ax, bins=10**np.linspace(np.log10(MIN), np.log10(MAX), 50))
    ax.set_xscale('log')
    ax.set_title('Distributions e values: {}'.format(data_name), y=1.05)
    ax.set_xlabel('e-value')
    ax.figure.savefig(filepath + data_name + "_e_value" + '.pdf')
    return ax
Exemplo n.º 28
0
	def behavioral_analysis(self):
		"""some analysis of the behavioral data, such as mean percept duration, 
		dominance ratio etc"""
		self.assert_data_intern()
		# only do anything if this is not a no report trial
		if 'RP' in self.file_alias:
			all_percepts_and_durations = [[],[]]
		else:
			all_percepts_and_durations = [[],[],[]]
		if not 'NR' in self.file_alias: #  and not 'RP' in self.file_alias
			for x in range(len(self.trial_indices)):
				if len(self.events) != 0:
					events_this_trial = self.events[(self.events['EL_timestamp'] > self.timestamps_pt[x][0]) & (self.events['EL_timestamp'] < self.timestamps_pt[x][-1])]
					for sc, scancode in enumerate(self.scancode_list):
						percept_start_indices = np.arange(len(events_this_trial))[np.array(events_this_trial['scancode'] == scancode)]
						percept_end_indices = percept_start_indices + 1
						
						# convert to times
						start_times = np.array(events_this_trial['EL_timestamp'])[percept_start_indices] - self.timestamps_pt[x,0]
						if len(start_times) > 0:
							if percept_end_indices[-1] == len(events_this_trial):
								end_times = np.array(events_this_trial['EL_timestamp'])[percept_end_indices[:-1]] - self.timestamps_pt[x,0]
								end_times = np.r_[end_times, len(self.from_zero_timepoints)]
							else:
								end_times = np.array(events_this_trial['EL_timestamp'])[percept_end_indices] - self.timestamps_pt[x,0]

							these_raw_event_times = np.array([start_times + self.timestamps_pt[x,0], end_times + self.timestamps_pt[x,0]]).T
							these_event_times = np.array([start_times, end_times]).T + x * self.trial_duration * self.sample_rate
							durations = np.diff(these_event_times, axis = -1)

							all_percepts_and_durations[sc].append(np.hstack((these_raw_event_times, these_event_times, durations)))

			self.all_percepts_and_durations = [np.vstack(apd) for apd in all_percepts_and_durations]

			# last element is duration, sum inclusive and exclusive of transitions
			total_percept_duration = np.concatenate([apd[:,-1] for apd in self.all_percepts_and_durations]).sum()
			total_percept_duration_excl = np.concatenate([apd[:,-1] for apd in [self.all_percepts_and_durations[0], self.all_percepts_and_durations[-1]]]).sum()

			self.ratio_transition = 1.0 - (total_percept_duration_excl / total_percept_duration)
			self.ratio_percept_red = self.all_percepts_and_durations[0][:,-1].sum() / total_percept_duration_excl

			self.red_durations = np.array([np.mean(self.all_percepts_and_durations[0][:,-1]), np.median(self.all_percepts_and_durations[0][:,-1])])
			self.green_durations = np.array([np.mean(self.all_percepts_and_durations[-1][:,-1]), np.median(self.all_percepts_and_durations[-1][:,-1])])
			self.transition_durations = np.array([np.mean(self.all_percepts_and_durations[1][:,-1]), np.median(self.all_percepts_and_durations[1][:,-1])])

			self.ratio_percept_red_durations = self.red_durations / (self.red_durations + self.green_durations)
			plot_mean_or_median = 0 # mean

			f = pl.figure(figsize = (8,4))
			s = f.add_subplot(111)
			for i in range(len(self.colors)):
				pl.hist(self.all_percepts_and_durations[i][:,-1], bins = 20, color = self.colors[i], histtype='step', lw = 3.0, alpha = 0.4, label = ['Red', 'Trans', 'Green'][i])
			pl.hist(np.concatenate([self.all_percepts_and_durations[0][:,-1], self.all_percepts_and_durations[-1][:,-1]]), bins = 20, color = 'k', histtype='step', lw = 3.0, alpha = 0.4, label = 'Percepts')
			pl.legend()
			s.set_xlabel('time [ms]')
			s.set_ylabel('count')
			sn.despine(offset=10)
			s.annotate("""ratio_transition: %1.2f, \nratio_percept_red: %1.2f, \nduration_red: %2.2f,\nduration_green: %2.2f, \nratio_percept_red_durations: %1.2f"""%(self.ratio_transition, self.ratio_percept_red, self.red_durations[plot_mean_or_median], self.green_durations[plot_mean_or_median], self.ratio_percept_red_durations[plot_mean_or_median]), (0.5,0.65), textcoords = 'figure fraction')
			pl.tight_layout()
			pl.savefig(os.path.join(self.analyzer.fig_dir, self.file_alias + '_dur_hist.pdf'))
Exemplo n.º 29
0
def loglog_exponent_finding(data_set, quantity, save=False, heat_capacity_correction=0):
    """Find ratios of critical exponents by finding a linear relation between logarithms of lattice sizes and quantity values."""
    lattice_sizes_log = []
    magnetizations_log = []
    magnetizations_log_error = []

    for lattice_size, data in data_set.items():
        magnetization_log = np.log(data[0][1] + heat_capacity_correction)
        magnetization_log_error = data[0][2] / data[0][1]
        lattice_sizes_log.append(np.log(lattice_size))
        magnetizations_log.append(magnetization_log)
        magnetizations_log_error.append(magnetization_log_error)

    lattice_sizes = np.asarray(lattice_sizes_log)
    magnetizations_log = np.asarray(magnetizations_log)
    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(lattice_sizes, magnetizations_log)

    fitted_line = slope * lattice_sizes + intercept

    plt.xlabel(r'$\log(L)$')
    plt.ylabel(r'$\log({0})$'.format('\mathrm{' + quantity.replace(" ", "\ ") + '}'))
    plt.errorbar(lattice_sizes, magnetizations_log, magnetizations_log_error, linestyle='None', marker='o')
    plt.plot(lattice_sizes, fitted_line)
    sns.despine()
    if save:
        plt.savefig("{0}/{1}_{2}_loglog_plot.pdf".format(SAVE_LOCATION, time.strftime("%Y%m%d%H%M%S", time.localtime(time.time())), quantity.lower().replace(" ", "_"), bbox_inches='tight'))
    plt.show()
    return slope, std_err
Exemplo n.º 30
0
def raster_plot(spikes, savepath, savefig=False):
    """Plots raster plot of spikes from multiple neurons.

    Parameters
    ----------
    spikes : list of np.arrays
        Where each inner array contains the spike times (floats) for an individual
        neuron.
    savepath : str
        Location and filename for the saved plot.
    savefig : boolean
        Default is False show the plot without saving it. True and will save the
        plot to the specified location.

    """
    location = 1
    for neuron in spikes:
        if len(neuron) > 0:
            plt.plot(neuron, np.ones(len(neuron))+location, '|', color='k', ms=4, mew=1)
            location += 1
    plt.xlabel('Time (ms)')
    plt.ylabel('Neuron number')
    sns.despine()
    plt.ylim(0, location+1)

    if savefig:
        plt.savefig(savepath, dpi=300, bbox_inches='tight')
        plt.close()
    else:
        plt.show()
Exemplo n.º 31
0
    def __init__(self, stream, fig, axes, window, scale, dejitter=True):
        """Init"""
        self.stream = stream
        self.window = window
        self.scale = scale
        self.dejitter = dejitter
        self.inlet = StreamInlet(stream, max_chunklen=buf)
        self.filt = True
        info = self.inlet.info()
        description = info.desc()

        self.sfreq = info.nominal_srate()
        self.n_samples = int(self.sfreq * self.window)
        self.n_chan = info.channel_count()

        ch = description.child('channels').first_child()
        ch_names = [ch.child_value('label')]

        for i in range(self.n_chan):
            ch = ch.next_sibling()
            ch_names.append(ch.child_value('label'))

        self.ch_names = ch_names

        fig.canvas.mpl_connect('key_press_event', self.OnKeypress)
        fig.canvas.mpl_connect('button_press_event', self.onclick)

        self.fig = fig
        self.axes = axes

        sns.despine(left=True)

        self.data = np.zeros((self.n_samples, self.n_chan))
        self.times = np.arange(-self.window, 0, 1. / self.sfreq)
        impedances = np.std(self.data, axis=0)
        lines = []

        self.rects = self.axes[1].bar(0, 1)

        lines = []

        for ii in range(self.n_chan):
            line, = self.axes[0].plot(self.times[::subsample],
                                      self.data[::subsample, ii] - ii,
                                      lw=1)
            lines.append(line)
        self.lines = lines

        # self.text = axes.

        self.axes[1].xaxis.grid(False)
        self.axes[1].set_xticks([])
        self.axes[1].set_ylim([0, 120])
        self.value = None

        self.display_every = int(refresh / (12 / self.sfreq))

        self.bf, self.af = butter(4,
                                  np.array([0.5, 20]) / (self.sfreq / 2.),
                                  'bandpass')

        self.low = 10000
        self.high = 0
Exemplo n.º 32
0
if logplot:
    r = numpy.log2(r)

max_ratio = r.max()

for k in range(ns):
    r[:, k] = numpy.sort(r[ :, k])


# Plot stair graphs with markers.

n = []

for k in range(1, np + 1):
    n.append(k / np)

plt.figure(figsize = (8, 5))
plt.plot(r[:, 0], n, color = '#3CB371', linewidth = 1, label = 'GRASP')
plt.plot(r[:, 1], n, color = '#FFD700', linewidth = 1, label = 'FFM')
plt.plot(r[:, 2], n, color = '#4B0082', linewidth = 1, label = 'M-FFM')
plt.plot(r[:, 3], n, color = '#FF6347', linewidth = 1, label = 'REF')
plt.ylabel('Probabilidade (%)')
plt.xlabel('$log_2(r)$')
sn.despine(left = True, bottom = True)
plt.grid(True, axis = 'x')
plt.grid(True, axis = 'y')
plt.legend()
plt.savefig(splitext(filename)[0] + '.eps', dpi = 1500, transparent = True, bbox_inches = 'tight')
plt.show()
Exemplo n.º 33
0
######################################################################
fig, axarr = plt.subplots(K, 1, figsize=(12, 6))
ranges = [[800, 8000], [100, 8000], [800, 4000], [800, 2000]]
for k in range(K):
    axarr[k].plot(lam0, B_mle[k, :], color=sns.color_palette()[k])
    axarr[k].set_xlim(ranges[k])
    axarr[k].tick_params(axis='both', which='major', labelsize=12)
    axarr[k].tick_params(axis='x', which='major', labelsize=16)
    max_yticks = 3
    yloc = plt.MaxNLocator(max_yticks)
    axarr[k].yaxis.set_major_locator(yloc)
plt.xlabel(" $\lambda$ (wavelength in $\AA$) ", fontsize=20, labelpad=20)
plt.text(.02, .5, "$B_k(\lambda)$", transform=fig.transFigure, fontsize=20)
plt.subplots_adjust(hspace=.6)
#plt.tight_layout()
sns.despine(top=True)
plt.savefig(
    "/Users/acm/Proj/DESIMCMC/tex/quasar_z/figs/rank_%d_basis-random.pdf" %
    B.shape[0],
    bbox_inches='tight')
plt.close('all')

## plot a reconstruction
lam_obs, qtrain, qtest = \
    load_data_clean_split(spec_fits_file = 'quasar_data.fits',
                          Ntrain = 400)
quasar_spectra = qtrain['spectra']
quasar_z = qtrain['Z']
quasar_ivar = qtrain['spectra_ivar']
quasar_zerr = qtrain['Z_err']
N = quasar_spectra.shape[0]
Exemplo n.º 34
0
def assignment7_own():
    # ### Point 1.
    usps_data = loadmat('./usps.mat')
    y = usps_data['data_labels'].T
    X = usps_data['data_patterns'].T

    indices = np.arange(len(y))
    te_indices = []
    for i in range(10):
        digit_indices = indices[np.argmax(y, axis=1) == i]
        te_indices.extend(list(
            np.random.choice(digit_indices,
                             len(digit_indices)//4,
                             replace=False)
        ))
    te_indices = np.array(te_indices)
    tr_indices = indices[~np.isin(indices, te_indices)]
    X_train = X[tr_indices]
    y_train = y[tr_indices]
    X_test = X[te_indices]
    y_test = y[te_indices]

    X_train = ((X_train - X_train.min(axis=0)) /
               (X_train.max(axis=0) - X_train.min(axis=0)))
    X_test = ((X_test - X_test.min(axis=0)) /
              (X_test.max(axis=0) - X_test.min(axis=0)))

    X_train -= X_train.mean(axis=0)
    X_test -= X_test.mean(axis=0)

    parameters = [
        {
            'kernel_name': ['linear'],
            'C': np.logspace(0, 4, 5),
            'kernelparameter': np.logspace(-1, 2, 4),
        },
        {
            'kernel_name': ['polynomial'],
            'C': np.logspace(0, 4, 5),
            'kernelparameter': np.logspace(-1, 2, 4),
        },
        {
            'kernel_name': ['gaussian'],
            'C': np.logspace(0, 4, 5),
            'kernelparameter': np.logspace(-1, 2, 4),
        },
    ]

    def cv_digit(i):
        print(f"Training {i}")
        y_tr = (np.argmax(y_train, axis=1) == i).astype(int)
        y_tr[y_tr == 0] = -1

        gs = GridSearchCV(
            svm_smo('gaussian'), parameters, cv=5, verbose=1,
            scoring=lambda m, X, y: -zero_one_loss(y, m.predict(X))
        )
        gs.fit(X_train, y_tr)
        best_model = gs.best_estimator_

        y_te = (np.argmax(y_test, axis=1) == i).astype(int)
        y_te[y_te == 0] = -1
        return {
            'model': best_model,
            'params': best_model.get_params(True),
            'error': zero_one_loss(y_te, best_model.predict(X_test))
        }

    results = Parallel(n_jobs=-1)(delayed(cv_digit)(i) for i in range(10))

    print(results)

    # ### Point 2.
    _, axes = plt.subplots(10, 2, figsize=(16, 20))

    axes[0][0].set_title("Support vectors")
    axes[0][1].set_title("Sample images")
    for i, (ax1, ax2) in enumerate(axes):
        sv = results[i]['model'].support_vectors_
        indices = np.arange(len(sv))
        indices = np.random.choice(indices, 5, replace=False)
        sv = sv[indices]
        ax1.imshow(sv.reshape(5, 16, 16).transpose(1, 0, 2).reshape(16, 80))
        ax1.set_xticks([])
        ax1.set_yticks([])
        ax1.set_ylabel(f"Digit: {i}")

        sv = X_train[np.argmax(y_train, axis=1) == i]
        indices = np.arange(len(sv))
        indices = np.random.choice(indices, 5, replace=False)
        sv = sv[indices]
        ax2.imshow(sv.reshape(5, 16, 16).transpose(1, 0, 2).reshape(16, 80))
        ax2.set_xticks([])
        ax2.set_yticks([])

    sns.despine(left=True, bottom=True)
    plt.tight_layout()
    plt.show()
    plt.savefig('assignment7_2.png')
Exemplo n.º 35
0
                            edgecolors='face',
                            vmin=0.2,
                            alpha=0.5)
    ax_inset.set_xlim(*-np.log10([0.5, 0.001]))
    ax_inset.set_xticks(
        -np.log10([0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.001]))
    ax_inset.set_xticklabels(
        ['', '', '', '', '', 0.05, '', 0.001],
        color='#383838')

    ax_inset.set_ylim(-0.05, 1.05)
    ax_inset.axvline(
        -np.log10(0.05), color='red', linestyle='--')
    pvals_orig = (10 ** (-1 * ax_inset.get_xticks())).round(3)
    ax_inset.set_yticklabels(['', 0, 1, ''], color='#383838')
    sns.despine(trim=True, ax=ax)
    ax_inset.tick_params(labelsize=8)
    if i_case > 2:
        ax.set_xlabel(r'$-log_{10}(p)$', fontsize=10, fontweight=150)
    if i_case in (0, 3):
        ax.set_ylabel(r'prediction [$R^2$]',
                      fontsize=12, fontweight=150)
    ax.annotate(
        'ABCDEFG'[i_case], xy=(-0.20, 0.99), fontweight=200, fontsize=20,
        xycoords='axes fraction')


plt.subplots_adjust(hspace=0.33, wspace=.46, left=.07, right=.94, top=.94,
                    bottom=.10)
plt.savefig('./figures/simulations_by_aspect.png', bbox_inches='tight',
            dpi=300)
Exemplo n.º 36
0

filename = "{}.cnf".format(instance)
with open(filename, 'r') as file:
    all_lines = file.readlines()

clauses = []
for line in all_lines:
    if line.startswith('p'):
        _, _, n_vars, _ = line.split()
        n_vars = int(n_vars)

    elif line.startswith('%'):
        break

    elif not line.startswith('c'):
        v1, v2, v3, _ = line.split()
        clauses.append([to_tuple(v1), to_tuple(v2), to_tuple(v3)])

initial_solutions = [initial_solution(n_vars) for _ in range(10)]

mean, std = simmulated_annealing(clauses, initial_solutions, n_vars)
print("SA: {} +- {}".format(mean, std))
mean, std = random_search(clauses, initial_solutions, n_vars)
print("RS: {} +- {}".format(mean, std))

fig, ax = plt.subplots()
sns.boxplot(data=results, orient='v', ax=ax)
sns.despine()
fig.savefig('{}_boxblot.png'.format(instance))
Exemplo n.º 37
0
plt.plot([0 for i in Forman], color='gray', ls='dashed')
plt.xticks(ticks, moving_ticks)
plt.xticks(rotation='90', size=20)
plt.xticks(size=20)
plt.yticks(size=20)
plt.tick_params(width=2, length=4)

plt.legend(framealpha=0, fontsize=20)

plt.margins(x=0)

color_index = moving_ticks.index('11/Mar-17/Mar')
plt.gca().get_xticklabels()[color_index].set_color("red")
import seaborn

seaborn.despine(top=True)
plt.savefig('Ricci_on_COVID_new_cases.png', dpi=300, bbox_inches='tight')

# In[23]:

Df = JH_df.copy()
#m=50
time = 7
Forman = []
now = datetime.now()
for i in range(1, len(Df) - time + 2):
    E = e(i, i + time - 1)
    G = graph(i, i + time - 1, E)
    formanCurvature(G)
    value = np.mean(list(
        nx.get_edge_attributes(G, 'formanCurvature').values()))
Exemplo n.º 38
0
    def plot(
        self,
        val: tf.Tensor,
        key: str = None,
        therm_frac: float = 0.,
        num_chains: int = 0,
        title: str = None,
        outdir: str = None,
        subplots_kwargs: dict[str, Any] = None,
        plot_kwargs: dict[str, Any] = None,
    ):
        plot_kwargs = {} if plot_kwargs is None else plot_kwargs
        if subplots_kwargs is None:
            subplots_kwargs = {'figsize': (4, 3)}

        figsize = subplots_kwargs.get('figsize', (4, 3))
        # assert key in self.data

        # val = self.data[key]
        # color = f'C{idx%9}'
        assert val is not None
        try:
            tmp = val[0]
        except IndexError:
            raise IndexError(f'Unable to index {val},\n'
                             f'type(val)={type(val)}')

        if isinstance(tmp, tf.Tensor):
            arr = val.numpy()

        elif isinstance(tmp, float):
            arr = np.array(val)

        else:
            try:
                arr = np.array([np.array(i) for i in val])
            except (AttributeError, ValueError) as exc:
                raise exc

        subfigs = None
        steps = np.arange(arr.shape[0])
        if therm_frac > 0:
            drop = int(therm_frac * arr.shape[0])
            arr = arr[drop:]
            steps = steps[drop:]

        if len(arr.shape) == 2:
            _ = subplots_kwargs.pop('constrained_layout', True)

            figsize = (2 * figsize[0], figsize[1])

            fig = plt.figure(figsize=figsize, constrained_layout=True, dpi=200)
            subfigs = fig.subfigures(1, 2, wspace=0.1, width_ratios=[1., 1.5])

            gs_kw = {'width_ratios': [1.25, 0.5]}
            (ax, ax1) = subfigs[1].subplots(1,
                                            2,
                                            gridspec_kw=gs_kw,
                                            sharey=True)
            # (ax, ax1) = fig.subfigures(1, 1).subplots(1, 2)
            # gs = fig.add_gridspec(ncols=3, nrows=1, width_ratios=[1.5, 1., 1.5])
            color = plot_kwargs.get('color', None)
            label = r'$\langle$' + f' {key} ' + r'$\rangle$'
            ax.plot(steps,
                    arr.mean(-1),
                    lw=2. * LW,
                    label=label,
                    **plot_kwargs)

            sns.kdeplot(y=arr.flatten(), ax=ax1, color=color, shade=True)
            #ax1.set_yticks([])
            #ax1.set_yticklabels([])
            ax1.set_xticks([])
            ax1.set_xticklabels([])
            sns.despine(ax=ax, top=True, right=True)
            sns.despine(ax=ax1, top=True, right=True, left=True, bottom=True)
            ax.legend(loc='best', frameon=False)
            ax1.grid(False)
            ax1.set_xlabel('')
            ax1.set_ylabel('')
            ax.set_ylabel(key, fontsize='large')
            axes = (ax, ax1)
        else:
            if len(arr.shape) == 1:
                fig, ax = plt.subplots(**subplots_kwargs)
                ax.plot(steps, arr, **plot_kwargs)
                axes = ax
            elif len(arr.shape) == 3:
                fig, ax = plt.subplots(**subplots_kwargs)
                for idx in range(arr.shape[1]):
                    ax.plot(steps,
                            arr[:, idx, :].mean(-1),
                            label='idx',
                            **plot_kwargs)
                axes = ax
            else:
                raise ValueError('Unexpected shape encountered')

            ax.set_ylabel(key)

        if num_chains > 0 and len(arr.shape) > 1:
            num_chains = arr.shape[1] if (
                num_chains > arr.shape[1]) else num_chains
            for idx in range(num_chains):
                ax.plot(steps,
                        arr[:, idx],
                        alpha=0.5,
                        lw=LW / 4,
                        **plot_kwargs)

        ax.set_xlabel('draw', fontsize='large')
        if title is not None:
            fig.suptitle(title)

        if outdir is not None:
            fig.savefig(Path(outdir).joinpath(f'{key}.pdf'))

        return fig, subfigs, axes
Exemplo n.º 39
0
fit = np.polyfit(x, y, 1)
xSmooth = np.linspace(0.5, 6.5, 101)
ySmooth = np.polyval(fit, xSmooth)

fig, axs = plt.subplots(1, 2)

# Plot the datapoints, re \bar{y}
axs[0].plot(x, y, 'o')
axs[0].plot(xSmooth, ySmooth)

axs[0].set_xlim([0, 7])
axs[0].set_ylim([0, 6])
axs[0].set_aspect('equal')
axs[0].hlines(yMean, 0, 7, lw=0.5)
axs[0].text(0.5, yMean + 0.1, r'$\bar{y}$', fontsize=18)
sns.despine(ax=axs[0])

for ii in range(len(y)):
    width = yMean - y[ii]
    rect = Rectangle((x[ii], y[ii]),
                     width=width,
                     height=width,
                     facecolor='r',
                     alpha=0.2)
    axs[0].add_patch(rect)

# Plot the datapoints, re \hat{y}
axs[1].plot(x, y, 'o')
axs[1].plot(xSmooth, ySmooth)

axs[1].set_xlim([0, 7])
def plot_gradual_relaxation(par):

    stay_duration = par["stay_duration"]
    n_ages = par["n_ages"]

    # Read in exp_design matrix. Simulation script uses row 54
    exp_design = pd.read_csv(h.exp_design_filepath, index_col=0)

    # To get HI threshold if all SD but SI remains at 0.1
    R0_relaxed = exp_design.loc[60, "R0"]  # todo: not robust to no. of strats

    # HI threshold for *susceptible* population
    hi_threshold = (1 / R0_relaxed) * par["N"].sum()

    # Read in simulation results
    out_df = pd.read_csv(h.gradual_relaxation_filepath)

    # Total susceptible and new cases
    C_cols = ["C" + str(y) for y in range(0, n_ages)]
    S_cols = ["S" + str(y) for y in range(0, n_ages)]
    out_df["Stot"] = out_df[S_cols].sum(axis=1)
    out_df["Ctot"] = out_df[C_cols].sum(axis=1)

    # Daily fraction of new cases hospitalised
    out_df["hosp_rate"] = out_df["new_hosp"] / out_df["Ctot"]

    # Total cumulative fatalities
    out_df["fatalities"] = out_df[['<60_fatal', '>60_fatal']].sum(axis=1)

    # maximum hospital burden
    print("Max. hosp. burden:", out_df.groupby("run")["hosp_burden"].max())

    # maximum hospital rate
    max_hosp_rate = out_df.groupby("run")["hosp_rate"].max()
    print("Max. hosp. rate:", max_hosp_rate)

    # Time to reach herd immunity at max susceptible depletion rate using social
    # distancing

    hosp_capacity = 1e5
    min_time_to_hi = (par["N"].sum() - hi_threshold) * stay_duration\
        * max_hosp_rate[1] / hosp_capacity
    print("Hospital capacity:", hosp_capacity)
    print("Minimum time to herd immunity:", min_time_to_hi)
    # Final fatalities
    print("Final fatalities:", out_df.groupby("run")["fatalities"].max())

    colours = h.colours

    runs = out_df["run"].unique()
    runs_names = dict(
        zip(runs, [
            "No intervention", "SI and 60+ social\ndistancing (SD)",
            "0-59 SD relaxed over 100 days", "0-59 SD relaxed over 200 days",
            "0-59 SD relaxed over 300 days"
        ]))

    # HI threshold for *susceptible* population
    hi_threshold = (1 / R0_relaxed) * par["N"].sum()

    runs_cols = dict(
        zip(runs,
            [colours[11], colours[8], colours[5], colours[12], colours[0]]))

    use_thin = False

    fig_width = 3.4252 if use_thin else 5.2

    fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(fig_width, 5.0))

    fig.subplots_adjust(left=0.18,
                        bottom=0.09,
                        right=0.92,
                        top=0.96,
                        wspace=0.4,
                        hspace=0.4)
    legend_loc = (0.3, 0.25)
    fontsize = 8
    label_fontsize = 8

    for run, g in out_df.groupby("run"):

        ax = axes[0]
        ax.plot(g["time"],
                g["hosp_burden"] / 1e5,
                label=runs_names[run],
                color=runs_cols[run])

        ax = axes[1]
        ax.plot(g["time"],
                g["fatalities"] / 1e5,
                label=run,
                color=runs_cols[run])

        ax = axes[2]
        ax.plot(g["time"], g["Stot"] / 1e6, label=run, color=runs_cols[run])

    axes[0].set_title("a)", loc="left", fontsize=label_fontsize)
    axes[0].set_ylabel("Hospital burden\n(hundred thousands)",
                       fontsize=label_fontsize)
    axes[0].set_yticks(np.linspace(0, 12, 5))
    axes[0].legend(frameon=False, fontsize=8, loc=1)  #legend_loc)
    axes[0].axvline(par["tint"], color="grey", linestyle="--")

    axes[1].set_title("b)", loc="left", fontsize=label_fontsize)
    axes[1].set_ylabel("Fatalities\n(hundred thousands)",
                       fontsize=label_fontsize)

    axes[1].set_yticks([0, 1, 2, 3, 4])

    axes[2].set_title("c)", loc="left", fontsize=label_fontsize)
    axes[2].set_xlabel("Day", fontsize=label_fontsize)
    axes[2].set_ylabel("Susceptible population\n(millions)",
                       fontsize=label_fontsize)
    axes[2].set_yticks([10, 20, 30, 40, 50, 60, 70])
    axes[2].text(-0, 48, "Herd\nimmunity\nthreshold", fontsize=8, va="top")
    axes[2].axhline(hi_threshold / 1e6, color="grey", linestyle="--")

    for ax in axes:
        ax.set_xlim(0, 300)
        sns.despine(ax=ax, trim=True, offset=5)
        ax.tick_params(labelsize=fontsize)

    fig.savefig("./figures/fig_gradual_relaxation.pdf")
Exemplo n.º 41
0
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

data=pd.read_csv('/BioII/lulab_b/huashuo/multiprimer/region/plot_CYP2E1.csv',sep='\t')

for i in list(data.columns[1:-1]):
    plt.figure(figsize=(4,5))
    sns.set_context("talk", font_scale=1, rc={"lines.linewidth": 2.5})
    ax = sns.boxplot(x="label", y=i, data=data,order=["NC", "HCC_0","HCC_1"],palette=["#808080", "#239B56","#2980B9"])
    plt.ylabel(i.split('|')[0])
    # plt.ylim([0,400])
    plt.tight_layout()
    sns.despine(offset=5, trim=True)
    plt.savefig('/BioII/lulab_b/huashuo/multiprimer/box/'+i.split('|')[0]+'|'+i.split('|')[1]+'.png')
    plt.close()
def plot_summary_figure(par):
    n_ages = par["n_ages"]
    stay_duration = par["stay_duration"]
    hosp_cap = 17800
    Ntot = par["N"].sum()


    ts_df = pd.read_csv(h.no_fatigue_filepath)
    exp_df = pd.read_csv(h.exp_design_filepath, index_col=0)


    exp_df["max_burden"] = ts_df.groupby("run")["hosp_burden"].max()

    ts_df["S_tot"] = ts_df[["S" + str(i) for i in range(n_ages)]].sum(axis=1)

    R0_relaxed = exp_df.loc[0, "R0"]
    hi_threshold = (1/R0_relaxed)*par["N"].sum()

    exp_df["name"] = exp_df["name"].replace(to_replace="SI and 60+ social "
                                                       "distancing (SD)",
                                            value="SI and 60+ social\n"
                                                  "distancing (SD)")

    exp_df["name"] = exp_df["name"].replace(to_replace="SI; 0-24, 25-59 "
                                                       "and 60+ SD",
                                            value="SI; 0-24, 25-59\nand 60+ SD")

    eg = exp_df.groupby("name")
    eg_max = eg.apply(lambda x: x[x["max_burden"] < hosp_cap]["R0"].max())

    exp_df_f = exp_df[exp_df["Intervention strategy"] != 5]
    exp_df_f = exp_df_f.reset_index()
    select_runs = exp_df[((exp_df["comp_factor"] * 100 % 10) == 0)].index
    ts_df_light = ts_df[ts_df["run"].isin(select_runs)]


    # Time to hospitalise
    C_cols = ["C" + str(i) for i in range(15)]
    ts_df["Ctot"] = ts_df[C_cols].sum(axis=1)
    ts_df["hosp_rate"] = ts_df["new_hosp"]/ts_df["Ctot"]

    # # maximum hospital rate
    max_hosp_rate = ts_df.groupby("run")["hosp_rate"].max().sort_values()

    print("Max hosp rate for each strategy: ")
    print(max_hosp_rate[np.arange(0,6)])
    # print(max_hosp_rate)
    #
    # max_hosp_rate.hist()
    # plt.show()

    # Time to reach herd immunity at max susceptible depletion rate
    min_time_to_hi = (par["N"].sum() - hi_threshold) \
                     * stay_duration * max_hosp_rate[1]/hosp_cap
    print("min_time_to_hi", min_time_to_hi)

    print("max R0:", eg_max.max())


    def col_function(x):
        hosp_max = x["hosp_burden"].max()
        if (x["S_tot"].iloc[-1] < hi_threshold) & (hosp_max < hosp_cap):
            c = "green"
        elif hosp_max < hosp_cap:
            c = h.colours[9]
        else:
            c = h.colours[12]
        return c


    use_thin = True

    fig_width = 3.4252 if use_thin else 5.2
    #fig_width= 8

    #fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(fig_width, 5.0))

    fig = plt.figure(figsize=(fig_width, 3.5))
    gs = GridSpec(6, 1)
    axes = np.array([plt.subplot(gs[0:3, 0]), plt.subplot(gs[3:, 0])])


    fontsize = 8
    label_fontsize = 8
    legend_loc0 = (0.52, -0.0)
    legend_loc1 = (0.1, -0.05)
    fig.subplots_adjust(left=0.18, bottom=0.13,
                        right=0.96, top=0.95, wspace=0.4, hspace=40)
    # fig.subplots_adjust(left=0.17, bottom=0.09,
    #                     right=0.96, top=0.96, wspace=0.5, hspace=0.5)

    ax = axes[0]
    for _, g in exp_df.groupby("Intervention strategy"):
        col = g["color"].iloc[0]
        name = g["name"].iloc[0]
        if name == "SI and no 60+ contacts":
            name = "SI and no\n60+ contacts"
            ax.plot(g["R0"], np.log10(g["max_burden"]), color=col, label=name)
        if name == "Self-isolation (SI)":
            ax.plot(g["R0"], np.log10(g["max_burden"]), color=col, label=name)


    ax.axvline(eg_max.max(), color="grey", linestyle="--")

    ax.fill_between([1, eg_max.max()], [3, 3], [np.log10(hosp_cap),
                                                np.log10(hosp_cap)],
                    facecolor="#65C8D0", alpha=0.4)

    ax.axvline(1, linestyle="--", color="grey")
    ax.axhline(np.log10(hosp_cap), linestyle="--", color="grey", xmax=2.3/2.5)
    ax.text(2.05, 4.3, s="Hospital\ncapacity\nexceeded", color="grey", ha="center",
            va="bottom", fontsize=label_fontsize)
    ax.text(0.5, 4.2, s="Suppression\nachieved", color="grey", ha="center",
            va="top", fontsize=label_fontsize)
    ax.set_xlabel("Reproductive number", fontsize=label_fontsize)
    ax.set_ylabel("Peak hospital\nburden (Log$_{10}$)", fontsize=label_fontsize)
    ax.set_xlim(0, 2.5)
    ax.set_ylim(3.0, 6.)
    ax.set_yticks(np.linspace(3, 6, 4))
    ax.legend(frameon=False, fontsize=6, loc=2,
              handlelength=1, columnspacing=0.5, facecolor="white")

    df_list = [ts_df_light] #todo: fix handeling of this
    for i, df in enumerate(df_list):
        ax = axes[1]
        td_g = df.groupby("run")
        for run, g in td_g:
            col = col_function(g)
            ax.plot(g["hosp_burden"]/1e5, g["S_tot"]/1e6, color=col, alpha=0.8)

        ax.axhline(hi_threshold/1e6, linestyle="--", color="grey")
        ax.axvline(hosp_cap/1e5, linestyle="--", color="grey")
        ax.set_xlabel("Hospital burden (hundred thousands)",
                      fontsize=label_fontsize)
        ax.set_ylabel("Susceptible individuals\n(millions)",
                      fontsize=label_fontsize)

        ax.set_xlim(0, 8)
        ax.set_ylim(0, 67)
        ax.set_yticks(np.linspace(0, 60, 4))

        ax.text(0.6, 62, s="Hospital capacity", color="grey",
                fontsize=label_fontsize)
        ax.text(8, 32, s="Herd immunity\nthreshold", color="grey",
                ha="right", fontsize=label_fontsize)

    # ax.plot(df_seir["hosp_burden"]/1e5, df_seir["S"]/1e6, color=h.colours[2])

    legend_elements = [Line2D([0], [0], color=h.colours[9],
                              label='Below capacity'),
                       Line2D([0], [0], color=h.colours[12],
                              label='Exceeds capacity'),
                       # Line2D([0], [0], color=h.colours[2],
                       #        label='At capacity'),
                       ]

    ax.legend(handles=legend_elements, ncol=2, loc=legend_loc1, fontsize=6,
              handlelength=1, columnspacing=2, frameon=False)




    titles = ["a)", "b)", "c)", "d)", "e)"]
    for i, ax in enumerate(axes):
        sns.despine(ax=ax, offset=5, trim=True)
        ax.set_title(titles[i], loc="left", fontsize=label_fontsize)
        ax.tick_params(labelsize=fontsize)


    fig.savefig("./figures/fig_summary.pdf")
Exemplo n.º 43
0
_ = ax0.plot(time_range, best_fit, label='fit', lw=1, alpha=0.8)
_ = ax0.fill_between(time_range,
                     cred_region[0, :],
                     cred_region[1, :],
                     alpha=0.3,
                     color='firebrick',
                     label='__nolegend__')
_ = ax0.legend()

# Plot the sampling distributions.
_ = ax1.hist(1 / trace_df['lambda'],
             bins=80,
             normed=True,
             alpha=0.5,
             lw=1,
             edgecolor='k',
             histtype='stepfilled')
_ = ax2.hist(trace_df['a0'],
             bins=80,
             normed=True,
             alpha=0.5,
             lw=1,
             edgecolor='k',
             histtype='stepfilled')

plt.tight_layout()
sns.despine(offset=7)
plt.savefig('output/{}_r{}_{}C_{}_{}_growth.png'.format(
    DATE, RUN_NUMBER, TEMP, CARBON, OPERATOR),
            bbox_inches='tight')
Exemplo n.º 44
0
    sns.kdeplot(df_seqid_bin.molprobity_score,
                label=label,
                color=palette[i],
                shade=True)

ax = plt.gca()
plt.setp(ax, yticks=[])

legend = plt.legend(title='Sequence identity (%)',
                    fontsize='xx-small',
                    loc='upper left')
plt.setp(legend.get_title(), fontsize='x-small')
# plt.xlim(0,30)
plt.xlabel('MolProbity score')
sns.despine(left=True)

plt.tight_layout()

plt.savefig('molprobity_dist.pdf')
plt.savefig('molprobity_dist.png', dpi=300)

plt.close()

# # Plot sequence identity distribution
#
# sns.set(style="white")
# sns.kdeplot(df_has_model.seqid)
# sns.despine(left=True)
# plt.setp(plt.gca(), yticks=[])
# plt.xlim(0,102)
Exemplo n.º 45
0
# In[11]:

12 / 16

# In[13]:

plt.figure(figsize=(6, 6))
plt.style.use('seaborn-white')

sns.boxplot(x="variable", y="value", data=df_melt, width=0.25)

plt.ylabel("Accuracy")
plt.xlabel("")
plt.xticks([0, 1], ["Expect", "Actual"])
sns.despine(left=False, bottom=False)

# plt.savefig("../result_graph/expect_actual.png",bbox_inches='tight', dpi = 300)

# In[14]:

# !!!! T-test results !!!!

scipy.stats.ttest_rel(df["actual_acc_percent"], df["expect_acc"])

# In[15]:

# Male Expect
me = df_melt[(df_melt["Gender"] == "Male")
             & (df_melt["variable"] == "expect_acc")]["value"]
Exemplo n.º 46
0
def plot(df):
    """Plot the results."""

    df["order"] = [3, 2, 4, 1, 5, 6, 7]
    df = df.sort_values("order")
    df.drop("order", axis=1, inplace=True)
    deviation = df.iloc[-1].values
    df = df.iloc[:-1]

    print("\nResults:\n")
    print(df)
    print("")

    colors = np.array(
        ["#9467bd", "#ff7f0e", "#1f77b4", "#d62728", "#8c564b", "0.5"])

    # plot
    dx = 0.4
    x1 = np.arange(1, len(colors) + 1, 1)
    x2 = x1 + dx
    bbox = dict(boxstyle="square", ec="none", fc="1", lw=1, alpha=0.7)

    fig, (ax3, ax1, ax2) = plt.subplots(1,
                                        3,
                                        figsize=(16, 6),
                                        sharex=True,
                                        sharey=False)

    # plot dominance
    ax1.bar(x1,
            df["IG dominance"].values,
            width=dx,
            label="Infragravity",
            facecolor="navy",
            edgecolor="k",
            alpha=0.75)
    ax1.bar(x2,
            df["SW dominance"].values,
            width=dx,
            label="Sea-swell",
            facecolor="darkgreen",
            edgecolor="k",
            alpha=0.75)

    # plot IG phase
    ax2.bar(x1,
            df["Positive phase"].values,
            width=dx,
            label="Positive phase",
            facecolor="orangered",
            edgecolor="k",
            alpha=0.75)
    ax2.bar(x2,
            df["Negative phase"].values,
            width=dx,
            label="Negative phase",
            facecolor="dodgerblue",
            edgecolor="k",
            alpha=0.75)

    # plot IG/SW ratio
    ax3.bar(x1,
            df["Ravg"].values,
            width=dx + dx,
            label="Positive phase",
            color=colors,
            edgecolor="k",
            alpha=0.75)
    ax3.errorbar(x1,
                 df["Ravg"].values,
                 df["Rstd"].values,
                 fmt="none",
                 color="k",
                 capsize=5,
                 lw=2)

    # add numbers to first plot
    for xa, xb, ya, yb in zip(x1, x2, df["IG dominance"].values,
                              df["SW dominance"].values):
        ax1.text(xa,
                 ya * 1.05,
                 str(round(ya, 1)) + "%",
                 ha="center",
                 va="bottom",
                 rotation=90,
                 fontsize=12,
                 zorder=100,
                 bbox=bbox)
        ax1.text(xb,
                 yb * 1.05,
                 str(round(yb, 1)) + "%",
                 ha="center",
                 va="bottom",
                 rotation=90,
                 fontsize=12,
                 zorder=100,
                 bbox=bbox)

    # add numbers to second plot
    for xa, xb, ya, yb in zip(x1, x2, df["Positive phase"].values,
                              df["Negative phase"].values):
        ax2.text(xa,
                 ya * 1.05,
                 str(round(ya, 1)) + "%",
                 ha="center",
                 va="bottom",
                 rotation=90,
                 fontsize=12,
                 zorder=100,
                 bbox=bbox)
        ax2.text(xb,
                 yb * 1.05,
                 str(round(yb, 1)) + "%",
                 ha="center",
                 va="bottom",
                 rotation=90,
                 fontsize=12,
                 zorder=100,
                 bbox=bbox)

    # 50% line
    ax1.axhline(50, lw=3, ls="--", color="r")
    ax2.axhline(50, lw=3, ls="--", color="r")

    # legends
    lg = ax2.legend()
    lg.get_frame().set_color("w")
    lg = ax1.legend()
    lg.get_frame().set_color("w")

    # fix ticks
    ax1.set_xticks(x1 + (dx / 8))

    # set labels
    labels = []
    for label in df.index.values:
        lbl = "\n".join(textwrap.wrap(label, 10))
        labels.append(lbl)
    ax1.set_xticklabels(labels, fontsize=14, rotation=90)
    ax2.set_xticklabels(labels, fontsize=14, rotation=90)
    ax3.set_xticklabels(labels, fontsize=14, rotation=90)
    ax1.set_ylabel(r"Perc. of occurrence $[\%]$")
    ax2.set_ylabel(r"Perc. of occurrence $[\%]$")
    ax3.set_ylabel(r"$E_{ig}/E_{sw}$ $[-]$")

    ax1.set_ylim(0, 100)
    ax2.set_ylim(0, 100)

    ax1.grid(color="w", lw=2, ls="-")
    ax2.grid(color="w", lw=2, ls="-")
    ax3.grid(color="w", lw=2, ls="-")

    sns.despine(ax=ax1)
    sns.despine(ax=ax2)
    sns.despine(ax=ax3)

    ax1.text(0.025,
             0.965,
             "b)",
             transform=ax1.transAxes,
             ha="left",
             va="top",
             bbox=bbox,
             zorder=100)
    ax2.text(0.025,
             0.965,
             "c)",
             transform=ax2.transAxes,
             ha="left",
             va="top",
             bbox=bbox,
             zorder=100)
    ax3.text(1 - 0.025,
             0.965,
             "a)",
             transform=ax3.transAxes,
             ha="right",
             va="top",
             bbox=bbox,
             zorder=100)

    fig.tight_layout()
    plt.show()
Exemplo n.º 47
0
simsAx[0].semilogx([1, 1], [-1.5, 1], 'k--')
simsAx[0].semilogx([10, 10], [-1.5, 1], 'k--')
simsAx[0].semilogx([100, 100], [-1.5, 1], 'k--')
# now the real stuff
ex = simsAx[0].semilogx(omega, sfExc, 'k-')
nm = simsAx[0].semilogx(omega, -sfNorm, 'r-', linewidth=2.5)
simsAx[0].set_xlim([omega[0], omega[-1]])
simsAx[0].set_ylim([-0.1, 1.1])
simsAx[0].set_xlabel('SF (cpd)', fontsize=12)
simsAx[0].set_ylabel('Normalized response (a.u.)', fontsize=12)
simsAx[0].set_title('CELL %d' % (which_cell), fontsize=20)
simsAx[0].legend([ex[0], nm[0]],
                 ('excitatory %.2f' % (modParamsCurr[0]),
                  'normalization %.2f' % (np.exp(modParamsCurr[-2]))))
# Remove top/right axis, put ticks only on bottom/left
sns.despine(ax=simsAx[0], offset=5)

#### Now simulate ####
# construct by hand for now; 5 dispersions with the old stimulus set
val_con_by_disp = []
val_con_by_disp.append(
    np.array([1, 0.688, 0.473, 0.325, 0.224, 0.154, 0.106, 0.073, 0.05, 0.01]))
val_con_by_disp.append(np.array([1, 0.688, 0.473, 0.325]))
val_con_by_disp.append(np.array([1, 0.688, 0.473, 0.325]))
val_con_by_disp.append(np.array([1, 0.688, 0.473, 0.325]))
val_con_by_disp.append(np.array([1, 0.688, 0.473, 0.325]))

v_sfs = np.logspace(np.log10(0.3), np.log10(10), 11)
# for now
print('\nSimulating enhanced range of contrasts from model\n\n')
#print('\tTesting at range of spatial frequencies: ' + str(v_sfs));
Exemplo n.º 48
0
    ['variable'])['value'].mean()[['rewarded', 'unrewarded', 'bias']],
           color='black',
           linewidth=0,
           marker='_',
           markersize=13,
           zorder=100)
ax[1].get_legend().set_visible(False)
ax[1].set(xlabel='',
          ylabel='',
          ylim=[-1, 1.2],
          yticks=[-1, -0.5, 0, 0.5, 1],
          xticks=[0, 1, 2, 3],
          xlim=[-0.5, 3.5])
ax[1].axhline(color='darkgray', linestyle=':')
ax[1].set_xticklabels([], ha='right', rotation=15)
sns.despine(trim=True)
plt.tight_layout(w_pad=-0.1)
fig.savefig(figpath / 'figure5c_basic_weights.pdf')

# ========================= #
# SAME BUT FOR FULL TASK
# ========================= #

# reshape the data and average across labs for easy plotting
full_summ_visual = pd.melt(params_full,
                           id_vars=['institution_code', 'subject_nickname'],
                           value_vars=['6.25', '12.5', '25', '100']).groupby([
                               'institution_code', 'subject_nickname',
                               'variable'
                           ]).mean().reset_index()
full_summ_bias = pd.melt(
Exemplo n.º 49
0
def plot_density_maps(densities=None, figure=None):
    """
        functions to plot density maps from densities dictionary with data from x,y,z,xy,xz,yz projections

        :return:            figure will be returned with all plotted maps from densities
        :param densities:   dictionary which holds all projections for the plots
        :param figure:      you can pass a figure if you want to use a custom plot format
    """
    # if figure is not passed create a new one
    if figure is None:
        figure = plt.figure(figsize=(8, 8))

    if densities is None:
        return figure

    # set the axes layout right
    ax_x = plt.subplot2grid((4, 4), (0, 1), rowspan=1, colspan=2)
    ax_y = plt.subplot2grid((4, 4), (1, 3), rowspan=2, colspan=1)
    ax_z = plt.subplot2grid((4, 4), (3, 3), rowspan=1, colspan=1)

    ax_xy = plt.subplot2grid((4, 4), (1, 1),
                             rowspan=2,
                             colspan=2,
                             sharex=ax_x,
                             sharey=ax_y)
    ax_xz = plt.subplot2grid((4, 4), (3, 1),
                             rowspan=1,
                             colspan=2,
                             sharex=ax_xy,
                             sharey=ax_z)
    ax_yz = plt.subplot2grid((4, 4), (1, 0),
                             rowspan=2,
                             colspan=1,
                             sharey=ax_xy)
    axes = {
        'x': ax_x,
        'y': ax_y,
        'z': ax_z,
        'xy': ax_xy,
        'xz': ax_xz,
        'yz': ax_yz
    }

    # loop over all densities, keys contain type of data
    for name, density in densities.items():
        # get name and split projection axes from it
        p_axes = name.split('_')[0]
        dim = len(p_axes)

        if dim > 1:
            ax = axes[p_axes]
            x_edges = density['edges'][0]
            y_edges = density['edges'][1]

            x_min = np.floor(np.min(x_edges))
            x_max = np.ceil(np.max(x_edges))
            y_min = np.floor(np.min(y_edges))
            y_max = np.ceil(np.max(y_edges))

            if p_axes == 'yz':
                ax.imshow(density['data'], extent=(y_min, y_max, x_max, x_min))
                ax.set_xlabel(p_axes[1].capitalize() + r' ($\mu$m)')
                ax.set_ylabel(p_axes[0].capitalize() + r' ($\mu$m)')
            else:
                ax.imshow(density['data'].T,
                          extent=(x_min, x_max, y_max, y_min))
                ax.set_xlabel(p_axes[0].capitalize() + r' ($\mu$m)')
                ax.set_ylabel(p_axes[1].capitalize() + r' ($\mu$m)')
            ax.invert_yaxis()

        else:
            ax = axes[p_axes]
            if p_axes == 'x':
                ax.plot(density['edges'][0][:-1], density['data'])
                ax.set_xlabel(p_axes.capitalize() + r' ($\mu$m)')
                ax.ticklabel_format(axis='y',
                                    style='scientific',
                                    scilimits=(0, 0))
            else:
                ax.plot(density['data'], density['edges'][0][:-1])
                ax.set_ylabel(p_axes.capitalize() + r' ($\mu$m)')
                ax.ticklabel_format(axis='x',
                                    style='scientific',
                                    scilimits=(0, 0))

            sns.despine()
        ax.set_aspect('auto')
    figure.tight_layout(rect=[0, 0.03, 1, 0.9])
    return figure
Exemplo n.º 50
0
def plot_importance(df):
    """
    Plot the importance of each domain.

    """
    #TODO: parametrize
    df = df[df.link_type == 'results']

    df.loc[df.category == 'top_insurance', 'category'] = 'insurance'
    df.loc[df.category == 'top_loans', 'category'] = 'loans'
    df.loc[df.category == 'med_sample_first_20', 'category'] = 'medical'
    df.loc[df.category == 'procon_popular', 'category'] = 'controversial'
    df.loc[df.domain == 'people also ask', 'domain'] = 'PeopleAlsoAsk'

    # make a copy before fillna
    counts_copy = df[(df.metric == 'domain_count') & (df.category != 'all')]
    df = df.fillna(0)

    pal = 'muted'

    # placeholder for qual coded values
    # df['fake_val'] = df['val'].map(lambda x: x / 2)
    categorized = df[df.category != 'all']
    print('df head', df.head())
    plot_col_dfs = [categorized]
    sns.set_context("paper", rc={
        # "font.size": 8, 
        # "font.family": "Times New Roman", 
        #"axes.titlesize": 8, 
            "axes.labelsize": 9
        }
    )

    width, height = 5.5, 5
    fig, axes = plt.subplots(ncols=2, nrows=len(plot_col_dfs), figsize=(width, height), dpi=300)

    for colnum, subdf in enumerate(plot_col_dfs):
        if subdf.empty:
            continue
        tmpdf = subdf[
            (subdf.subset == FULL) & (subdf.metric == 'domain_appears')
        ][['domain', 'val', 'is_ugc_col']]
        grouped_and_sorted = tmpdf.groupby('domain').mean().sort_values(
                'val', ascending=False)
        order = list(grouped_and_sorted.index)
        ugc_cols = list(grouped_and_sorted[grouped_and_sorted.is_ugc_col == True].index)
        #print('ugc_cols', ugc_cols)
        nonugc_count = 0
        selected_order = []

        # add all UGC cols and up to num_nonugc non-ugc cols
        num_nonugc = 5
        non_ugcs = []
        for i_domain, domain in enumerate(order):
            if domain in ugc_cols:
                selected_order.append(domain)
            else:
                nonugc_count += 1
                if nonugc_count <= num_nonugc:
                    selected_order.append(domain)
                    non_ugcs.append(i_domain)
        
        ranks_and_counts = []
        for domain in selected_order:
            ranks = subdf[(subdf.metric == 'domain_rank') & (subdf.domain == domain)]
            ranks = ranks[ranks.val != 0].val
            #print('rank', domain, ranks.mean())

            # will be a Series
            counts = counts_copy[counts_copy.domain == domain].val
            #print('count', domain, counts.mean())

            full_rates = subdf[(subdf.metric == 'domain_appears') & (subdf.domain == domain) & (subdf.subset == FULL)].val
            top3_rates = subdf[(subdf.metric == 'domain_appears') & (subdf.domain == domain) & (subdf.subset == TOP_THREE)].val
            if top3_rates.empty:
                top3 = 0
            else:
                top3 = top3_rates.mean()
            # print(full_rates)
            if top3_rates.empty:
                print(domain)
                print(top3_rates)
            ranks_and_counts.append({
                'domain': domain,
                'average rank': round(ranks.mean(), 1),
                'average count': round(counts.mean(), 1),
                'average full-page incidence': round(full_rates.mean(), 2),
                'average top-three incidence': round(top3, 2),
            })

            # _, histax = plt.subplots()
            # sns.distplot(
            #     ranks.dropna(), rug=True, bins=list(range(1, 13)), 
            #     kde=False, color="b", ax=histax)
            # histax.set_title('Histogram for {}'.format(domain))
        ranks_and_counts_df = pd.DataFrame(ranks_and_counts)
        ranks_and_counts_df.to_csv('ranks_and_counts.csv')
        title_kwargs = {}
        # for subset in [FULL, TOP_THREE]:
        #     subdf.loc[:, 'domain'] = subdf['domain'].apply(strip_domain_strings_wrapper(subset))
        #print(subdf)
        if colnum in [0]:
            mask1 = (subdf.metric == 'domain_appears') & (subdf.subset == FULL)
            mask2 = (subdf.metric == 'domain_appears') & (subdf.subset == TOP_THREE)
            sns.barplot(x='val', y='domain', hue='category', order=selected_order,
                        data=subdf[mask1], ax=axes[0], ci=None, palette=pal)
            # sns.barplot(x='fake_val', y='domain', hue='category', order=order,
            #             data=subdf[mask1], ax=axes[0], ci=None, palette=pal_lower)

            sns.barplot(x='val', y='domain', hue='category', order=selected_order,
                        data=subdf[mask2], ax=axes[1], ci=None, palette=pal)

            # sns.barplot(x='fake_val', y='domain', hue='category', order=order,
            #             data=subdf[mask2], ax=axes[1], ci=None, palette=pal_lower)
            title_kwargs['metric'] = 'Fraction of pages where domain appears'

        # might be swapped.
        num_rows = len(selected_order)
        for rownum in [0, 1]:
            ax = axes[rownum]
            ax.set_xlim([0, 1])
            ax.legend(loc='lower right', frameon=True)
            
            if rownum == 0:
                title_kwargs['subset'] = ALL_SUBSET_STRING
                ax.set_xlabel('Full-page incidence rate')
                #ax.set_xlabel('NewsCarousel')
                ax.legend().set_visible(False)
            elif rownum == 1:
                title_kwargs['subset'] = TOP_THREE_SUBSET_STRING
                ax.set_xlabel('Top-three incidence rate')
                ax.set(yticklabels=[], ylabel='')
                
                start_y = 0.6 * 1/num_rows
                y_size = 1 - 1.1 * 1/num_rows
                the_table = plt.table(cellText=ranks_and_counts_df[['average full-page incidence', 'average top-three incidence', 'average rank']].values,
                    bbox=(1.1, start_y, 0.7, y_size))
                the_table.auto_set_font_size(False)
                the_table.set_fontsize(8)
                
                the_labels = plt.table(cellText=[['average\nfull\npage\nrate', 'average\ntop\nthree\nrate', 'average\nrank']],
                    bbox=(1.1,-1.2/num_rows,0.7,1/num_rows))
                # for cell in the_labels._cells.values():
                #     cell.set_text_props(fontname="Times New Roman")
                the_labels.auto_set_font_size(False)
                the_labels.set_fontsize(7)
                for _, cell in the_table.get_celld().items():
                    # cell.set_linewidth(0)
                    cell.set_linestyle('--')
                    cell.set_linewidth(1.5)
                    cell.set_edgecolor('lightgray')
                for _, cell in the_labels.get_celld().items():
                    cell.set_linewidth(0)
                ax.add_table(the_table)
                ax.add_table(the_labels)

            
            boxes = []
                # Loop over data points; create box from errors at each point
            for i_non_ugc in non_ugcs:
                rect = Rectangle(xy=(0, i_non_ugc-0.5), width=1, height=1)
                boxes.append(rect)
                # if rownum == 1:
                #     rect = Rectangle(xy=(1, i_non_ugc-0.5), width=1, height=1)

            # Create patch collection with specified colour/alpha
            pc = PatchCollection(boxes, facecolor='gray', alpha=0.1,
                                    edgecolor=None)
            ax.add_collection(pc)

            
            title_kwargs['type'] = QUERYSET_BREAKDOWN_STRING
            sns.despine(ax=ax, bottom=True, left=True)
            ax.set_ylabel('')
            #print('line y values')
            #print([x + 0.5 for x in range(len(selected_order))])
            ax.hlines([x + 0.5 for x in range(len(selected_order))], *ax.get_xlim(), linestyle='--', color='lightgray')
            #ax.set_title(title_template.format(**title_kwargs))
    fig.savefig(
        'figures/importance.svg', 
        bbox_inches='tight'
    )
Exemplo n.º 51
0
            dispAx[d][c_plt_ind, i].set_xscale('log')
            dispAx[d][c_plt_ind, i].set_xlabel('sf (c/deg)')
            dispAx[d][c_plt_ind, i].set_title('D%02d: contrast: %.3f' %
                                              (d, all_cons[v_cons[c]]))

            # Set ticks out, remove top/right axis, put ticks only on bottom/left
            dispAx[d][c_plt_ind, i].tick_params(labelsize=15,
                                                width=1,
                                                length=8,
                                                direction='out')
            dispAx[d][c_plt_ind, i].tick_params(width=1,
                                                length=4,
                                                which='minor',
                                                direction='out')
            # minor ticks, too...
            sns.despine(ax=dispAx[d][c_plt_ind, i], offset=10, trim=False)

        dispAx[d][c_plt_ind, 0].set_ylim((0, 1.5 * maxResp))
        dispAx[d][c_plt_ind, 0].set_ylabel('resp (sps)')
        dispAx[d][c_plt_ind, 1].set_ylabel('ratio (pred:measure)')
        dispAx[d][c_plt_ind, 1].set_ylim((1e-1, 1e3))
        dispAx[d][c_plt_ind, 1].set_yscale('log')

    fCurr.suptitle('cell #%d, loss %.2f' %
                   (which_cell, modParams[which_cell - 1]['NLL']))

saveName = "/cell_%02d.pdf" % (which_cell)
full_save = os.path.dirname(str(save_loc + 'byDisp/'))
if not os.path.exists(full_save):
    os.makedirs(full_save)
pdfSv = pltSave.PdfPages(full_save + saveName)
Exemplo n.º 52
0
def plot_cell_cn_profile(ax, cn_data, value_field_name, cn_field_name=None, max_cn=13, chromosome=None, s=5, squashy=False, rawy=False, cmap=None):
    """ Plot copy number profile on a genome axis

    Args:
        ax: matplotlib axis
        cn_data: copy number table
        value_field_name: column in cn_data to use for the y axis value
    
    Kwargs:
        cn_field_name: state column to color scatter points
        max_cn: max copy number for y axis
        chromosome: single chromosome plot
        s: size of scatter points
        squashy: compress y axis
        rawy: raw data on y axis

    The cn_data table should have the following columns (in addition to value_field_name and
    optionally cn_field_name):
        - chr
        - start
        - end
    """
    chromosome_info = refgenome.info.chromosome_info[['chr', 'chromosome_start', 'chromosome_end']].copy()
    chromosome_info['chr'] = pd.Categorical(chromosome_info['chr'], categories=cn_data['chr'].cat.categories)
    plot_data = cn_data.merge(chromosome_info)
    plot_data = plot_data[plot_data['chr'].isin(refgenome.info.chromosomes)]
    plot_data['start'] = plot_data['start'] + plot_data['chromosome_start']
    plot_data['end'] = plot_data['end'] + plot_data['chromosome_start']

    squash_coeff = 0.15
    squash_f = lambda a: np.tanh(squash_coeff * a)
    if squashy:
        plot_data[value_field_name] = squash_f(plot_data[value_field_name])

    if cn_field_name is not None:
        if cmap is not None:
            ax.scatter(
                plot_data['start'], plot_data[value_field_name],
                c=plot_data[cn_field_name], s=s,
                cmap=cmap,
            )
        else:
            ax.scatter(
                plot_data['start'], plot_data[value_field_name],
                c=plot_data[cn_field_name], s=s,
                cmap=get_cn_cmap(plot_data[cn_field_name].astype(int).values),
            )
    else:
        ax.scatter(
            plot_data['start'], plot_data[value_field_name], s=s,
        )

    if chromosome is not None:
        chromosome_length = refgenome.info.chromosome_info.set_index('chr').loc[chromosome, 'chromosome_length']
        chromosome_start = refgenome.info.chromosome_info.set_index('chr').loc[chromosome, 'chromosome_start']
        chromosome_end = refgenome.info.chromosome_info.set_index('chr').loc[chromosome, 'chromosome_end']
        xticks = np.arange(0, chromosome_length, 2e7)
        xticklabels = ['{0:d}M'.format(int(x / 1e6)) for x in xticks]
        xminorticks = np.arange(0, chromosome_length, 1e6)
        ax.set_xlabel(f'chromosome {chromosome}')
        ax.set_xticks(xticks + chromosome_start)
        ax.set_xticklabels(xticklabels)
        ax.xaxis.set_minor_locator(matplotlib.ticker.FixedLocator(xminorticks + chromosome_start))
        ax.xaxis.set_minor_formatter(matplotlib.ticker.NullFormatter())
        ax.set_xlim((chromosome_start, chromosome_end))

    else:
        ax.set_xlim((-0.5, refgenome.info.chromosome_end.max()))
        ax.set_xlabel('chromosome')
        ax.set_xticks([0] + list(refgenome.info.chromosome_end.values))
        ax.set_xticklabels([])
        ax.xaxis.tick_bottom()
        ax.yaxis.tick_left()
        ax.xaxis.set_minor_locator(matplotlib.ticker.FixedLocator(refgenome.info.chromosome_mid))
        ax.xaxis.set_minor_formatter(matplotlib.ticker.FixedFormatter(refgenome.info.chromosomes))

    if squashy and not rawy:
        yticks = np.array([0, 2, 4, 7, 20])
        yticks_squashed = squash_f(yticks)
        ytick_labels = [str(a) for a in yticks]
        ax.set_yticks(yticks_squashed)
        ax.set_yticklabels(ytick_labels)
        ax.set_ylim((-0.01, 1.01))
        ax.spines['left'].set_bounds(0, 1)
    elif not rawy:
        ax.set_ylim((-0.05*max_cn, max_cn))
        ax.set_yticks(range(0, int(max_cn) + 1))
        ax.spines['left'].set_bounds(0, max_cn)

    if chromosome is not None:
        seaborn.despine(ax=ax, offset=10, trim=False)
    else:
        seaborn.despine(ax=ax, offset=10, trim=True)

    return chromosome_info
Exemplo n.º 53
0
def boxplot_grid():
    sns.set(font='serif')
    sns.set_style("white", {
        "font.family": "serif",
        "font.serif": ["Times", "Palatino", "serif"]
    })
    sns.set_context('paper', font_scale=1.5)

    # Load data
    data = pickle.load(open('../scripts/haxby_mrt_texture_normalized.pickle',
                            'rb'))
    data = data.replace('haxby', 'Haxby\n(ISI = 12s)')
    data = data.replace('mirror-reversed text', 'Mirror-reversed text\n(ISI = 3-12s)')
    data = data.replace('texture decoding', 'Texture decoding\n(ISI = 4s)')
    # Colors
    cmap = sns.color_palette("Set2", n_colors=4)

    # Specify that I want each subplot to correspond to
    # a different robot type
    g = sns.FacetGrid(
        data,
        row="dataset",
        row_order=['Haxby\n(ISI = 12s)', 'Mirror-reversed text\n(ISI = 3-12s)',
                   'Texture decoding\n(ISI = 4s)'],
        sharey=False)

    # Create the bar plot on each subplot
    g.map(
        sns.boxplot,
        "accuracy", "dataset", "model", orient='h', palette=cmap,
        hue_order=['GLM', 'GLMs', 'spatiotemporal SVM',
                   'logistic deconvolution'], width=0.5, linewidth=1.75)

    # Now I need to draw the 50% lines on each subplot
    # separately
    axes = np.array(g.axes.flat)
    for ax in axes:
        ax.vlines(0, -0.5, 0.5, linestyle='--', linewidth=1.2)
        ax.set_xlim(-0.4, 0.4)
        ax.set_ylim(0.3, -0.3)

    # Remove the "spines" (the lines surrounding the subplot)
    # including the left spine for the 2nd and 3rd subplots
    sns.despine(ax=axes[0], left=True, bottom=True)
    sns.despine(ax=axes[1], left=True, bottom=True)
    sns.despine(ax=axes[2], left=True)

    text = ['-20%', '', '-10%', '', '0%', '', '10%', '', '20%']
    pos_text = ['20%', '', '10%', '', '0%', '', '10%', '', '20%']
    pos = [-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4]
    """
    axes[2].set_xticks([p + .02
                        for p, t in zip(pos, pos_text)])
    """
    axes[2].set_xticklabels(text)

    # These are the labels of each subplot
    labels = ["", "", ""]

    # Iterate over each subplot and set the labels
    for i, ax in enumerate(axes):

        """
        # Set the x-axis ticklabels
        ax.set_xticks([-.3, -.1, .1, .3])
        ax.set_xticklabels(['GLM', 'GLMs', 'Spatio-\ntemporal\nSVM',
                            'Logistic\ndeconvo-\nlution'])
        """
        # Set the label for each subplot
        ax.set_ylabel(labels[i])

        # Remove the y-axis label and title
        ax.set_xlabel("")
        ax.set_title("")

    # axes.flat[0].set_ylabel("accuracy")

    fig = plt.gcf()
    fig.set_size_inches(6, 6)
    plt.tight_layout()

    plt.savefig('all_boxplot.png')

    plt.show()
Exemplo n.º 54
0
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

#DADOS USADOS
tips = sns.load_dataset("tips")
flights_long = sns.load_dataset("flights")

#CONFIGURACOES
sns.set(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=False)
'''(size das labels/lines/outros elementos, cor dos eixos, estilo da cor dos retangulos, fonte, size fonte, ativa o palette)
ex:(notebook/paper/poster, white/dark/ticks/whitegrid, muted/bright/pastel/dark/colorblind)
{antes do grafico ser criado}'''
sns.despine(top=False, right=False, left=False, bottom=False, offset=None, trim=False) #padrao
'''(top-right-left-bottom: if true remove the line, move os retangulos dos eixos, if true tira os eixos)
{depois do grafico ser criado}'''

#FACTORPLOT

#DISTPLOT

#BOXPLOT
sns.boxplot(x="day", y="total_bill", hue="smoker", palette=["m", "g"], data=tips) 
'''(nome col no x, nome col no y, variaveis q o boxplot usa, cor(entre chaves se for + de 1) , dados)'''
plt.show()

#BARPLOT
x = np.array(list("ABCDEFGHIJ"))
y1 = np.arange(1, 11) - 5.5
sns.barplot(x=x, y=y1, palette="vlag")
'''(eixo x, eixo y, cor)'''
Exemplo n.º 55
0
def plot_Residue_MMS_2D(df, opt1,
                        opt2):  # .plot plots the index against every column
    import matplotlib.pyplot as plt
    print('> Dataframe\n{}\n'.format(df.head(10)))

    if opt1 == '월별' and opt2 == 'plt':
        # (53-1) plot :: 월별 > 요일별 플롯
        print('> Dataframe for plot\n{}\n'.format(df.head(20)))

        fig, (axes) = plt.subplots(nrows=3,
                                   ncols=4,
                                   figsize=(10, 8),
                                   sharex=True,
                                   sharey=True)
        ## (여기부터 수정)
        df.loc[pd.IndexSlice[1, :], :].plot(ax=axes[0, 0], title='1월', lw=2)
        df.loc[pd.IndexSlice[2, :], :].plot(ax=axes[0, 1], title='2월', lw=2)
        df.loc[pd.IndexSlice[3, :], :].plot(ax=axes[0, 2], title='3월', lw=2)
        df.loc[pd.IndexSlice[4, :], :].plot(ax=axes[0, 3], title='4월', lw=2)
        df.loc[pd.IndexSlice[5, :], :].plot(ax=axes[1, 0], title='5월', lw=2)
        df.loc[pd.IndexSlice[6, :], :].plot(ax=axes[1, 1], title='6월', lw=2)
        df.loc[pd.IndexSlice[7, :], :].plot(ax=axes[1, 2], title='7월', lw=2)
        df.loc[pd.IndexSlice[8, :], :].plot(ax=axes[1, 3], title='8월', lw=2)
        df.loc[pd.IndexSlice[9, :], :].plot(ax=axes[2, 0], title='9월', lw=2)
        df.loc[pd.IndexSlice[10, :], :].plot(ax=axes[2, 1], title='10월', lw=2)
        df.loc[pd.IndexSlice[11, :], :].plot(ax=axes[2, 2], title='11월', lw=2)
        df.loc[pd.IndexSlice[12, :], :].plot(ax=axes[2, 3], title='12월', lw=2)

        plt.xticks([0, 1, 2, 3, 4, 5, 6], ['월', '화', '수', '목', '금', '토', '일'])
        # fig.autofmt_xdate(rotation=60)  # x축 글자 각도 조정

        _ = plt.legend(loc='upper left')
        _ = plt.tight_layout()
        _ = plt.show()
        # _ = fig.savefig('./output.png')
    elif opt1 == '요일별' and opt2 == 'plt':
        # (53-2) plot :: 요일별 > 월별
        print('> dataframe for plot\n{}\n'.format(df.head(20)))

        fig, (axes) = plt.subplots(nrows=2,
                                   ncols=4,
                                   figsize=(10, 8),
                                   sharex=True,
                                   sharey=True)
        df.loc[pd.IndexSlice[:, 0], :].plot(ax=axes[0, 0], title='월요일', lw=2)
        df.loc[pd.IndexSlice[:, 1], :].plot(ax=axes[0, 1], title='화요일', lw=2)
        df.loc[pd.IndexSlice[:, 2], :].plot(ax=axes[0, 2], title='수요일', lw=2)
        df.loc[pd.IndexSlice[:, 3], :].plot(ax=axes[0, 3], title='목요일', lw=2)
        df.loc[pd.IndexSlice[:, 4], :].plot(ax=axes[1, 0], title='금요일', lw=2)
        df.loc[pd.IndexSlice[:, 5], :].plot(ax=axes[1, 1], title='토요일', lw=2)
        df.loc[pd.IndexSlice[:, 6], :].plot(ax=axes[1, 2], title='일요일', lw=2)

        plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [
            '1월', '2월', '3월', '4월', '5월', '6월', '7월', '8월', '9월', '10월', '11월',
            '12월'
        ])
        # fig.autofmt_xdate(rotation=60)  # x축 글자 각도 조정

        _ = plt.legend(loc='upper left')
        _ = plt.tight_layout()
        _ = plt.show()
        # _ = fig.savefig('./output.png')
    elif opt == 'sns':
        # (53-3) plot using Seaborn :: (잘됨)
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set(style='whitegrid')

        fig, (ax1) = plt.subplots(nrows=1,
                                  ncols=1,
                                  figsize=(10, 8),
                                  sharex=True,
                                  sharey=True)
        # ax = sns.violinplot(data=df[opt1[1]], palette='Set3')  # 월별 평균값
        # ax = sns.boxplot(data=df[opt1[0]], palette='Set3')  # 월별 최댓값
        # ax = sns.boxplot(by=ddd, data=df[opt1[0]], palette='Set3')  # 요일별 평균값
        sns.despine(left=True, bottom=True)

        _ = plt.legend(loc='best')
        _ = plt.tight_layout()
        _ = plt.show()
        # _ = fig.savefig('./output.png')
    else:
        print('> !!!ERROR: Check Your Option!!!')
        return ()
Exemplo n.º 56
0
                 linewidth=1)

# ax = sns.stripplot(data=alldata, x="organism", y="dnds", hue="type", palette=palette,
#           dodge=True, size=3, linewidth=0.5, alpha=0.3)

# https://stackoverflow.com/questions/58476654/how-to-remove-or-hide-x-axis-label-from-seaborn-boxplot
# plt.xlabel(None) will remove the Label, but not the ticks.
ax.set(xlabel=None)
# plt.xlabel("Organism")

# for tick in ax.get_xticklabels() :
#     tick.set_rotation(30)

plt.ylabel("dN/dS")

plt.ylim(0, 0.5)

plt.xticks(rotation=30, ha='right')
plt.yticks([0, 0.1, 0.2, 0.3, 0.4, 0.5])
# # ax.legend(ax.get_legend_handles_labels()[0], ["E", "NE"])

handles, labels = ax.get_legend_handles_labels()
# # specify just one legend
l = plt.legend(handles[0:2], labels[0:2], loc=0, fontsize=8)

sns.despine(top=True, right=True)

plt.savefig("../complementaryData/figure/dnds_boxplot_italic.pdf",
            dpi=400,
            bbox_inches='tight')
Exemplo n.º 57
0
sns.set(style="white", context="talk")
rs = np.random.RandomState(8)

# Set up the matplotlib figure
f, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(7, 5), sharex=True)

# Generate some sequential data
x = np.array(list("ABCDEFGHIJ"))
y1 = np.arange(1, 11)
sns.barplot(x=x, y=y1, palette="rocket", ax=ax1)
ax1.axhline(0, color="k", clip_on=False)
ax1.set_ylabel("Sequential")

# Center the data to make it diverging
y2 = y1 - 5.5
sns.barplot(x=x, y=y2, palette="vlag", ax=ax2)
ax2.axhline(0, color="k", clip_on=False)
ax2.set_ylabel("Diverging")

# Randomly reorder the data to make it qualitative
y3 = rs.choice(y1, len(y1), replace=False)
sns.barplot(x=x, y=y3, palette="deep", ax=ax3)
ax3.axhline(0, color="k", clip_on=False)
ax3.set_ylabel("Qualitative")

# Finalize the plot
sns.despine(bottom=True)
plt.setp(f.axes, yticks=[])
plt.tight_layout(h_pad=2)

plt.savefig('output.png')
Exemplo n.º 58
0
def gauthier_barplotv2():
    sns.set(font='serif')
    sns.set_style("white", {
        "font.family": "serif",
        "font.serif": ["Times", "Palatino", "serif"]
    })
    sns.set_context('paper', font_scale=1.5)

    # Load data
    data = pickle.load(open('../scripts/all_gauthier_separate.pickle',
                            'rb'))

    # Colors
    cmap = sns.color_palette("Set2", n_colors=4)

    # Specify that I want each subplot to correspond to
    # a different robot type
    g = sns.FacetGrid(
        data,
        col="isi",
        col_order=[1.6, 3.2, 4.8],
        sharex=False)

    # Create the bar plot on each subplot
    g.map(
        sns.barplot,
        "isi", "accuracy", "model",
        hue_order=['GLM', 'GLMs', 'spatiotemporal SVM',
                   'logistic deconvolution'], palette=cmap)

    # Now I need to draw the 50% lines on each subplot
    # separately
    axes = np.array(g.axes.flat)
    for ax in axes:
        ax.set_ylim(0.45, 0.75)
        ax.hlines(0.5, -0.5, 0.5, linestyle='--', linewidth=1)

    # Remove the "spines" (the lines surrounding the subplot)
    # including the left spine for the 2nd and 3rd subplots
    sns.despine(ax=axes[1], left=True)
    sns.despine(ax=axes[2], left=True)

    # These are the labels of each subplot
    labels = ["1.6s", "3.2s", "4.8s"]

    # Iterate over each subplot and set the labels
    for i, ax in enumerate(axes):

        # Set the x-axis ticklabels
        """
        ax.set_xticks([-.3, -.1, .1, .3])
        ax.set_xticklabels(['GLM', 'GLMs', 'Spatio-\ntemporal\nSVM',
                            'Logistic\ndeconvo-\nlution'])
        """
        ax.set_xticks([-.3, -.1, .1, .3])
        ax.set_xticklabels(['', '', '', ''])
        # Set the label for each subplot
        ax.set_xlabel(labels[i])

        # Remove the y-axis label and title
        ax.set_ylabel("")
        ax.set_title("")

    axes.flat[0].set_ylabel("accuracy")
    axes.flat[0].set_yticklabels(['', '', '0.5', '', '0.6', '', '0.7'])
    fig = plt.gcf()
    fig.set_size_inches(6, 2)
    plt.tight_layout()

    plt.savefig('gauthier_barplot.png')

    plt.show()
Exemplo n.º 59
0
    def compare_cellmap_method(method1, method1_df, method2, method2_df,
                               celltypes, color_map, outdir, extension):
        nplots = len(method1_df.index)

        ncols = 1
        nrows = math.ceil(nplots / ncols)

        method1_name = method1[0].split("_")[0]
        method2_name = method2[0].split("_")[0]

        sns.set(rc={'figure.figsize': (12 * ncols, 9 * nrows)})
        sns.set_style("ticks")
        fig = plt.figure()
        grid = fig.add_gridspec(ncols=ncols, nrows=nrows)

        row_index = 0
        col_index = 0

        for celltype in celltypes:
            method_celltype = celltype
            if method_celltype == "Microglia":
                method_celltype = "Macrophage"

            # Get the data.
            method1_data = method1_df.loc[method1[0] + method_celltype +
                                          method1[1], :]
            method2_data = method2_df.loc[method2[0] + method_celltype +
                                          method2[1], :]

            df = pd.DataFrame({
                method1_name: method1_data,
                method2_name: method2_data
            })
            df.dropna(inplace=True)

            # Get the color.
            color = color_map[celltype]

            # Creat the subplot.
            ax = fig.add_subplot(grid[row_index, col_index])
            sns.despine(fig=fig, ax=ax)

            coef_str = "NA"
            p_str = "NA"
            if len(df.index) > 1:
                # Calculate the correlation.
                coef, p = stats.spearmanr(df[method1_name], df[method2_name])
                coef_str = "{:.2f}".format(coef)
                # p_str = p_value_to_symbol(p)
                p_str = "p = {:.2e}".format(p)

                # Plot.
                g = sns.regplot(
                    x=method1_name,
                    y=method2_name,
                    data=df,
                    scatter_kws={
                        'facecolors': '#000000',
                        #                                             'edgecolor': '#000000',
                        'linewidth': 0,
                        'alpha': 0.5
                    },
                    line_kws={"color": color},
                    ax=ax)

            # Add the text.
            ax.annotate('r = {} [{}]'.format(coef_str, p_str),
                        xy=(0.03, 0.94),
                        xycoords=ax.transAxes,
                        color=color,
                        fontsize=18,
                        fontweight='bold')

            ax.text(0.5,
                    1.05,
                    method_celltype,
                    fontsize=26,
                    weight='bold',
                    ha='center',
                    va='bottom',
                    color=color,
                    transform=ax.transAxes)

            ax.set_ylabel((method1[0] + method1[1]).replace("_", " "),
                          fontsize=18,
                          fontweight='bold')
            ax.set_xlabel((method2[0] + method2[1]).replace("_", " "),
                          fontsize=18,
                          fontweight='bold')

            ax.axhline(0, ls='--', color="#D7191C", alpha=0.3, zorder=-1)
            ax.axvline(0, ls='--', color="#D7191C", alpha=0.3, zorder=-1)

            # Increment indices.
            col_index += 1
            if col_index == ncols:
                col_index = 0
                row_index += 1

        # Safe the plot.
        plt.tight_layout()
        fig.savefig(
            os.path.join(
                outdir, "{}_vs_{}.{}".format(
                    method1_name.split("_")[0],
                    method2_name.split("_")[0], extension)))
        plt.close()
Exemplo n.º 60
0
def plot_Residue_MMS_3D(df, opt1,
                        opt2):  # .plot plots the index against every column
    import matplotlib.pyplot as plt
    print('> Dataframe\n{}\n'.format(df.head(10)))

    if opt1 == '월별' and opt2 == 'plt':
        # (52-1) plot :: 월별 > 요일별 플롯
        df = df.unstack(level=0)  # [level=0: 요일별]
        df.columns = df.columns.droplevel(level=0)
        df = df.reset_index()
        print('> Dataframe for plot\n{}\n'.format(df.head(10)))

        fig, (axes) = plt.subplots(nrows=3,
                                   ncols=4,
                                   figsize=(10, 8),
                                   sharex=True,
                                   sharey=True)
        df.pivot(index='시간대', columns='요일', values=1).plot(ax=axes[0, 0],
                                                           title='1월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=2).plot(ax=axes[0, 1],
                                                           title='2월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=3).plot(ax=axes[0, 2],
                                                           title='3월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=4).plot(ax=axes[0, 3],
                                                           title='4월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=5).plot(ax=axes[1, 0],
                                                           title='5월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=6).plot(ax=axes[1, 1],
                                                           title='6월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=7).plot(ax=axes[1, 2],
                                                           title='7월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=8).plot(ax=axes[1, 3],
                                                           title='8월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=9).plot(ax=axes[2, 0],
                                                           title='9월',
                                                           lw=2)
        df.pivot(index='시간대', columns='요일', values=10).plot(ax=axes[2, 1],
                                                            title='10월',
                                                            lw=2)
        df.pivot(index='시간대', columns='요일', values=11).plot(ax=axes[2, 2],
                                                            title='11월',
                                                            lw=2)
        df.pivot(index='시간대', columns='요일', values=12).plot(ax=axes[2, 3],
                                                            title='12월',
                                                            lw=2)

        plt.xticks([
            datetime.time(0, 0, 0),
            datetime.time(2, 0, 0),
            datetime.time(4, 0, 0),
            datetime.time(6, 0, 0),
            datetime.time(8, 0, 0),
            datetime.time(10, 0, 0),
            datetime.time(12, 0, 0),
            datetime.time(14, 0, 0),
            datetime.time(16, 0, 0),
            datetime.time(18, 0, 0),
            datetime.time(20, 0, 0),
            datetime.time(22, 0, 0)
        ])

        # plt.xticks([0,1,2,3,4,5,6], ['월','화','수','목','금','토','일'])  # 당연히 샘플임
        # axes[0,0].set_xticks(df.index.get_level_values(level=1))
        # axes[0,0].set_xticklabels(df.index.get_level_values(level=1))
        # fig.autofmt_xdate(rotation=60)  # x축 글자 각도 조정

        plt.suptitle('2018년도 외곽(지하)주차장 통계')
        plt.legend(loc='upper left')
        plt.tight_layout()
        plt.show()
        # _ = fig.savefig('./output.png')
    elif opt1 == '요일별' and opt2 == 'plt':
        # (52-2) plot :: 요일별 > 월별 플롯
        df = df.unstack(level=1)  # [level=1: 월별]
        df.columns = df.columns.droplevel(level=0)
        df = df.reset_index()
        print('> dataframe for plot\n{}\n'.format(df.head(10)))

        fig, (axes) = plt.subplots(nrows=2,
                                   ncols=4,
                                   figsize=(10, 8),
                                   sharex=True,
                                   sharey=True)
        df.pivot(index='시간대', columns='월', values=0).plot(ax=axes[0, 0],
                                                          title='월요일',
                                                          lw=2)
        df.pivot(index='시간대', columns='월', values=1).plot(ax=axes[0, 1],
                                                          title='화요일',
                                                          lw=2)
        df.pivot(index='시간대', columns='월', values=2).plot(ax=axes[0, 2],
                                                          title='수요일',
                                                          lw=2)
        df.pivot(index='시간대', columns='월', values=3).plot(ax=axes[0, 3],
                                                          title='목요일',
                                                          lw=2)
        df.pivot(index='시간대', columns='월', values=4).plot(ax=axes[1, 0],
                                                          title='금요일',
                                                          lw=2)
        df.pivot(index='시간대', columns='월', values=5).plot(ax=axes[1, 1],
                                                          title='토요일',
                                                          lw=2)
        df.pivot(index='시간대', columns='월', values=6).plot(ax=axes[1, 2],
                                                          title='일요일',
                                                          lw=2)

        plt.xticks([
            datetime.time(0, 0, 0),
            datetime.time(2, 0, 0),
            datetime.time(4, 0, 0),
            datetime.time(6, 0, 0),
            datetime.time(8, 0, 0),
            datetime.time(10, 0, 0),
            datetime.time(12, 0, 0),
            datetime.time(14, 0, 0),
            datetime.time(16, 0, 0),
            datetime.time(18, 0, 0),
            datetime.time(20, 0, 0),
            datetime.time(22, 0, 0)
        ])

        plt.suptitle('2018년도 외곽(지하)주차장 통계')
        plt.legend(loc='upper left')
        plt.tight_layout()
        plt.show()
        # _ = fig.savefig('./output.png')
    elif opt2 == 'sns':
        # (52-3) plot using Seaborn :: (잘됨)
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set(style='whitegrid')

        fig, (ax1) = plt.subplots(nrows=1,
                                  ncols=1,
                                  figsize=(10, 8),
                                  sharex=True,
                                  sharey=True)
        # ax = sns.violinplot(data=df[opt1[1]], palette='Set3')  # 월별 평균값
        ax = sns.boxplot(data=df[opt1[0]], palette='Set3')  # 월별 최댓값
        # ax = sns.boxplot(by=ddd, data=df[opt1[0]], palette='Set3')  # 요일별 평균값
        sns.despine(left=True, bottom=True)

        plt.legend(loc='best')
        plt.tight_layout()
        plt.show()
        # fig.savefig('./output.png')
    else:
        print('> !!!ERROR: Check Your Option!!!')
        return ()