Exemplo n.º 1
0
class Pose2MeshModel(nn.Module):
    def __init__(self):
        super(Pose2MeshModel, self).__init__()
        if torch.cuda.is_available():
            self.reg = AcosRegressor(hidden_dim=256).cuda()
            self.smpl = SMPLModel(device=torch.device('cuda'),
                model_path = './model_24_joints.pkl',
                    simplify=True
            )
        else:
            self.reg = AcosRegressorRegressor(hidden_dim=256).cpu()
            self.smpl = SMPLModel(device=torch.device('cpu'),
                model_path = './model_24_joints.pkl',
                    simplify=True
            )
           
        ckpt_path = './checkpoints_0303_24_joints'
        state_dict = torch.load('%s/regressor_040.pth' % (ckpt_path))
        self.reg.load_state_dict(state_dict)
            
    def forward(self, input):
        trans = torch.zeros((input.shape[0], 3), device=input.device)
        betas = torch.zeros((input.shape[0], 10), device=input.device)
        thetas = self.reg(input)
        print('Estimated theta:\n', thetas.detach().cpu().numpy())
        mesh, joints = self.smpl(betas, thetas, trans)
        return mesh, joints
        
    def evaluate(self, input, save_dir):
        mesh, joints = self.forward(input)
        self.smpl.write_obj(mesh[0].detach().cpu().numpy(), save_dir)
        np.savetxt('recon_pose.xyz', joints[0].detach().cpu().numpy().reshape(24,3), delimiter=' ')
def run_test():
    if platform == 'linux':
        os.environ['CUDA_VISIBLE_DEVICES'] = '2'

    data_type = torch.float32
    device = torch.device('cuda')
    pose_size = 72
    beta_size = 10

    np.random.seed(9608)
    model = SMPLModel(
        device=device,
        model_path='./model_lsp.pkl',
        data_type=data_type,
    )
    dataset = Human36MDataset(model, max_item=100, calc_mesh=True)

    # generate mesh, align with 14 point ground truth
    case_num = 10
    data = dataset[:case_num]
    meshes = data['meshes']
    input = data['lsp_joints']
    target_2d = data['gt2d']
    target_3d = data['gt3d']

    transforms = map_3d_to_2d(input, target_2d, target_3d)

    # Important: mesh should be centered at the origin!
    deformed_meshes = transforms(meshes)
    mesh_3d = deformed_meshes.detach().cpu().numpy()
    # visualize(data['imagename'], mesh_3d[:,:,:2].astype(np.int),
    #    target_2d.detach().cpu().numpy().astype(np.int))

    for i, mesh in enumerate(mesh_3d):
        model.write_obj(mesh,
                        '_test_cache/real_mesh_{}.obj'.format(i))  # weird.

        UV_position_map, UV_scatter, rgbs_backup = get_UV(mesh, 300)

        # write colorized coordinates to ply
        write_ply('_test_cache/colored_mesh_{}.ply'.format(i), mesh,
                  rgbs_backup)

        out = np.concatenate((UV_position_map, UV_scatter), axis=1)

        imsave('_test_cache/UV_position_map_{}.png'.format(i), out)
        resampled_mesh = resample(UV_position_map)

        model.write_obj(resampled_mesh,
                        '_test_cache/recon_mesh_{}.obj'.format(i))
def create_meshes(UV_label_root=None, uv_prefix='smpl_fbx_template'):
    if platform == 'linux':
        os.environ['CUDA_VISIBLE_DEVICES'] = '0'

    data_type = torch.float32
    device = torch.device('cuda')
    pose_size = 72
    beta_size = 10

    np.random.seed(9608)
    model = SMPLModel(
        device=device,
        model_path='./model_lsp.pkl',
        data_type=data_type,
    )
    dataset = Human36MWashedDataset(
        model,
        calc_mesh=True,
        root_dir='/home/wzeng/mydata/h3.6m/images_washed')

    generator = UV_Map_Generator(UV_height=256,
                                 UV_pickle=uv_prefix + '.pickle')

    # create root folder for UV labels
    if UV_label_root is None:
        UV_label_root = dataset.root_dir.replace('images_washed',
                                                 'meshes_washed')

    if not os.path.isdir(UV_label_root):
        os.makedirs(UV_label_root)
        subs = [
            sub for sub in os.listdir(dataset.root_dir)
            if os.path.isdir(dataset.root_dir + '/' + sub)
        ]
        for sub in subs:
            os.makedirs(UV_label_root + '/' + sub)
    else:
        print('{} folder exists, process terminated...'.format(UV_label_root))
        # return

    # generate mesh, align with 14 point ground truth
    batch_size = 64
    total_batch_num = dataset.length // batch_size + 1
    _loop = tqdm(range(total_batch_num), ncols=80)

    for batch_id in _loop:
        data = dataset[batch_id * batch_size:(batch_id + 1) * batch_size]
        meshes = data['meshes']
        input = data['lsp_joints']
        target_2d = data['gt2d']
        target_3d = data['gt3d']
        imagename = [UV_label_root + str for str in data['imagename']]

        transforms = map_3d_to_2d(input, target_2d, target_3d)

        # Important: mesh should be centered at the origin!
        deformed_meshes = transforms(meshes)
        mesh_3d = deformed_meshes.detach().cpu().numpy()

        test_folder = UV_label_root
        '''
        test_folder = UV_label_root
        visualize(test_folder, data['imagename'], mesh_3d[:,:,:2].astype(np.int), 
           target_2d.detach().cpu().numpy().astype(np.int), dataset.root_dir)
        '''
        s = time()
        for name, mesh in zip(imagename, mesh_3d):
            # this approach didn't normalize the coordinates
            model.write_obj(mesh, name[:-4] + '.obj')
            '''
Exemplo n.º 4
0
 model = SMPLModel(device=device, model_path = './model_24_joints.pkl',
                 simplify=True)
 
 if not os.path.isdir('joint2pose_result'):
     os.makedirs('joint2pose_result')
 
 loss_op = nn.L1Loss()
 betas = torch.zeros((1, beta_size), dtype=torch.float64, device=device)
 trans = torch.zeros((1, 3), dtype=torch.float64, device=device)
 
 for i in range(10):
     print('Test case %d:' % (i+1))
     real_pose = torch.from_numpy((np.random.rand(1, pose_size) - 0.5) * 1)\
           .type(torch.float64).to(device)
     real_result, real_joints = model(betas, real_pose, trans)
     model.write_obj(real_result[0].detach().cpu().numpy(), 'joint2pose_result/real_mesh_{}.obj'.format(i))
     
     # Initialize a pose from zero and optimize it
     
     test_pose = torch.zeros((1, pose_size), dtype=torch.float64, device=device, requires_grad=True)
     optimizer = SGD(iter([test_pose]), lr=0.0005, momentum=0.2)
     #optimizer = Adam(iter([test_pose]), lr=0.0001, betas=(0.5,0.999))
     
     s = time()
     prev_loss = None
     for step in range(2000):
         _, test_joints = model(betas, test_pose, trans)
         loss = loss_op(test_joints, real_joints)
         if step % 50 == 0:
             print('Step {:03d}: loss: {:10.6f}'.format(step, loss.data.item()))
         cur_loss = loss.data.item()
def run_test():
    if platform == 'linux':
        os.environ['CUDA_VISIBLE_DEVICES'] = '2'

    data_type = torch.float32
    device = torch.device('cuda')
    pose_size = 72
    beta_size = 10

    np.random.seed(9608)
    model = SMPLModel(
        device=device,
        model_path='./model_lsp.pkl',
        data_type=data_type,
    )
    dataset = Human36MDataset(model, max_item=100, calc_mesh=True)

    # generate mesh, align with 14 point ground truth
    case_num = 10
    data = dataset[:case_num]
    meshes = data['meshes']
    input = data['lsp_joints']
    target_2d = data['gt2d']
    target_3d = data['gt3d']

    transforms = map_3d_to_2d(input, target_2d, target_3d)

    # Important: mesh should be centered at the origin!
    deformed_meshes = transforms(meshes)
    mesh_3d = deformed_meshes.detach().cpu().numpy()

    file_prefix = 'smpl_fbx_template'
    generator = UV_Map_Generator(UV_height=256,
                                 UV_pickle=file_prefix + '.pickle')

    test_folder = '_test_smpl_fbx'
    if not os.path.isdir(test_folder):
        os.makedirs(test_folder)

    visualize(test_folder, data['imagename'], mesh_3d[:, :, :2].astype(np.int),
              target_2d.detach().cpu().numpy().astype(np.int))

    s = time()
    for i, mesh in enumerate(mesh_3d):
        model.write_obj(mesh, '{}/real_mesh_{}.obj'.format(test_folder,
                                                           i))  # weird.

        UV_position_map, verts_backup = \
            generator.get_UV_map(mesh)

        # write colorized coordinates to ply
        UV_scatter, _, _ = generator.render_point_cloud(verts=mesh)
        generator.write_ply('{}/colored_mesh_{}.ply'.format(test_folder, i),
                            mesh)

        out = np.concatenate((UV_position_map, UV_scatter), axis=1)

        imsave('{}/UV_position_map_{}.png'.format(test_folder, i), out)

        resampled_mesh = generator.resample(UV_position_map)

        model.write_obj(resampled_mesh,
                        '{}/recon_mesh_{}.obj'.format(test_folder, i))
    print('{} cases for {}s'.format(case_num, time() - s))