def main():
    pl_train, pl_labels = get_dataset('./Pan_Licence/')
    pl_labels = to_categorical(pl_labels, num_classes=36)

    x_train, x_val, y_train, y_val = train_test_split(pl_train,
                                                      pl_labels,
                                                      test_size=0.2,
                                                      random_state=2064)

    tb = TensorBoard(log_dir='./logs/Squeezenet', write_graph=True)

    model = SqueezeNet()
    model.compile(optimizer='adam',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    print(model.summary())

    history = model.fit(x_train,
                        y_train,
                        batch_size=32,
                        epochs=5,
                        validation_split=0.1,
                        shuffle=True,
                        callbacks=[tb])

    ## Save Model
    json_model = model.to_json()
    with open('model_squeezenet.json', 'w') as f:
        f.write(json_model)
    model.save_weights('model_squeezenet.h5')
    print('Model Saved')

    print('Evaluating Model')
    predict = model.evaluate(x=x_val, y=y_val, batch_size=1)

    print('Score', predict[1] * 100.00)
    print('Loss', predict[0])
Exemplo n.º 2
0
Y_train = to_categorical(y_train, nb_classes)
Y_test = to_categorical(y_test, nb_classes)

# classes = to_categorical(classes, nb_classes=nr_classes)

print('Loading model..')
model = SqueezeNet(nb_classes, input_shape=input_shape)
model.compile(loss="categorical_crossentropy",
              optimizer='adam',
              metrics=['accuracy'])
if os.path.isfile(weights_file):
    print('Loading weights: %s' % weights_file)
    model.load_weights(weights_file, by_name=True)

print('Fitting model')
model.fit(X_train,
          Y_train,
          batch_size=batch_size,
          nb_epoch=nb_epoch,
          verbose=1,
          validation_split=0.2,
          initial_epoch=0)
print("Finished fitting model")

print('Saving weights')
model.save_weights(weights_file, overwrite=True)
print('Evaluating model')

score = model.evaluate(X_test, Y_test, verbose=1)
print('result: %s' % score)
Exemplo n.º 3
0
random.shuffle(imgpaths_classes)

images, classes = zip(*imgpaths_classes)
classes = to_categorical(classes, nb_classes=nb_classes)
images = np.asarray(images)

print('Loading model..')
model = SqueezeNet(nb_classes, input_shape=(227, 227, 3))
model.compile(loss="categorical_crossentropy",
              optimizer='adam',
              metrics=['accuracy', 'categorical_crossentropy'])
if os.path.isfile(weights_file):
    print('Loading weights: %s' % weights_file)
    model.load_weights(weights_file, by_name=True)

print('Fitting model')
model.fit(images,
          classes,
          batch_size=batch_size,
          nb_epoch=nb_epoch,
          verbose=1,
          validation_split=0.2,
          initial_epoch=0)
print("Finished fitting model")

print('Saving weights')
model.save_weights(weights_file, overwrite=True)
print('Evaluating model')
score = model.evaluate(images, classes, verbose=1)
print('result: %s' % score)