def icp(voxelgrid_to_transform,
        template_voxelgrid,
        scale,
        max_iter=10,
        downsample=1):
    """
    Returns a voxelgrid fitted to the template using ICP
    @param max_iter: maximum iterations of ICP
    @param downsample: downsampling factor so fewer points are fit during ICP
    @param scale:
    @param voxelgrid_to_transform:
    @param template_voxelgrid:
    @return:
    """

    vg_to_transform_downsampled = conversions.downsample(
        voxelgrid_to_transform, downsample)
    template_voxelgrid = conversions.downsample(template_voxelgrid, downsample)

    pt_0 = conversions.voxelgrid_to_pointcloud(template_voxelgrid, scale=scale)
    pt_1 = conversions.voxelgrid_to_pointcloud(vg_to_transform_downsampled,
                                               scale=scale)

    source = pcl.PointCloud(pt_0.astype(np.float32))
    target = pcl.PointCloud(pt_1.astype(np.float32))
    icp = source.make_IterativeClosestPoint()
    converged, transf, estimate, fitness = icp.icp(source,
                                                   target,
                                                   max_iter=max_iter)

    T = np.linalg.inv(transf)
    vg_icp = conversions.transform_voxelgrid(voxelgrid_to_transform,
                                             T,
                                             scale=scale)
    return vg_icp
Exemplo n.º 2
0
def chamfer_distance(vg1, vg2, scale, downsample=1):
    """
    Returns the chamfer distance between two voxelgrids
    """
    vg1 = conversions.downsample(vg1, downsample)
    vg2 = conversions.downsample(vg2, downsample)

    pt1 = conversions.voxelgrid_to_pointcloud(vg1, scale=scale)
    pt2 = conversions.voxelgrid_to_pointcloud(vg2, scale=scale)
    return chamfer_distance_pointcloud(pt1, pt2)
Exemplo n.º 3
0
    def test_downsample_with_extra_dims(self):
        vg_orig = np.zeros((1, 4, 4, 4))
        vg_orig[0, 0, 0, 0] = 1.0
        self.assertEqual((1, 2, 2, 2), downsample(vg_orig).shape)

        vg_orig = np.zeros((1, 4, 4, 4, 1))
        vg_orig[0, 0, 0, 0] = 1.0
        self.assertEqual((1, 2, 2, 2, 1), downsample(vg_orig).shape)

        vg_orig = np.zeros((4, 4, 4, 1))
        vg_orig[0, 0, 0, 0] = 1.0
        self.assertEqual((2, 2, 2, 1), downsample(vg_orig).shape)
Exemplo n.º 4
0
 def test_downsample_without_extra_dims(self):
     vg_orig = np.zeros((4, 4, 4))
     vg_orig[0, 0, 0] = 1.0
     vg_orig = tf.cast(vg_orig, tf.float32)
     vg_downsampled = downsample(vg_orig)
     self.assertEqual((2, 2, 2), vg_downsampled.shape)
     vg_expected = [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]
     self.assertTrue(tf.reduce_all(vg_expected == vg_downsampled))