Exemplo n.º 1
0
def find_ROI(img, mask, window_ratio):
    mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)

    m = skimage.measure.moments(mask)
    cr = m[0, 1] / m[0, 0]
    cc = m[1, 0] / m[0, 0]
    measure.moments_central(mask, cr, cc)
    label_mask = label(mask)

    ROI = []
    Coords = []
    for region in regionprops(label_mask):
        minr, minc, maxr, maxc = region.bbox
        x_length = abs(maxr - minr)
        y_length = abs(maxc - minc)
        x_mid = minr + (x_length / 2)
        y_mid = minc + (y_length / 2)
        if x_length < y_length:
            square_length = np.multiply(y_length, window_ratio)
        else:
            square_length = np.multiply(x_length, window_ratio)

        X_min = int(x_mid - (square_length / 2))
        X_max = int(x_mid + (square_length / 2))
        Y_min = int(y_mid - (square_length / 2))
        Y_max = int(y_mid + (square_length / 2))

        coord = [X_min, X_max, Y_min, Y_max]
        subRegion = np.zeros_like(img)
        subRegion[coord[0]:coord[1],
                  coord[2]:coord[3]] = img[coord[0]:coord[1],
                                           coord[2]:coord[3]]
        ROI.append(subRegion)
        Coords.append(coord)
    return ROI, Coords
Exemplo n.º 2
0
def test_moments_central_deprecated():
    image = np.zeros((20, 20), dtype=np.double)
    image[5:-5, 5:-5] = np.random.random((10, 10))
    center = moments(image, 1)[[1, 0], [0, 1]]
    cr, cc = center
    with expected_warnings(['deprecated 2D-only']):
        mu0 = moments_central(image, cr, cc)
        mu1 = moments_central(image, cr=cr, cc=cc)
    mu_ref = moments_central(image, center)
    assert_almost_equal(mu0.T, mu_ref)
    assert_almost_equal(mu1.T, mu_ref)
Exemplo n.º 3
0
def test_moments_central_deprecated():
    image = np.zeros((20, 20), dtype=np.double)
    image[5:-5, 5:-5] = np.random.random((10, 10))
    center = moments(image, 1)[[1, 0], [0, 1]]
    cr, cc = center
    with expected_warnings(['deprecated 2D-only']):
        mu0 = moments_central(image, cr, cc)
        mu1 = moments_central(image, cr=cr, cc=cc)
    mu_ref = moments_central(image, center)
    assert_almost_equal(mu0.T, mu_ref)
    assert_almost_equal(mu1.T, mu_ref)
Exemplo n.º 4
0
def m20(image: np.ndarray, mask: np.ndarray) -> float:
    r'''Calculate the M20 statistic.

    .. math:: M_{20} = log_{10} \left(\frac{\sum M_i}  {M_{tot}}\right)
    .. math:: While \sum f_i < 0.2 f_{tot}
    .. math:: M_{tot} = \sum M_i = \sum f_i [(x - x_c)^2 + (y - y_c)^2]

    see Lotz et al. 2004 https://doi.org/10.1086/421849

    Adapted from statmorph: https://github.com/vrodgom/statmorph

    Parameters
    ----------

    image : float, 2d np.ndarray
        Image of galaxy

    mask : float [0. - 1.], 2d np.ndarray
        Mask which contains the pixels belonging to the galaxy of interest.

    Returns
    -------

    m20 : float
        M20 statistic

    '''

    # use the same image as used in Gini calculation.
    img = np.where(mask > 0, image, 0.)

    # Calculate centroid from moments
    M = moments(img, order=1)
    centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0])

    # Calculate 2nd order central moment
    Mcentral = moments_central(img, center=centroid, order=2)
    secondMomentTotal = Mcentral[2, 0] + Mcentral[0, 2]

    # sort pixels, then take top 20% of brightest pixels
    sortedPixels = np.sort(img.ravel())
    fluxFraction = np.cumsum(sortedPixels) / np.sum(sortedPixels)
    thresh = sortedPixels[fluxFraction > 0.8][0]

    # Select pixels from the image that are the top 20% brightest
    # then compute M20
    img20 = np.where(img >= thresh, img, 0.0)
    Mcentral20 = moments_central(img20, center=centroid, order=2)
    secondMoment20 = Mcentral20[0, 2] + Mcentral20[2, 0]

    m20 = np.log10(secondMoment20 / secondMomentTotal)

    return m20
Exemplo n.º 5
0
def test_moments_normalized():
    image = np.zeros((20, 20), dtype=np.double)
    image[13:17, 13:17] = 1
    mu = moments_central(image, 14.5, 14.5)
    nu = moments_normalized(mu)
    # shift image by dx=-3, dy=-3 and scale by 0.5
    image2 = np.zeros((20, 20), dtype=np.double)
    image2[11:13, 11:13] = 1
    mu2 = moments_central(image2, 11.5, 11.5)
    nu2 = moments_normalized(mu2)
    # central moments must be translation and scale invariant
    assert_almost_equal(nu, nu2, decimal=1)
Exemplo n.º 6
0
def test_moments_normalized():
    image = np.zeros((20, 20), dtype=np.double)
    image[13:17, 13:17] = 1
    mu = moments_central(image, (14.5, 14.5))
    nu = moments_normalized(mu)
    # shift image by dx=-3, dy=-3 and scale by 0.5
    image2 = np.zeros((20, 20), dtype=np.double)
    image2[11:13, 11:13] = 1
    mu2 = moments_central(image2, (11.5, 11.5))
    nu2 = moments_normalized(mu2)
    # central moments must be translation and scale invariant
    assert_almost_equal(nu, nu2, decimal=1)
Exemplo n.º 7
0
def test_moments_normalized():
    image = np.zeros((20, 20), dtype=np.float64)
    image[13:17, 13:17] = 1
    mu = moments_central(image, (14.5, 14.5))
    nu = moments_normalized(mu)
    # shift image by dx=-2, dy=-2 and scale non-zero extent by 0.5
    image2 = np.zeros((20, 20), dtype=np.float64)
    # scale amplitude by 0.7
    image2[11:13, 11:13] = 0.7
    mu2 = moments_central(image2, (11.5, 11.5))
    nu2 = moments_normalized(mu2)
    # central moments must be translation and scale invariant
    assert_almost_equal(nu, nu2, decimal=1)
Exemplo n.º 8
0
def test_moments_hu():
    image = np.zeros((20, 20), dtype=np.double)
    image[13:15, 13:17] = 1
    mu = moments_central(image, 13.5, 14.5)
    nu = moments_normalized(mu)
    hu = moments_hu(nu)
    # shift image by dx=2, dy=3, scale by 0.5 and rotate by 90deg
    image2 = np.zeros((20, 20), dtype=np.double)
    image2[11, 11:13] = 1
    image2 = image2.T
    mu2 = moments_central(image2, 11.5, 11)
    nu2 = moments_normalized(mu2)
    hu2 = moments_hu(nu2)
    # central moments must be translation and scale invariant
    assert_almost_equal(hu, hu2, decimal=1)
Exemplo n.º 9
0
def test_moments_hu():
    image = np.zeros((20, 20), dtype=np.double)
    image[13:15, 13:17] = 1
    mu = moments_central(image, (13.5, 14.5))
    nu = moments_normalized(mu)
    hu = moments_hu(nu)
    # shift image by dx=2, dy=3, scale by 0.5 and rotate by 90deg
    image2 = np.zeros((20, 20), dtype=np.double)
    image2[11, 11:13] = 1
    image2 = image2.T
    mu2 = moments_central(image2, (11.5, 11))
    nu2 = moments_normalized(mu2)
    hu2 = moments_hu(nu2)
    # central moments must be translation and scale invariant
    assert_almost_equal(hu, hu2, decimal=1)
Exemplo n.º 10
0
def collect(path, mean, std):
    img = io.imread('./images/' + path + '.bmp')
    hist = exposure.histogram(img)
    th = get_threshold('./images/' + path + '.bmp')
    img_binary = (img < th).astype(np.double)
    img_label = label(img_binary, background=0)
    regions = regionprops(img_label)
    boxes = []
    features = []
    for props in regions:
        box = []
        minr, minc, maxr, maxc = props.bbox
        if maxc - minc < 10 or maxr - minr < 10 or maxc - minc > 120 or maxr - minr > 120:
            continue
        box.append(minr)
        box.append(maxr)
        box.append(minc)
        box.append(maxc)
        boxes.append(box)

        roi = img_binary[minr:maxr, minc:maxc]
        m = moments(roi)
        cr = m[0, 1] / m[0, 0]
        cc = m[1, 0] / m[0, 0]
        mu = moments_central(roi, cr, cc)
        nu = moments_normalized(mu)
        hu = moments_hu(nu)
        features.append(hu)

    feature_arr = normalize(features, mean, std)
    return (boxes, feature_arr)
Exemplo n.º 11
0
 def huMoment(self, img):
     h = 1 - img
     m = moments(h)
     cr = m[0, 1] / m[0, 0]
     cc = m[1, 0] / m[0, 0]
     mu = moments_central(h, cr, cc)
     return mu
Exemplo n.º 12
0
def featuresExtractor_Hu(image):
    img = rgb2gray(image)
    hu = moments_central(img)
    hu = moments_normalized(hu)
    hu = moments_hu(hu)
    l = [norm(f) for f in hu]
    return l
Exemplo n.º 13
0
def get_data(x, y, img):

    # Create data and 5x5 image slice
    data = []
    new_image = img[x - 2:x + 2, y - 2:y + 2]

    # Append location of pixel
    data.append(x)
    data.append(y)

    # Append pixel values to data
    for pixel_val in new_image.ravel():
        data.append(pixel_val)

    # Append central moments to data
    central_moments = measure.moments_central(new_image)
    for central_moment in central_moments.ravel():
        data.append(central_moment)

    # Append hu moments to data
    hu_moments = measure.moments_hu(
        measure.moments_normalized(central_moments))
    for hu_moment in hu_moments:
        data.append(hu_moment)

    # Append variation of pixel values to data
    variation = np.var(new_image)
    data.append(variation)

    return data
Exemplo n.º 14
0
def get_hu_moment_from_image(image):
    """
    Compute the 7 Hu's moments from an image.
    This set of moments is proofed to be translation, scale and rotation invariant.

    Parameters
    ----------
    image: array-like
        a 2d array of double or uint8 corresponding to an image

    Returns
    -------
    (7, 1) array of double
        7 Hu's moments

    References
    ----------
    http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.moments
    """
    order = 7
    raw_moments = moments(image, order=order)
    cr = raw_moments[0, 1] / raw_moments[0, 0]
    cc = raw_moments[1, 0] / raw_moments[0, 0]
    central_moments = moments_central(image, cr, cc, order=order)
    normalized_moments = moments_normalized(central_moments, order)
    hu_moments = moments_hu(normalized_moments)
    return hu_moments
Exemplo n.º 15
0
Arquivo: hu.py Projeto: rgaiacs/pythia
def hist(image):
    """Create histogram"""
    return moments_hu(
        moments_normalized(
            moments_central(image)
        )
    )
Exemplo n.º 16
0
def get_hu_moments(samples):
    print "getting hu moments..."
    features = []
    for sample in samples:
        '''
        sample = np.array(sample)
        th = 200
        img_binary = (sample < th).astype(np.double)
        img_label = label(img_binary, background=255)
        regions = regionprops(img_label)
        if regions == []:
            print "no regions"
        for props in regions:
            minr, minc, maxr, maxc = props.bbox
            roi = img_binary[minr:maxr, minc:maxc]

        '''
        sample = np.array(sample)
        sample = sample.astype(np.double)
        m = moments(sample)
        cr = m[0, 1] / m[0, 0]
        cc = m[1, 0] / m[0, 0]
        mu = moments_central(sample, cr, cc)
        nu = moments_normalized(mu)
        hu = moments_hu(nu)
        features.append(hu)
    return features
def extract_features(roi, props):

    features = []

    m = moments(roi)
    # print(m)

    cr = m[0, 1] / m[0, 0]
    cc = m[1, 0] / m[0, 0]

    mu = moments_central(roi, (cr, cc))
    nu = moments_normalized(mu)

    #finding Seven Features
    hu = moments_hu(nu)

    # seven features to be put into feature list
    features.extend(hu)

    # print(features)

    features.append(roi.shape[1]/roi.shape[0])
    features.append(props.eccentricity)
    features.append(props.convex_area/props.area)
    features.append(props.orientation)
    features.append(props.euler_number)
    
    return np.array([features])
Exemplo n.º 18
0
	def __compute_moments(self, data, centroid, radius):
		""" Compute moments"""

		# - Compute central moments
		mom_c= moments_central(data, center=centroid, order=3)

		# - Compute normalized moments
		mom_norm= moments_normalized(mom_c, 3)

		# - Compute Hu moments
		mom_hu= moments_hu(mom_norm)

		# - Flatten moments
		mom_c= mom_c.flatten()

		# - Compute Zernike moments
		#   NB: mahotas takes only positive pixels and rescale image by sum(pix) internally
		poldeg= 4
		nmom_zernike= 9
		mom_zernike= [-999]*nmom_zernike
		try:
			mom_zernike = mahotas.features.zernike_moments(data, radius, degree=poldeg, cm=centroid)
			##mom_zernike = mahotas.features.zernike_moments(mask, radius, degree=poldeg, cm=centroid)
		except Exception as e:
			logger.warn("Failed to compute Zernike moments (err=%s)!" % (str(e)))

		#print("--> mom_zernike")
		#print(mom_zernike)
		
		return (mom_c, mom_hu, mom_zernike)
Exemplo n.º 19
0
def extract_features(path, show, tag):
    img = io.imread('./images/' + path + '.bmp')
    hist = exposure.histogram(img)
    th = get_threshold('./images/' + path + '.bmp')
    img_binary = (img < th).astype(np.double)
    img_label = label(img_binary, background=0)

    # Show images
    if show == 1:
        io.imshow(img)
        plt.title('Original Image')
        io.show()

        plt.bar(hist[1], hist[0])
        plt.title('Histogram')
        plt.show()

        io.imshow(img_binary)
        plt.title('Binary Image')
        io.show()

        io.imshow(img_label)
        plt.title('Labeled Image')
        io.show()

    regions = regionprops(img_label)
    if show == 1:
        io.imshow(img_binary)
        ax = plt.gca()

    features = []

    for props in regions:
        minr, minc, maxr, maxc = props.bbox
        if maxc - minc < 10 or maxr - minr < 10 or maxc - minc > 120 or maxr - minr > 120:
            continue
        if show == 1:
            ax.add_patch(
                Rectangle((minc, minr),
                          maxc - minc,
                          maxr - minr,
                          fill=False,
                          edgecolor='red',
                          linewidth=1))
        roi = img_binary[minr:maxr, minc:maxc]
        m = moments(roi)
        cr = m[0, 1] / m[0, 0]
        cc = m[1, 0] / m[0, 0]
        mu = moments_central(roi, cr, cc)
        nu = moments_normalized(mu)
        hu = moments_hu(nu)
        features.append(hu)
        if (len(path) == 1):
            tag.append(ord(path))

    if show == 1:
        plt.title('Bounding Boxes')
        io.show()
    return features
Exemplo n.º 20
0
def test_moments_central():
    image = np.zeros((20, 20), dtype=np.double)
    image[14, 14] = 1
    image[15, 15] = 1
    image[14, 15] = 0.5
    image[15, 14] = 0.5
    mu = moments_central(image, 14.5, 14.5)

    # shift image by dx=2, dy=2
    image2 = np.zeros((20, 20), dtype=np.double)
    image2[16, 16] = 1
    image2[17, 17] = 1
    image2[16, 17] = 0.5
    image2[17, 16] = 0.5
    mu2 = moments_central(image2, 14.5 + 2, 14.5 + 2)
    # central moments must be translation invariant
    assert_equal(mu, mu2)
Exemplo n.º 21
0
 def compute_hu_moments(i):
     b = cells_aligned_padded[i].astype(np.uint8)
     m = moments(b, order=1)
     hu = moments_hu(
         moments_normalized(
             moments_central(b, cc=m[0, 1] / m[0, 0],
                             cr=m[1, 0] / m[0, 0])))
     return hu
Exemplo n.º 22
0
def test_moments_central():
    image = np.zeros((20, 20), dtype=np.double)
    image[14, 14] = 1
    image[15, 15] = 1
    image[14, 15] = 0.5
    image[15, 14] = 0.5
    mu = moments_central(image, 14.5, 14.5)

    # shift image by dx=2, dy=2
    image2 = np.zeros((20, 20), dtype=np.double)
    image2[16, 16] = 1
    image2[17, 17] = 1
    image2[16, 17] = 0.5
    image2[17, 16] = 0.5
    mu2 = moments_central(image2, 14.5 + 2, 14.5 + 2)
    # central moments must be translation invariant
    assert_equal(mu, mu2)
Exemplo n.º 23
0
def test_moments_hu_dtype(dtype):
    image = np.zeros((20, 20), dtype=np.double)
    image[13:15, 13:17] = 1
    mu = moments_central(image, (13.5, 14.5))
    nu = moments_normalized(mu)
    hu = moments_hu(nu.astype(dtype))

    assert hu.dtype == dtype
Exemplo n.º 24
0
def get_moments(image: np.ndarray, position: Tuple[int, int]):
    x, y = position[0], position[1]
    d = 3
    part = image[x - d:x + d + 1, y - d:y + d + 1]
    h = moments_hu(part)
    # print(h)
    c = moments_central(part, order=4)
    # print(c)
    return *(c.reshape((25, 1))), *h
Exemplo n.º 25
0
    def describe(self, image):

        #calculate daisy feature descriptors
        mc = measure.moments_central(image)
        mn = measure.moments_normalized(mc)
        mh = measure.moments_hu(mn)

        # return Hu moments
        return mh
def extractFeature(name, showall, showbb, flag):

    (img, regions, ax, rthre, cthre) = extractImage(name, showall, showbb,
                                                    flag)

    Features = []
    boxes = []

    for props in regions:
        tmp = []
        minr, minc, maxr, maxc = props.bbox
        if maxc - minc < cthre or maxr - minr < rthre or maxc - minc > cthre * 9 or maxr - minr > rthre * 9:
            continue
        tmp.append(minr)
        tmp.append(minc)
        tmp.append(maxr)
        tmp.append(maxc)
        boxes.append(tmp)
        if showbb == 1:
            ax.add_patch(
                Rectangle((minc, minr),
                          maxc - minc,
                          maxr - minr,
                          fill=False,
                          edgecolor='red',
                          linewidth=1))
        # computing hu moments and removing small components
        roi = img[minr:maxr, minc:maxc]
        m = moments(roi)
        cr = m[0, 1] / m[0, 0]
        cc = m[1, 0] / m[0, 0]
        mu = moments_central(roi, cr, cc)
        nu = moments_normalized(mu)
        hu = moments_hu(nu)

        area = (maxr - minr) * (maxc - minc)
        # add convexity
        p = perimeter(img[minr:maxr, minc:maxc])
        con = (area / (p * p)) * 4 * math.pi
        convex = np.array([con])
        hu = np.concatenate((hu, convex))

        # add density
        den = area / float(props.convex_area)
        dense = np.array([den])
        hu = np.concatenate((hu, dense))

        Features.append(hu)

    # print boxes

    plt.title('Bounding Boxes')
    if showbb == 1:
        io.show()

    return Features, boxes,
Exemplo n.º 27
0
def testKNN():
    trainFeatures, trainLebels = extractFeatures()
    knn = neighbors.KNeighborsClassifier()
    knn.fit(trainFeatures, trainLebels)
    #score = knn.score(trainFeatures, trainLebels)
    testNames = ['test1', 'test2']
    #testNames = ['test2']
    testFeatures = []
    testLabels = []
    testTruth = []
    correct = 0
    #textPosition = []
    for i in range(len(testNames)):
        classes, locations = readPkl(testNames[i])
        img = io.imread(testNames[i] + '.bmp')
        #testTruth = ['a']*7+['d']*7+['m']*7+['n']*7+['o']*7+['p']*7+['q']*7+['r']*7+['u']*7+['w']*7
        ret, binary = cv.threshold(img, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
        #ret, binary = cv.threshold(img, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)
        th = ret
        img_binary = (img < th).astype(np.double)
        img_dilation = morphology.binary_dilation(img_binary, selem=None)
        img_erosion = morphology.binary_erosion(img_binary, selem=None)
        img_label = label(img_binary, background=0)
        regions = regionprops(img_label)
        io.imshow(img_binary)
        ax = plt.gca()
        thresholdR = 15
        thresholdC = 15
        for props in regions:
            minr, minc, maxr, maxc = props.bbox
            # Computing Hu Moments and Removing Small Components
            if (maxr - minr) >= thresholdR and (maxc - minc) >= thresholdC:
                #textPosition.append((maxc, minr))
                roi = img_binary[minr:maxr, minc:maxc]
                m = moments(roi)
                cr = m[0, 1] / m[0, 0]
                cc = m[1, 0] / m[0, 0]
                mu = moments_central(roi, cr, cc)
                nu = moments_normalized(mu)
                hu = moments_hu(nu)
                testFeatures.append(hu)
                
                testLabels.append(knn.predict([testFeatures[-1]]))
                
                indexFix = locationFix(locations, minr, minc, maxr, maxc)
                if indexFix is not None:
                    if testLabels[-1] == classes[indexFix]:
                        correct += 1
                
                plt.text(maxc, minr, testLabels[-1][0], bbox=dict(facecolor='white', alpha=0.5))
                ax.add_patch(Rectangle((minc, minr), maxc - minc, maxr - minr, fill=False, edgecolor='red', linewidth=1))
        plt.title('Bounding Boxes')
        io.show()
    print correct, len(testLabels)
    correctRate = correct / len(testLabels)
    print correctRate
Exemplo n.º 28
0
def test_moments_normalized_3d():
    image = draw.ellipsoid(1, 1, 10)
    mu_image = moments_central(image)
    nu = moments_normalized(mu_image)
    assert nu[0, 0, 2] > nu[0, 2, 0]
    assert_almost_equal(nu[0, 2, 0], nu[2, 0, 0])

    coords = np.where(image)
    mu_coords = moments_coords_central(coords)
    assert_almost_equal(mu_coords, mu_image)
Exemplo n.º 29
0
    def moments_central(self):
        """
        Central moments (translation invariant) of the source up to 3rd
        order.
        """

        from skimage.measure import moments_central
        ycentroid, xcentroid = self.cutout_centroid.value
        return moments_central(self._data_cutout_maskzeroed_double, ycentroid,
                               xcentroid, 3)
Exemplo n.º 30
0
    def moments_central(self):
        """
        Central moments (translation invariant) of the source up to 3rd
        order.
        """

        from skimage.measure import moments_central
        ycentroid, xcentroid = self.cutout_centroid.value
        return moments_central(self._data_cutout_maskzeroed_double,
                               ycentroid, xcentroid, 3)
Exemplo n.º 31
0
def test_moments_normalized_spacing(anisotropic):
    image = np.zeros((20, 20), dtype=np.double)
    image[13:17, 13:17] = 1

    if not anisotropic:
        spacing1 = (1, 1)
        spacing2 = (3, 3)
    else:
        spacing1 = (1, 2)
        spacing2 = (2, 4)

    mu = moments_central(image, spacing=spacing1)
    nu = moments_normalized(mu, spacing=spacing1)

    mu2 = moments_central(image, spacing=spacing2)
    nu2 = moments_normalized(mu2, spacing=spacing2)

    # result should be invariant to absolute scale of spacing
    assert_almost_equal(nu, nu2)
Exemplo n.º 32
0
def test_moments_normalized_3d():
    image = draw.ellipsoid(1, 1, 10)
    mu_image = moments_central(image)
    nu = moments_normalized(mu_image)
    assert nu[0, 0, 2] > nu[0, 2, 0]
    assert_almost_equal(nu[0, 2, 0], nu[2, 0, 0])

    coords = np.where(image)
    mu_coords = moments_coords_central(coords)
    assert_almost_equal(mu_coords, mu_image)
Exemplo n.º 33
0
def drawPictureWithContour(image, x):
    #fig = plt.figure()
    fig, ax = plt.subplots()

    #rescale exposure
    min = np.percentile(image, 5)
    perc = np.percentile(image, qthPercentile)
    resc = exposure.rescale_intensity(image,in_range=(min, perc))

    #kernel is used for dilatation and erosion
    kernel = np.ones((5,5),np.uint8)

    #we will be changing the outcome depending on the image value, hence the hsv format
    img = color.rgb2hsv(resc)
    height, width, channels = img.shape
    #print("width: " + str(width))
    #print("height: " + str(height))
    #print("channels: " + str(channels))

    #create 'inverse' array
    inv = np.zeros([height, width])
    for i in range(height):
        for j in range(width):
            #sky is a lot brighter than planes. inverse array will contain the data used for edge finding
            inv[i][j] = 1 - img[i][j][2]

    #time to smooth the results
    #inv = gaussian(inv, sigma=0.8)

    #erosion and dilatation to patch up objects on the sky
    inv = cv2.erode(inv,kernel,iterations = 1)
    inv = cv2.dilate(inv,kernel,iterations = 3)
    inv = cv2.erode(inv,kernel,iterations = 1)

    #actual contour finding
    contours = measure.find_contours(inv, contourLevelValue)
    for n, contours in enumerate(contours):
        M = measure.moments_central(contours, 0, 0)
        centerX = int(M[1,0] / M[0,0])
        centerY = int(M[0,1] / M[0,0])
        print("centerX: " + str(centerX))
        print("centerY: " + str(centerY))
        ax.add_artist(plt.Circle((centerX, centerY), 5, color='w'))
        plt.plot(contours[:,1],contours[:,0],linewidth=contourWidth, color=rcg(myColors))



    ''' ~~~ displaying image with matplotlib
    opencv represents rgb images as nd-array, but in reverse order (they are bgr instead of rgb)
    we have to convert them back to rgb using COLOR_BGR2RGB function
    '''
    plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    #plt.imshow(inv)
    #plt.show()
    fig.savefig(str(x) + ".pdf")
Exemplo n.º 34
0
def _irafstarfind_moments(imgcutout, kernel, sky):
    """
    Find the properties of each detected source, as defined by IRAF's
    ``starfind``.

    Parameters
    ----------
    imgcutout : `_ImgCutout`
        The image cutout for a single detected source.

    kernel : `_FindObjKernel`
        The convolution kernel.  The dimensions should match those of
        ``imgcutout``.  ``kernel.gkernel`` should have a peak pixel
        value of 1.0 and not contain any masked pixels.

    sky : float
        The local sky level around the source.

    Returns
    -------
    result : dict
        A dictionary of the object parameters.
    """

    from skimage.measure import moments, moments_central

    result = defaultdict(list)
    img = np.array((imgcutout.data - sky) * kernel.mask)
    img = np.where(img > 0, img, 0)  # starfind discards negative pixels
    if np.count_nonzero(img) <= 1:
        return {}
    m = moments(img, 1)
    result['xcentroid'] = m[1, 0] / m[0, 0]
    result['ycentroid'] = m[0, 1] / m[0, 0]
    result['npix'] = float(np.count_nonzero(img))  # float for easier testing
    result['sky'] = sky
    result['peak'] = np.max(img)
    flux = img.sum()
    result['flux'] = flux
    result['mag'] = -2.5 * np.log10(flux)
    mu = moments_central(img, result['ycentroid'], result['xcentroid'],
                         2) / m[0, 0]
    musum = mu[2, 0] + mu[0, 2]
    mudiff = mu[2, 0] - mu[0, 2]
    result['fwhm'] = 2.0 * np.sqrt(np.log(2.0) * musum)
    result['sharpness'] = result['fwhm'] / kernel.fwhm
    result['roundness'] = np.sqrt(mudiff**2 + 4.0 * mu[1, 1]**2) / musum
    pa = 0.5 * np.arctan2(2.0 * mu[1, 1], mudiff) * (180.0 / np.pi)
    if pa < 0.0:
        pa += 180.0
    result['pa'] = pa
    result['xcentroid'] += imgcutout.x0
    result['ycentroid'] += imgcutout.y0
    return result
Exemplo n.º 35
0
def _irafstarfind_moments(imgcutout, kernel, sky):
    """
    Find the properties of each detected source, as defined by IRAF's
    ``starfind``.

    Parameters
    ----------
    imgcutout : `_ImgCutout`
        The image cutout for a single detected source.

    kernel : `_FindObjKernel`
        The convolution kernel.  The dimensions should match those of
        ``imgcutout``.  ``kernel.gkernel`` should have a peak pixel
        value of 1.0 and not contain any masked pixels.

    sky : float
        The local sky level around the source.

    Returns
    -------
    result : dict
        A dictionary of the object parameters.
    """

    from skimage.measure import moments, moments_central

    result = defaultdict(list)
    img = np.array((imgcutout.data - sky) * kernel.mask)
    img = np.where(img > 0, img, 0)    # starfind discards negative pixels
    if np.count_nonzero(img) <= 1:
        return {}
    m = moments(img, 1)
    result['xcentroid'] = m[1, 0] / m[0, 0]
    result['ycentroid'] = m[0, 1] / m[0, 0]
    result['npix'] = float(np.count_nonzero(img))   # float for easier testing
    result['sky'] = sky
    result['peak'] = np.max(img)
    flux = img.sum()
    result['flux'] = flux
    result['mag'] = -2.5 * np.log10(flux)
    mu = moments_central(
        img, result['ycentroid'], result['xcentroid'], 2) / m[0, 0]
    musum = mu[2, 0] + mu[0, 2]
    mudiff = mu[2, 0] - mu[0, 2]
    result['fwhm'] = 2.0 * np.sqrt(np.log(2.0) * musum)
    result['sharpness'] = result['fwhm'] / kernel.fwhm
    result['roundness'] = np.sqrt(mudiff**2 + 4.0*mu[1, 1]**2) / musum
    pa = 0.5 * np.arctan2(2.0 * mu[1, 1], mudiff) * (180.0 / np.pi)
    if pa < 0.0:
        pa += 180.0
    result['pa'] = pa
    result['xcentroid'] += imgcutout.x0
    result['ycentroid'] += imgcutout.y0
    return result
Exemplo n.º 36
0
def test_moments_central():
    image = np.zeros((20, 20), dtype=np.double)
    image[14, 14] = 1
    image[15, 15] = 1
    image[14, 15] = 0.5
    image[15, 14] = 0.5
    mu = moments_central(image, (14.5, 14.5))

    # check for proper centroid computation
    mu_calc_centroid = moments_central(image)
    assert_equal(mu, mu_calc_centroid)

    # shift image by dx=2, dy=2
    image2 = np.zeros((20, 20), dtype=np.double)
    image2[16, 16] = 1
    image2[17, 17] = 1
    image2[16, 17] = 0.5
    image2[17, 16] = 0.5
    mu2 = moments_central(image2, (14.5 + 2, 14.5 + 2))
    # central moments must be translation invariant
    assert_equal(mu, mu2)
Exemplo n.º 37
0
 def _describe(self, binary, steps=None):
     clipped = binary.clip(max=1)
     m = measure.moments(clipped)
     cr = m[0, 1] / m[0, 0]
     cc = m[1, 0] / m[0, 0]
     central = measure.moments_central(clipped, cr, cc)
     normalized = measure.moments_normalized(central)
     moments = measure.moments_hu(normalized)
     # nan determines, that moment could not be described,
     # but is hard to handle in prediction, set to zero instead
     moments[np.isnan(moments)] = 0
     return moments
Exemplo n.º 38
0
def test_moments_central():
    image = np.zeros((20, 20), dtype=np.double)
    image[14, 14] = 1
    image[15, 15] = 1
    image[14, 15] = 0.5
    image[15, 14] = 0.5
    mu = moments_central(image, (14.5, 14.5))

    # check for proper centroid computation
    mu_calc_centroid = moments_central(image)
    assert_equal(mu, mu_calc_centroid)

    # shift image by dx=2, dy=2
    image2 = np.zeros((20, 20), dtype=np.double)
    image2[16, 16] = 1
    image2[17, 17] = 1
    image2[16, 17] = 0.5
    image2[17, 16] = 0.5
    mu2 = moments_central(image2, (14.5 + 2, 14.5 + 2))
    # central moments must be translation invariant
    assert_equal(mu, mu2)
Exemplo n.º 39
0
def extract_features(img):
    # This function extract our features out of an image. It basically
    # computes the 8 (and not 7) Hu geometrical moments. To do this we
    # first compute the moments, centralize and normalize them before
    # computing Hu moments
    m = moments(img)
    cr = m[0,1] / m[0,0]
    cc = m[1,0] / m[0,0]
    mc = moments_central(img, cr, cc)
    mn = moments_normalized(mc)
    hu = moments_hu(mn)
    i8 = mn[1, 1] * ( (mn[3, 0] + mn[1, 2])**2 - (mn[0,3]+mn[2,1])**2 ) - (mn[2,0] - mn[0,2]) * (mn[3,0] + mn[1,2]) * (mn[0,3] + mn[2,1])
    return append(hu, [i8])
Exemplo n.º 40
0
def test_moments_central_coords():
    image = np.zeros((20, 20), dtype=np.double)
    image[13:17, 13:17] = 1
    mu_image = moments_central(image, (14.5, 14.5))

    coords = np.array([[r, c] for r in range(13, 17)
                       for c in range(13, 17)], dtype=np.double)
    mu_coords = moments_coords_central(coords, (14.5, 14.5))
    assert_almost_equal(mu_coords, mu_image)

    # ensure that center is being calculated normally
    mu_coords_calc_centroid = moments_coords_central(coords)
    assert_almost_equal(mu_coords_calc_centroid, mu_coords)

    # shift image by dx=3 dy=3
    image = np.zeros((20, 20), dtype=np.double)
    image[16:20, 16:20] = 1
    mu_image = moments_central(image, (14.5, 14.5))

    coords = np.array([[r, c] for r in range(16, 20)
                       for c in range(16, 20)], dtype=np.double)
    mu_coords = moments_coords_central(coords, (14.5, 14.5))
    assert_almost_equal(mu_coords, mu_image)
Exemplo n.º 41
0
    def momentos_hu(self):
        """
            Calcula os 7 momentos de Hu

        """

        m = measure.moments(self.imagemTonsDeCinza)

        row = m[0, 1] / m[0, 0]
        col = m[1, 0] / m[0, 0]

        mu = measure.moments_central(self.imagemTonsDeCinza,row,col)
        nu = measure.moments_normalized(mu)
        hu = measure.moments_hu(nu)

        valores = list(hu)

        nomes = [m+n for m,n in zip(['hu_'] * len(valores),map(str,range(0,len(valores))))]

        tipos = [numerico] * len(nomes)

        return nomes, tipos, valores
Exemplo n.º 42
0
    def get_moments(self):
        """
        Return moments from frame

        Returns
        -------
        moments : pandas Series object with the following keys
                  - m10 : row position of centroid
                  - m01 : col position of centroid
                  - mupr20 : higher moments
                  - mupr02 : higher moments
                  - mupr11 : higher moments
        """
        frame = ma.masked_invalid(self)
        frame.fill_value = 0
        frame = frame.filled()
        frame *= self.ap_weights # Multiply frame by aperture weights

        # Compute the centroid
        m = measure.moments(frame)
        m10=m[1,0]
        m01=m[0,1]
        moments = np.array([m10,m01])
        moments /= m[0,0]

        # Compute central moments (second order)
        mu = measure.moments_central(frame,moments[0],moments[1])
        
        mupr20 = mu[2,0]
        mupr02 = mu[0,2]
        mupr11 = mu[1,1]

        c_moments = np.array([mupr20,mupr02,mupr11])
        c_moments/=mu[0,0]

        moments = np.hstack([moments,c_moments])
        return moments
Exemplo n.º 43
0
def shape_params(data, data_mask=None):
    """
    Calculate the centroid and shape parameters for an object using
    image moments.

    Parameters
    ----------
    data : array_like
        The 2D image data.

    data_mask : array_like, bool, optional
        A boolean mask with the same shape as ``data``, where a `True`
        value indicates the corresponding element of ``data`` is
        invalid.

    Returns
    -------
    dict :  A dictionary containing the object shape parameters:

        * ``xcen, ycen``: object centroid (zero-based origin).
        * ``major_axis``: length of the major axis
        * ``minor_axis``: length of the minor axis
        * ``eccen``: eccentricity.  The ratio of half the distance
          between its two ellipse foci to the length of the the
          semimajor axis.
        * ``pa``: position angle of the major axis.  Increases
          clockwise from the positive x axis.
        * ``covar``: corresponding covariance matrix for a 2D Gaussian
        * ``linear_eccen`` : linear eccentricity is the distance between
          the object center and either of its two ellipse foci.
    """
    from skimage.measure import moments, moments_central

    if data_mask is not None:
        if data.shape != data_mask.shape:
            raise ValueError('data and data_mask must have the same shape')
        data[data_mask] = 0.

    result = {}
    xcen, ycen = centroid_com(data)
    m = moments(data, 1)
    mu = moments_central(data, ycen, xcen, 2) / m[0, 0]
    result['xcen'] = xcen
    result['ycen'] = ycen
    # musum = mu[2, 0] + mu[0, 2]
    mudiff = mu[2, 0] - mu[0, 2]
    pa = 0.5 * np.arctan2(2.0*mu[1, 1], mudiff) * (180.0 / np.pi)
    if pa < 0.0:
        pa += 180.0
    result['pa'] = pa
    covar = np.array([[mu[2, 0], mu[1, 1]], [mu[1, 1], mu[0, 2]]])
    result['covar'] = covar
    eigvals, eigvecs = np.linalg.eigh(covar)
    majsq = np.max(eigvals)
    minsq = np.min(eigvals)
    result['major_axis'] = np.sqrt(majsq)
    result['minor_axis'] = np.sqrt(minsq)
    # if True:   # equivalent calculation
    #     tmp = np.sqrt(4.0*mu[1,1]**2 + mudiff**2)
    #     majsq = 0.5 * (musum + tmp)
    #     minsq = 0.5 * (musum - tmp)
    #     result['major_axis2'] = np.sqrt(majsq)
    #     result['minor_axis2'] = np.sqrt(minsq)
    result['eccen'] = np.sqrt(1.0 - (minsq / majsq))
    result['linear_eccen'] = np.sqrt(majsq - minsq)
    return result
Exemplo n.º 44
0
def shape_params(data, mask=None):
    """
    Calculate the centroid and shape parameters of a 2D array (e.g., an
    image cutout of an object) using image moments.

    Parameters
    ----------
    data : array_like or `~astropy.nddata.NDData`
        The 2D array of the image.

    mask : array_like, bool, optional
        A boolean mask with the same shape as ``data``, where a `True`
        value indicates the corresponding element of ``data`` is
        invalid.  If ``mask`` is input it will override ``data.mask``
        for `~astropy.nddata.NDData` inputs.

    Returns
    -------
    params : dict
        A dictionary containing the object shape parameters:

        * ``xcen, ycen``: The object centroid (zero-based origin).
        * ``major_axis``: The length of the major axis of the ellipse
          that has the same second-order moments as the input image.
        * ``minor_axis``: The length of the minor axis of the ellipse
          that has the same second-order moments as the input image.
        * ``eccen``: The eccentricity of the ellipse that has the same
          second-order moments as the input image.  The eccentricity is
          the ratio of half the distance between the two ellipse foci to
          the length of the semimajor axis.
        * ``angle``: Angle in radians between the positive x axis and
          the major axis of the ellipse that has the same second-order
          moments as the input image.  The angle increases
          counter-clockwise.
        * ``covar``: The covariance matrix of the ellipse that has the
          same second-order moments as the input image.
        * ``linear_eccen`` : The linear eccentricity of the ellipse that
          has the same second-order moments as the input image.  Linear
          eccentricity is the distance between the ellipse center and
          either of its two foci.
    """

    from skimage.measure import moments, moments_central
    data = _convert_image(data, mask=mask)
    xcen, ycen = centroid_com(data)
    m = moments(data, 1)
    mu = moments_central(data, ycen, xcen, 2) / m[0, 0]
    result = {}
    result['xcen'] = xcen
    result['ycen'] = ycen
    mudiff = mu[2, 0] - mu[0, 2]
    angle = 0.5 * np.arctan2(2.0 * mu[1, 1], mudiff) * (180.0 / np.pi)
    if angle < 0.0:
        angle += np.pi
    result['angle'] = angle
    covar = np.array([[mu[2, 0], mu[1, 1]], [mu[1, 1], mu[0, 2]]])
    result['covar'] = covar
    eigvals, eigvecs = np.linalg.eigh(covar)
    majsq = np.max(eigvals)
    minsq = np.min(eigvals)
    result['major_axis'] = np.sqrt(majsq)
    result['minor_axis'] = np.sqrt(minsq)
    # equivalent calculation of major/minor axes:
    #     tmp = np.sqrt(4.0*mu[1,1]**2 + mudiff**2)
    #     musum = mu[2, 0] + mu[0, 2]
    #     majsq = 0.5 * (musum + tmp)
    #     minsq = 0.5 * (musum - tmp)
    #     result['major_axis2'] = np.sqrt(majsq)
    #     result['minor_axis2'] = np.sqrt(minsq)
    result['eccen'] = np.sqrt(1.0 - (minsq / majsq))
    result['linear_eccen'] = np.sqrt(majsq - minsq)
    return result
# Assignment 4 - Morphology # - not done yet
img = array(Image.open('figure_problem_set_4.tiff'))
img = 1 * (img > 1)
imshow(img, cmap = cm.Greys_r, interpolation = 'none')
equivTable, imgLabel = regionLabel(img)
imshow(imgLabel, cmap = cm.Greys_r, interpolation = 'none')


# HOMEWORK 6
# Assignment 3 - calculate moments
img = skimageIO.imread('img_moment.tif').astype(float)
imshow(img, cmap = cm.Greys_r, interpolation = 'none')
moments_deg1 = skimageMeasure.moments(img, order = 1)
x0 = moments_deg1[0, 1] / moments_deg1[0, 0]
y0 = moments_deg1[1, 0] / moments_deg1[0, 0]
momentsCentral_deg2 = skimageMeasure.moments_central(img, x0, y0, order = 2)
m00 = momentsCentral_deg2[0, 0]
m11 = momentsCentral_deg2[1, 1]
m02 = momentsCentral_deg2[0, 2]
m20 = momentsCentral_deg2[2, 0]
orientation = degrees(arctan2(2 * m11, (m20 - m02)) / 2)

# HOUGH TRANSFORM HOMEWORK
img = skimageIO.imread('img_hough_circle.tiff').astype(float)

# Enhance edges by Sobel operator
h1 = array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
imgH1 = convolve2d(img, h1)
h2 = array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
imgH2 = convolve2d(img, h2)
img = 1.0 * (sqrt(imgH1 ** 2 + imgH2 ** 2) > 0)
 def compute_hu_moments(i):
     b = cells_aligned_padded[i].astype(np.uint8)
     m = moments(b, order=1)
     hu = moments_hu(moments_normalized(moments_central(b, cc=m[0,1]/m[0,0], cr=m[1,0]/m[0,0])))
     return hu
Exemplo n.º 47
0
 def central_geom_moments_sk(self, order):
     return measure.moments_central(self.image, self.centroid_sk()['x'], self.centroid_sk()['y'], order)